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Abstract Taurine (2-aminoethanesulfonate) is a wide-

spread natural product whose nitrogen moiety was recently

shown to be assimilated by bacteria, usually with excretion

of an organosulfonate via undefined novel pathways; other

data involve transcriptional regulator TauR in taurine

metabolism. A screen of genome sequences for TauR with

the BLAST algorithm allowed the hypothesis that the

marine gammaproteobacterium Neptuniibacter caesarien-

sis MED92 would inducibly assimilate taurine-nitrogen

and excrete sulfoacetate. The pathway involved an ABC

transporter (TauABC), taurine:pyruvate aminotransferase

(Tpa), a novel sulfoacetaldehyde dehydrogenase (SafD)

and exporter(s) of sulfoacetate (SafE) (DUF81). Ten

candidate genes in two clusters involved three sets of

paralogues (for TauR, Tpa and SafE). Inducible Tpa and

SafD were detected in cell extracts. SafD was purified 600-

fold to homogeneity in two steps. The monomer had a

molecular mass of 50 kDa (SDS-PAGE); data from gel

filtration chromatography indicated a tetrameric native

protein. SafD was specific for sulfoacetaldehyde with a

Km-value of 0.12 mM. The N-terminal amino acid

sequence of SafD confirmed the identity of the safD gene.

The eight pathway genes were transcribed inducibly, which

indicated expression of the whole hypothetical pathway.

We presume that this pathway is one source of sulfoacetate

in nature, where this compound is dissimilated by many

bacteria.
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Introduction

Taurine (2-aminoethanesulfonate) is widespread in nature.

It occurs in marine invertebrates and it is a major organic

solute in mammals, which excrete it in urine (Allen and

Garrett 1971; Huxtable 1992; Yancey et al. 2002). The

compound is known to serve as a sole source of carbon or of

sulfur for the growth of bacteria under aerobic conditions

(e.g., Ikeda et al. 1963; Kondo et al. 1971; Uria-Nickelsen

et al. 1993), and those processes have been largely eluci-

dated at the biochemical and genetic levels (van der Ploeg

et al. 1996; Eichhorn et al. 2000; Kahnert et al. 2000;

Kertesz 2000; Cook and Denger 2002, 2006; Wiethaus et al.

2008): key reactions are the desulfonations catalyzed

by sulfoacetaldehyde acetyltransferase (Xsc) and taurine

dioxygenase (TauD) (van der Ploeg et al. 1996; Cook and

Denger 2002), and the proven function of transcriptional
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regulator TauR (Wiethaus et al. 2008). Recently, taurine has

been shown to serve as a sole source of nitrogen for bac-

terial growth, whereby most organisms remove the amino

group and excrete an organosulfonate product into the

medium (Denger et al. 2004b; Styp von Rekowski et al.

2005; Weinitschke et al. 2005; see also Chien et al. 1999;

Denger et al. 2004a). In Rhodopseudomonas palustris

CGA009 the inducible formation of ionic sulfoacetic acid

(i.e., sulfoacetate) as a product of the assimilation of tau-

rine-nitrogen was detected (Denger et al. 2004b).

Sulfoacetic acid was first recognized as a biological

entity in 1944 in a set of widespread plant alkaloids

(erysothiovine and erysothiopine) with curare-like effects

(Folkers et al. 1944; Mondon 1970). Sulfoacetic acid was

later shown to be a plant and an algal product from

(derivatized) sulfoquinovose (the polar head group of the

plant sulfolipid) and an algal product from L-cysteate

(Shibuya et al. 1963; Lee and Benson 1972; Gupta and

Sastry 1988). In mice, traces of sulfoacetate are formed

from sulfolactate, which is in equilibrium with L-cysteate

(Weinstein and Griffith 1988). Bacteria can also form

sulfoacetate from (derivatized) sulfoquinovose (Martelli

and Benson 1964). With the exception of the work with R.

palustris (Denger et al. 2004b), almost no enzymic process

(or the corresponding gene) has been established for any of

these reactions or pathways.

Inducible assimilation of taurine-nitrogen by R. palustris

CGA009 to yield sulfoacetate was presumed to involve

TauR (RPA0105) (Denger et al. 2004b). The uptake system

for taurine in R. palustris is unknown. Taurine dehydroge-

nase, sulfoacetaldehyde dehydrogenase (sulfoacetate

formation, dehydrogenase; SafD) and the sulfoacetate

exporter (sulfoacetate formation, exporter; SafE) were

believed to be RPA0112a-0113, RPA0112 and RPA0111,

respectively, (Denger et al. 2004b). However, the taurine

dehydrogenase reaction to yield sulfoacetaldehyde could not

be assayed in vitro: the enzyme requires a rhodopseudomo-

nadal cytochrome c (Weinitschke et al. 2006). Further, the

induction of sulfoacetaldehyde dehydrogenase (SafD) is

such that the sulfoacetate and ammonium ions are released

into the medium in a very short time, and the cells grow either

with the excreted ammonium ion or by fixing dinitrogen

(Denger et al. 2004b), which left very low levels of enzyme

that were easily lost: the major protein in the separated SafD-

fraction was catalase (Weinitschke, unpublished). In taurine

degradation in other organisms there is an alternative to

taurine dehydrogenase, namely a combination of tau-

rine:pyruvate aminotransferase (Tpa) [EC 2.6.1.77] and

alanine dehydrogenase (Ald) [EC 1.4.1.1] (e.g., Styp von

Rekowski et al. 2005). Both enzymes in this metabolic

context have been purified and characterized elsewhere (e.g.,

Laue and Cook 2000a, b; Denger et al. 2004a).

Given the experimental problems with R. palustris

CGA009 (previous paragraph), we decided to search for an

organism, which would allow us (1) to characterize the

novel enzyme (sulfoacetaldehyde dehydrogenase; SafD)

and (2) to formulate a complete pathway from external

taurine to excreted sulfoacetate (Fig. 1a). Screens by
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Fig. 1 The hypothesized

pathway of taurine uptake,

deamination, oxidation and

excretion (a) derived from our

annotation of gene clusters on

the genome of N. caesariensis
MED92 (b). The gene clusters

represent MED92_12196–

MED92_13221 (tauC-tpa1) and

MED92_03193–MED92_03208

(tpa2-safE2)
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means of the BLAST algorithm (Altschul et al. 1997)

revealed that the genome of the aerobic, marine gamma-

proteobacterium Neptuniibacter caesariensis (formerly

Oceanospirillum sp.) MED92 (Arahal et al. 2007) includes

candidate genes to encode inducible SafD and SafE (see

Results).

We now report that N. caesariensis MED92 does,

indeed, excrete sulfoacetate when utilizing taurine as a

source of nitrogen. The pathway is inducible and SafD has

been purified and identified.

Materials and methods

Chemicals

Taurine (C99.5%) was from Fluka and disodium sulfoac-

etate ([99%) from Acros Organics. Sulfoacetaldehyde,

as the bisulfite addition complex, was synthesized and

characterized previously (Denger et al. 2001). Phospho-

noacetaldehyde was provided by H. B. F. Dixon

(Cambridge University). Other chemicals were of the

highest purity available and were purchased from Fluka,

Merck, Roth, Serva and Sigma.

Organism, growth, harvesting of cells and preparation

of cell-free extracts

N. caesariensis MED92T (CCUG 52065; previously Oce-

anospirillum sp.) (Arahal et al. 2007) was made available

by J. Pinhassi (Department of Biology and Environmental

Sciences, University of Kalmar, SE-39182 Kalmar,

Sweden). Experimental requirements for (1) nitrogen-

limiting conditions and (2) the ability to follow the fate of

the sulfonate group caused two modifications to the pub-

lished medium (MacLeod and Hori 1960; Baumann and

Baumann 1981). First, the ammonium chloride was

removed. Second, the concentration of magnesium sulfate

was reduced to 1.0 mM: we found the organism to require

the sulfate ion in excess of the sulfur required for growth.

The basal medium thus contained: 200 mM NaCl, 50 mM

MgCl2, 50 mM Tris–HCl, pH 7.5, 10 mM CaCl2, 10 mM

KCl, 0.5 mM K2HPO4, 0.02 mM FeSO4 and trace elements

SL6 (Pfennig 1974): after autoclaving, the solution was

brought to 1 mM MgSO4. The carbon source was routinely

10 mM sodium succinate and the nitrogen source was

routinely 2 mM taurine or 2 mM ammonium chloride. The

combined nitrogen in the Tris buffer was not a source of

nitrogen for growth.

Precultures (5 ml) of strain MED92 were grown at 30�C

in 30-ml screw-cap tubes in a roller. Growth experiments

were done on the 50-ml scale in 300-ml Erlenmeyer flasks

shaken in a water bath in the dark. Samples were taken at

intervals to measure optical density (at 580 nm; OD580),

to assay protein, and to determine the concentrations of

taurine, sulfoacetaldehyde, sulfoacetate, and the ammo-

nium and sulfate ions. Similar cultures were used to

generate small amounts of cells for enzyme assays or for

molecular analyses.

Cells for the preparation of total RNA were harvested in

the early exponential phase of growth (OD580 = 0.15) and

in late exponential phase (OD580 = 0.5) by centrifugation at

5,0009g. RNA was extracted immediately.

Cultures (1 l) for protein purification were grown in

5-l Erlenmeyer flasks on a shaker. Cells were harvested at

OD580 between 0.4 and 0.5 by centrifugation (15,0009g,

15 min, 4�C), washed with 20 mM Tris–HCl buffer, pH 9.0

(containing 5 mM MgCl2) and stored frozen. This buffer,

augmented with 0.05 mg DNAse I ml-1, served as

extraction buffer. Cell-free extracts were generated after

disruption by three passages through a French pressure cell

set at 140 MPa (Junker et al. 1994). The membrane/par-

ticulate fraction was pelleted by ultracentrifugation

(340,0009g, 40 min, 4�C) and the supernatant fluid was

called the soluble fraction.

Analytical methods

Growth was followed as OD580 (for N. caesariensis

OD580 = 1 = 300 mg protein l-1) and quantified as protein

in a Lowry-type reaction (Cook and Hütter 1981). Taurine

and alanine were determined by HPLC after derivatization

with 2,4-dinitrofluorobenzene (Laue et al. 1997). The

ammonium ion was determined enzymically by its reaction

with glutamate dehydrogenase (Bergmeyer and Beutler

1984). Sulfate was measured as the optical density of a

suspension of insoluble BaSO4 (Sörbo 1987). Sulfoacetate

was routinely determined by ion chromatography with

suppression (Denger et al. 2004b) and its identity was

confirmed by MALDI-TOF-MS used in the negative-ion

mode (Denger et al. 2004b). Sulfoacetaldehyde was

derivatized and assayed by HPLC (Cunningham et al.

1998). Protein in extracts was assayed by protein-dye

binding (Bradford 1976). Denatured proteins were sepa-

rated in 12% SDS-PAGE gels and stained with Coomassie-

Brillant-Blue R250 (Laemmli 1970). The N-terminal

sequence of a blotted protein was determined after Edman-

degradation and HPLC separation under contract at

TopLab (Martinsried, Germany).

Enzyme assays

Sulfoacetaldehyde dehydrogenase was routinely assayed

spectrophotometrically (340 nm) as the reduction of

NAD+ at room temperature (about 22�C) (Weinitschke

et al. 2005): the reaction mixture (1 ml) contained 50 lmol
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Tris–HCl buffer pH 9.0, 5 lmol MgCl2, 4 lmol NAD+,

0.1–0.3 mg protein, and 400 nmol sulfoacetaldehyde, with

which the reaction was started. Variants of this method

were used to determine the stoichiometry of the reaction or

to generate data which allowed kinetic constants to be

derived by curve-fitting (Ruff et al. 2003). Tpa was assayed

discontinuously; samples were taken at intervals, and tau-

rine and alanine were determined (Weinitschke et al.

2005). The assays of SafD and Tpa involved the same

buffer, and they could be combined to allow conversion of

taurine to sulfoacetate. Alanine dehydrogenase (Ald) was

assayed spectrophotometrically as reduction of NAD+

(Laue and Cook 2000b): the positive control was from

Rhodococcus opacus ISO-5 (Denger et al. 2004a). Sulfo-

acetaldehyde acetyltransferase (Xsc) [EC 2.3.3.15] was

assayed as release of sulfite from sulfoacetaldehyde with

the enzyme from Cupriavidus necator H16 as positive

control (Ruff et al. 2003; Weinitschke et al. 2007).

Purification of sulfoacetaldehyde dehydrogenase (SafD)

SafD was stable in Tris–HCl buffer, pH 9.0, which was

also the condition of optimal enzyme activity. A two-step

purification protocol was developed. The soluble fraction

from cells harvested from 4 l of culture was divided into

two portions, each of which was diluted 1:1 with 20 mM

Tris buffer, pH 9.0 and loaded in separate runs on to an

anion-exchange column (Mono Q 10/10, Pharmacia, Frei-

burg, Germany) equilibrated with the same buffer; the flow

rate was 1 ml min-1, and, after ramping to 0.075 M sodium

sulfate, proteins were eluted with a linear gradient to

0.325 M sodium sulfate, as described elsewhere (Ruff et al.

2003). SafD eluted at about 0.25 M sodium sulfate. Active

fractions were pooled, concentrated using Vivaspin con-

centrators (10 kDa cut-off; Sartorius, Göttingen, Germany),

rebuffered in 20 mM Tris buffer, pH 9.0, containing 1.7 M

ammonium sulfate, and subjected to hydrophobic interac-

tion chromatography on Phenyl Superose HR (5/5 column;

Pharmacia) at a flow rate of 1.0 ml min-1. A linear

decreasing gradient of ammonium sulfate (1.7–0.0 M) in

20 mM Tris buffer, pH 9.0, was applied over 40 min, and

SafD eluted at 0 mM ammonium sulfate. Concentrated

active fraction was loaded on to a gel filtration column

(Superose 12 HR 10/30, Pharmacia) and eluted at a flow

rate of 0.4 ml min-1 with 50 mM Tris buffer, pH 9.0

containing 0.15 M sodium sulfate.

Molecular methods

Oligonucleotides were synthesized by Microsynth (Balg-

ach, Switzerland). Taq DNA polymerase and M-MuLV

reverse transcriptase were from Fermentas (St Leon-Rot,

Germany) and they were used as specified by the supplier.

Chromosomal DNA was isolated from bacteria as descri-

bed by Desomer (Desomer et al. 1991). Total RNA was

isolated using the E.Z.N.A. bacterial RNA kit (Omega Bio-

Tek, Doraville, USA). Contaminant DNA was removed

with RNase-free DNase (Fermentas). The RNA was tested

for residual DNA before reverse transcription (RT) by PCR

using the primer set NcSafDf-NcSafDr (Table 1). RT and

PCR were done as described elsewhere (Innis et al. 1990).

The reverse PCR primers listed in Table 1 were used for

RT reactions. Positive controls for cDNA integrity after RT

were done using the 16S rRNA-specific primers 16S-27f

and 16S-533r (Weisburg et al. 1991). As a positive control

for PCR reactions the chromosomal DNA of N. caesari-

ensis MED92 was used. PCR products were visualised on

1.5 or 2% agarose gels (Sambrook et al. 1989). A 50-bp

DNA ladder (Fermentas) was used.

Software for sequence analyses and accession numbers

Analysis of the draft genome sequence (accession no.

NZ_AAOW01000000) of N. caesariensis MED92 was

done using the BLAST algorithm on the National Centre

for Biotechnology Information website (http://www.ncbi.

nlm.nih.gov/). Sequence data were manipulated with dif-

ferent subroutines from the LASERGENE programme

package (DNASTAR, Madison, USA). Primers for RT and

Table 1 List of primers used. The 16S primers were deduced else-

where (Weisburg et al. 1991)

Target

gene

Primer

name

Sequence (50 ? 30)

tauA NcTauAf GGGTGAACTGAGCCGTTGGGGTA

NcTauAr CAGGAACTCTGATGTGAACGCAA

tauB NcTauBf GTGTTTCTAAGGCAGAGCGCCAT

NcTauBr GCGCATCCCGGCATTCGAGG

tauC NcTauCf GTGGAGCAGGCTAAGCCGGTAA

NcTauCr CAGCAACAAGCTAATACTTGTC

tpa1 NcTpa1f ATGCCTCTGCTGGAGGCGTAT

NcTpa1r CTTTCTCATTGGCCTCTGATCC

tpa2 NcTpa2f CAGCAGTATGATGTATTGCTCC

NcTpa2r CTGTTCATTAACATTGTCGAGCAG

safE1 NcSafE1f CGGCCTGATCTCTACTCAGGTA

NcSafE1r GCCAGATGTGCATCCATCTGCACC

safE2 NcSafE2f CCATTGCGCCCACTCGTTGCTGTT

NcSafE2r CCTGCGATAATTCCCATGCTA

safD NcSafDf CTCTCGGTGAATACGAGTACACAC

NcSafDr GGTGCGTAGGCATCAGAATCCAGG

ald NcAldf ACCTCCTCTTCACATATCTGCAC

NcAldr TCAGCCTCTGCAATCGCCTGTTG

16S-rRNA 16S–27f CAGAGTTTGATCCTGGCTCAG

16S–533r TTACCGCGGCTGCTGGCAC
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PCR were designed using the programme Amplify (version

1.2). Transmembrane regions were predicted using the

programme TMHMM at the Centre for Biological

Sequence Analysis (CBS; http://www.cbs.dtu.dk/services/).

The ‘Superfamily’ website (http://supfam.mrc-lmb.cam.

ac.uk/SUPERFAMILY/) was used (Gough et al. 2001),

as was the ‘Aldehyde dehydrogenase gene superfamily

database’ (http://www.aldh.org/index.php) (Lindahl 1992).

Results

Deduction of the hypothetical pathway

in N. caesariensis MED92

The regulator, TauR has been associated with (1) taurine

degradative genes since their discovery (e.g., Ruff et al.

2003; Brüggemann et al. 2004; Denger et al. 2006;

Gorzynska et al. 2006; Baldock et al. 2007), with (2)

assimilation of taurine nitrogen in R. palustris CGA009

(Denger et al. 2004b) (where the same genes [RPB_1035-

RPB_1039] are found in R. palustris strains HaA2 and TIE-

1), and with (3) assimilation of taurine sulfur, where direct

evidence of the function of TauR as a regulatory protein is

available (Wiethaus et al. 2008). We detected two tauR–like

genes (MED92_03198 (tauR2) and MED92_13211 (tauR1))

in the genome of N. caesariensis MED92, and we provi-

sionally annotated the eight open reading frames (ORFs) in

the flanking regions (Fig. 1b): the ald gene (MED92_06961)

was also examined. The eight annotated genes should

encode an ATP binding-cassette transporter for taurine

uptake (TauABC) (cf. Eichhorn et al. 2000), two Tpa’s (see

supplementary material to Laue et al. 2006), SafD

(sulfoacetate formation, dehydrogenase; MED92_03203)

(annotated by NCBI as NAD-dependent aldehyde dehy-

drogenase [superfamily]), and two potential sulfoacetate

exporters, SafE1 and SafE2 (annotated by NCBI as members

of the DUF81 family, membrane proteins with a domain of

unknown function; see Weinitschke et al. 2007). There was

no candidate gene to encode sulfoacetaldehyde acetyl-

transferase (Xsc) for the degradative cleavage of the carbon-

sulfonate bond. Further, no candidate gene was detected to

encode desulfonative taurine dioxygenase (TauD), which is

involved in assimilation of taurine-sulfur (Eichhorn et al.

1997). We thus predicted that taurine would function as a

sole source of nitrogen for growth of strain MED92, but not

as a source of carbon (or sulfur), and that the taurine-carbon

would be excreted by the cell as sulfoacetate (Fig. 1a).

Growth of N. caesariensis MED92 with taurine

N. caesariensis MED92 grew exponentially (l = 0.42 h-1)

in buffered marine-salts medium containing succinate as

carbon source, and taurine as the sole source of combined

nitrogen (Fig. 2a): similar growth was observed with the

ammonium ion as the sole source of nitrogen (l = 0.48 h-1).

There was no growth in the absence of a source of combined

nitrogen. Taurine did not serve as a sole source of carbon (not

shown). Given the requirement of strain MED92 for 1 mM

sulfate in the medium, taurine could not be tested as a source

of sulfur for growth.

The utilization of taurine-nitrogen by strain MED92 was

concomitant with growth (Fig. 2b) and with the release of a

product which was detected by ion chromatography and

which co-eluted with authentic sulfoacetate. The identity of

this product was confirmed to be sulfoacetate by MALDI-

TOF-MS in the negative-ion mode: m/z = 139, identical to

the data with authentic material (M = 140) and corresponding
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to [M – H]-. No sulfoacetaldehyde was detected in the

medium (Fig. 2b) and the recovery of the sulfonate moiety of

taurine as sulfoacetate was quantitative (Fig. 2b). Corre-

spondingly, neither sulfate nor ammonium ion was released

into the medium during growth (Fig. 2b). The overall molar

growth yield was 73 ± 7 g protein (mol taurine)-1, identical

to the yield with ammonium ion (75 ± 5 g protein (mol

NH4
+)-1). There was, thus, mass balance for the nitrogen,

carbon and sulfonate moieties of taurine. The specific rate of

taurine utilization (and of sulfoacetate formation) was cal-

culated from the specific growth rate and the molar growth

yield to be 1.6 mkat (kg protein)-1.

Inducible enzymes in crude extracts of N. caesariensis

MED92

Throughout the project, cells of strain MED92 grown with

the ammonium ion as sole source of nitrogen (or extracts

from these cells) were used in comparison with cells grown

with taurine as sole source of nitrogen. Crude extracts of

taurine-grown cells of strain MED92 were found to contain

activity of Tpa as predicted above, whereas extracts of

ammonium-grown cells did not (Table 2), so Tpa was

considered to be inducible. Activity of Ald was not

detected (Table 2), consistent with the absence of mea-

surable ald-transcript in RT-PCR experiments (Table 2):

activity of Ald was measurable in the positive control. No

activity of Xsc was detected, consistent with the absence of

an xsc-gene.

SafD was detected as an inducible, soluble enzyme

(Table 2), which was dependent on the presence of both

NAD+ and sulfoacetaldehyde for activity. The maximal

specific activity of sulfoacetaldehyde dehydrogenase in

extracts of induced cells was about 0.3 mkat (kg protein)-1

in the soluble fraction; there was no activity in the par-

ticulate fraction. These data confirmed our hypothesis that

SafD is present in N. caesariensis MED92.

The routine assay of SafD involves the bisulfite addition

complex of sulfoacetaldehyde, which can be completely

oxidized to sulfoacetate (see below). Free sulfoacetaldehyde

could be generated via Tpa, and this sulfoacetaldehyde was

converted to sulfoacetate in crude extracts of strain MED92.

Both free and complexed sulfoacetaldehyde are substrates

for SafD.

Purification and some properties of SafD

from N. caesariensis MED92

Proteins in the soluble fraction of taurine-grown cells were

separated on an anion-exchange column. One peak of SafD

activity, measured as sulfoacetaldehyde-dependent reduc-

tion of NAD+, was observed. The enzyme eluted with

several proteins at about 250 mM sodium sulfate, and

analysis by SDS-PAGE showed a 50-kDa protein to be

present (Fig. 3), which corresponded to the prediction for

SafD (see below). Further separation on a hydrophobic

interaction column yielded an effectively homogeneous

Table 2 Annotation and transcription of the taurine-related genes in

the genome of N. caesariensis MED92, with specific activities of

intracellular enzymes (mkat (kg protein)-1)

Gene number Annotation Transcription (with specific

activities of relevant gene

products)

Ammonium-

grown cells

Taurine-

grown cells

MED92_12196 tauC -a +a

MED92_13201 tauB - +

MED92_13206 tauA - +

MED92_13211 tauR1 No data No data

MED92_13216 safE1 (DUF81) - +

MED92_13221 tpa1b -(0.0) +(0.7)

MED92_06961 ald -(0.0) -(0.0)

MED92_03193 tpa2b -(0.0) +(0.7)

MED92_03198 tauR2 No data No data

MED92_03203 safD -(0.0) +(0.3)

MED92_03208 safE2 (DUF81) - +

a - no transcription detected, + transcription detected
b Both gene products were presumably present simultaneously, so

the value of specific activity given is the sum of both activities

97.4

66.2

45.0

31.0

kDa

21.5

14.4

1 2 3 4 5

Fig. 3 SDS-PAGE gel of denatured proteins from different stages of

purification of SafD. Lanes: 1, 5 molecular mass marker, 2 soluble

fraction of taurine-grown cells, 3 pooled fractions after anion-

exchange column, 4 separated SafD after hydrophobic interaction

chromatography
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protein with an apparent molecular mass of about 50 kDa

(Fig. 3). The overall recovery of the enzyme was 24%, and

a purification factor of 610 was achieved (Table 3).

The N-terminal amino-acid sequence of SafD was

determined to be SNTYSLV. This corresponded exactly

with amino acids 2–8 in the sequence deduced from the

candidate safD gene (MED92_03203). Cleavage of the

fMet moiety indicates that the mature SafD has a deduced

molecular mass of 49.1 kDa.

Native SafD eluted from a gel filtration column with the

retention time corresponding to a molecular mass of about

190 kDa. This is considered to be preliminary evidence for

a tetrameric SafD (calculated molecular mass = 196.5 kDa)

as the native form of the enzyme.

When excess sulfoacetaldehyde (and NAD+) was added

to an enzyme preparation, 0.12 mM sulfoacetate was

detected as a product by ion chromatography, and 0.13 mM

NADH was formed as determined (after dilution) by the

absorption at 340 nm. In a different experiment, 1 mM

sulfoacetaldehyde was converted to 1 mM sulfoacetate.

Unit stoichiometry was thus observed. The Km-value for

sulfoacetaldehyde at saturating concentrations of NAD+

was determined to be 0.12 ± 0.02 mM, so the cell is

presumably maintaining the potentially reactive sulfoacet-

aldehyde at a low concentrations. The Km-value for NAD+

at saturating concentrations of sulfoacetaldehyde was 0.49

± 0.05 mM, whereas the Km-value for NADP+ was 4.5 ±

1.2 mM. Substrate inhibition by NADP+ was observed at

higher concentrations. We presume that the natural elec-

tron acceptor in the cell is NAD+, which is presumably

present at about 1 mM, whereas NADP+ is usually present

at about 0.1 mM (Cook and Schlegel 1978).

The substrate range of SafD was tested: no activity

was observed with formaldehyde, acetaldehyde, betaine

aldehyde, propionaldehyde, glyceraldehyde, phosphono-

acetaldehyde, glyoxylate, glycolaldehyde or 2-oxobutyric

acid. None of these compounds was an inhibitor of the

enzyme reaction.

The pH optimum of enzyme activity was broad, around

pH 9.0 in 50 mM Tris–HCl buffer: 70% of the optimal

activity was found in Tris buffer at pH 8.0 and about 80%

of optimum in 50 mM CAPS-NaOH buffer in the range pH

9.5–pH 10.5. Some 50% activity was observed in 50 mM

potassium phosphate buffer at pH 7.2.

The pure enzyme was stored at 4�C with a daily loss of

activity of about 5%. Freezing and thawing led to massive

losses of activity.

Transcription of genes involved in sulfoacetate

generation in N. caesariensis MED92

The intracellular conversion of taurine to sulfoacetate

requires a transport system, presumably TauABC (Fig. 1a,

b), to bring the highly ionic nitrogen source into contact

with a Tpa(s): each of the candidate genes (tauABC) for

the taurine ABC transporter was transcribed inducibly

during growth (e.g., tauA in Fig. 4) (Table 2). The pres-

ence of Tpa(s), which are the nearest neighbours (in a

dendrogram) of the Tpa purified from Bilophila wads-

worthia (Laue et al. 2006, supplementary data), had been

shown experimentally (Table 2): both genes were tran-

scribed inducibly (Table 2), so both Tpa-paralogues were

presumably active. Inducible SafD has been characterized

(see above): correspondingly, inducible transcription of

safD was detected (Table 2). The product of the SafD

reaction is also highly ionic, so an exporter is necessary to

remove this sulfoacetate and thus maintain ionic homeo-

stasis in the cell. Transcription of safE1 early and late in

the exponential phase was observed (Fig. 4), whereas,

transcript from safE2 was detected only early in the

growth phase (not shown).

Discussion

The physiological data (Fig. 2a, b) confirm the hypothesis

(Fig. 1a, b) that N. caesariensis MED92 would utilize

taurine as a sole source of nitrogen for growth without

cleaving the carbon-sulfonate bond. Balanced growth was

observed with quantitative utilization of taurine, and nei-

ther sulfate nor ammonium ion was excreted. Further, the

sulfonated product was identified as sulfoacetate by mass

spectrometry.

Enzyme data confirmed that taurine utilization was

inducible (Table 2), as predicted from the presence of tauR

gene(s). Indirect evidence of TauR as a regulator in carbon-

limited and nitrogen-limited growth (cited above) has been

upgraded recently, when a TauR in sulfur-limited growth

with taurine was confirmed to be a regulator (Wiethaus

et al. 2008). It is unclear whether one or other or both

paralogues of TauR (Fig. 1b) is active. Paralogues of TauR

are rare in the genomes of taurine-utilizing bacteria:

there are about 40 relevant genome sequences, and only

three other organisms, all alphaproteobacteria, share the

phenomenon, Dinoroseobacter shibae DFL 12, Paracoccus

Table 3 Purification table for sulfoacetaldehyde dehydrogenase

(SafD) from N. caesariensis MED92

Fraction Total

protein

(mg)

Total

activity

(nkat)

Yield

(%)

Purification

factor

Crude cell extract 260 44.0 100 1

Soluble fraction 70 21.5 49.0 1.9

Mono Q column 2.4 13.5 30.5 34

HIC column 0.1 10.5 24.0 610
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denitrificans Pd1222 and Roseobacter denitrificans OCh

114.

The pathway (Fig. 1a) is apparently initiated by an ABC

transporter for taurine (Table 2, Fig. 4), which is wide-

spread (e.g., Eichhorn et al. 2000; Gorzynska et al. 2006).

There is support for the presence of both Tpa1 and Tpa2

(Table 2). The key to the formation of sulfoacetate is SafD,

which has been purified for the first time (Fig. 3, Table 3).

The pathway is completed by release of sulfoacetate

(Fig. 2). Both candidates for the exporter, SafE1 and SafE2

(DUF81 proteins), are transcribed inducibly (Table 2), and

thus presumably translated. However, only safE1 is tran-

scribed towards the end of growth, and SafE1 may be the

main transporter of sulfoacetate. This is another example of

DUF81 proteins being associated with the export (or

import) of highly charged anions (e.g., Rückert et al. 2005;

Weinitschke et al. 2007).

Previous experience with Tpa in a degradative pathway

involved Ald, which released the ammonium ion origi-

nating from taurine and apparently allowed release of the

ion to the medium via an ammonium-methylammonium

transporter (Cook and Denger 2002; Gorzynska et al.

2006). Traces of the ammonium ion were detected when

taurine served as sole added source of nitrogen for the

growth of Klebsiella oxytoca TauN1, which also involves

Tpa and Ald (Styp von Rekowski et al. 2005). We specu-

late that N. caesariensis MED92 does not express Ald

(Table 2) to avoid the risk of losing ammonium to the

ocean, and we presume that taurine-nitrogen is transferred

to biosynthesis via transaminations.

This is the first proof of a pathway of formation of

sulfoacetate in a marine bacterium: the similar pathway in

terrestrial R. palustris CGA009 (Denger et al. 2004b) can

be predicted in two other strains of the organism (HaA2

and TIE-1) given the genome sequences (accession num-

bers NC_007778 and NZ_ABJR01000003). The bacterial

degradation of sulfoacetate, possibly by different pathways,

is widespread (Martelli and Sousa 1970; King and Quinn

1997; Cook and Denger 2002) and is currently being elu-

cidated in marine and terrestrial organisms (Weinitschke

and Cook, unpublished).

The sulfoacetaldehyde dehydrogenase (SafD) identified

here is encoded by MED92_03203 (Table 2, Fig. 1), as

predicted. The enzyme acts on the aldehyde group of the

electron donor with NAD+ as the electron acceptor. The

enzyme thus belongs to the IUBMB Nomenclature Com-

mittee’s group EC 1.2.1. We propose the systematic name

‘2-sulfoacetaldehyde:NAD+ oxidoreductase’. The low

level of sequence similarity to the presumed SafD in two

strains of R. palustris (33%) indicates that the substrate

specificity of some aldehyde dehydrogenases is poorly

represented in the primary sequence. Nonetheless, the

enzyme obviously belongs to the large aldehyde dehydro-

genase superfamily with its homomultimers of subunits of

about 50-kDa (http://www.aldh.org/index.php). The high

specificity of SafD and its affinity for sulfoacetaldehyde

(and its bisulfite addition complex) make the enzyme a

candidate for the quantitative analysis of mixtures of both

sulfoacetaldehyde and its bisulfite adduct, which is an

advantage over the direct chemical method (Cunningham

et al. 1998).
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