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Abstract Mesorhizobium tianshanense is a nitrogen-
Wxing bacterium that can establish symbiotic associations
with Glycyrrhiza uralensis in the form of root nodules.
Nodule formation in rhizobia often requires various
secreted carbohydrates. To investigate exopolysaccharide
(EPS) production and function in M. tianshanense, we
performed a genome-wide screen using transposon muta-
genesis to identify genes involved in EPS production. We
identiWed seven mutants that produced signiWcantly lower
amounts of EPS as well as a two-component sensor
kinase/response regulator system that is involved in the
activation of EPS synthesis. EPS mutants formed signiW-
cantly less bioWlm and displayed severely reduced nodu-
lation capacity than wild type bacteria, suggesting that
EPS synthesis can play important roles in the symbiosis
process.
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Introduction

Nitrogen-Wxing soil bacteria that establish mutualistic asso-
ciations with legumes are referred to as rhizobia. Rhizobia
produce polysaccharides, such as exopolysaccharides
(EPSs), capsular polysaccharides (KPSs), lipopolysaccha-
rides (LPSs), and cyclic �-(1,2)-glucans which are neces-
sary for establishing symbiotic associations (Kannenberg
and Brewin 1994; Hoang et al. 2004). In addition to pro-
tecting bacteria against environmental stresses, polysaccha-
rides of the rhizobia play vital but poorly understood roles
in infection of legume roots (Skorupska et al. 2006). EPS
may aid in the attachment of bacteria to roots, and play a
structural role in infection thread formation (Skorupska
et al. 2006). In addition, numerous pieces of evidence indi-
cate that rhizobial extracellular polysaccharides are crucial
to protect bacteria against host defenses (Niehaus and
Becker 1998; D’Antuono et al. 2005). The symbiotic phe-
notype of mutants defective in elements of EPS production
depends on the type of nodule ontogeny (Gray et al. 1991;
Fraysse et al. 2003). For example, speciWcally, acidic EPS
seems to be essential for the establishment of rhizobium–
legume symbiosis on legumes developing an indeterminate
type of nodule (Fraysse et al. 2003).

Exopolysaccharide biosynthesis represents a multi-step
process, in which many gene products are involved. The
synthesis of succinoglycan (EPSI) of Sinorhizobium melil-
oti has been extensively studied. Many exo genes responsi-
ble for EPSI biosynthesis in S. meliloti have been identiWed,
including all the glycosyl transferase genes involved in the
synthesis of whole repeating carbohydrate units, as well as
some genes involved in secretion (exsA) and polymeriza-
tion (exoQ, exoT, and exoP) (Heidstra et al. 1994; Gonzalez
et al. 1996). Genes homologous to those involved in
biosynthesis of EPS II of S. meliloti have also been reported
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in the synthesis of EPSs of other rhizobial species, such as
Rhizobium leguminosarum and Bradyrhizobium japonicum
(Heidstra et al. 1994). The process of rhizobial EPS biosyn-
thesis is complicated and regulated at both transcriptional
and post-translational levels, with multiple regulatory
systems identiWed in S. meliloti and R. leguminosarum
(Heidstra et al. 1994; Skorupska et al. 2006). It is known
that environmental factors such as the media osmolarity,
and phosphate and nitrogen concentrations can inXuence
the synthesis of the EPS (Bardin and Finan 1998; Mendrygal
and Gonzalez 2000), but it is not clear how bacteria recog-
nize and respond to these environmental signals to aVect
EPS synthesis.

To date there have been few detailed studies about EPS
in the Mesorhizobium genus (Chen et al. 1995) of moder-
ately growing rhizobium. In M. loti, exopolysaccharide
mutants are fully eVective on Lotus uliginosus (determi-
nate nodulating host) but are ineVective on Leucaena leu-
cocephala (indeterminate nodulating host) (Hotter and
Scott 1991). In this study, we used transposon mutagene-
sis to identify seven EPS production defective mutants in
Mesorhizobium tianshanense, a bacterium originally iso-
lated from arid, saline, desert soil in northwestern China
in 1995 (Chen et al. 1995), and later widely found in dry
soils, acting as a nitrogen-Wxing symbiont for at least
eight diVerent plant species, including species of Glycyr-
rhiza (licorice) (Tan et al. 1997), whose roots are one of
the most important crude medicines in Asia and Europe.
We found that exopolysaccharide production in M. tian-
shanense is important for the rhizobial bioWlm-formation
and nodulation.

Materials and methods

Bacterial strains, plasmids, and culture conditions 

Bacterial strains and plasmids used in this work are shown in
Table 1. M. tianshanense strains were grown at 28°C in TY
medium (Vincent 1970) and Escherichia coli were grown at
37°C in LB medium (Sambrook et al. 1989). Mesorhizobium
exopolysaccharide production defective mutants were
screened at 28°C in YMA medium (Vincent 1970). Antibiotics
were added to the following Wnal concentrations: streptomycin,
100 mg/ml; kanamycin, 50 �g/ml; chloramphenicol, 30 �g/ml;
and ampicillin, 100 �g/ml. The mtpC insertional deletion was
constructed by cloning the mtpC internal fragment into
pVIK112 (Kalogeraki and Winans 1997). The resulting plas-
mid, pZJ2, was then introduced into the M. tianshanense chro-
mosome by single crossover homologous recombination. The
insertional mutants were conWrmed by PCR using a mtpC
upstream primer and a lacZ primer. This also simultaneously
generated a mtpC–lacZ transcriptional fusion. The mtpR and
mtpS deletion mutants were constructed by cloning the inter-
nal fragments of mtpR and mtpS into the plasmid pEX18Gm
(Hoang et al. 1998), resulting pWP2, and pWP6, respectively.
These two plasmids were then transferred into M. tianshan-
ense strains by conjugation and single-crossover events were
selected. The insertional mutants were conWrmed by PCR.

Screening for exopolysaccharide-deWcient mutants 

Random transposon mutagenesis of M. tianshanense SmR

was carried out by introducing a mariner transposon

Table 1 Bacterial strains and 
plasmids used in this study

Strains or 
plasmids

Relevant characteristics Source

Strains

Mesorhizobium tianshanense

CCBAU 3306 Wild-type CCBAU

Es0 Derivative of CCBAU3306, spontaneous SmR This work

ZJ55 Derivative of Es0, mtpC¡, mtpC-lacZ This work

WP50 Derivative of Es0, mtpR¡ (insertional mutation) This work

WP40 Derivative of Es0, mtpS¡ (insertional mutation) This work

WP55 Derivative of ZJ55, mtpR¡ This work

WP45 Derivative of ZJ55, mtpS¡ This work

Plasmids

pVIK112 R6K, promoterless lacZ, KmR Kalogeraki and Winans (1997)

pEX18Gm R6K, sacB, GmR Hoang et al. (1998)

pKGL3 Mariner transposon, KmR Xu and Mekalanos, unpublished

pSC137 Mariner transposon, CmR Chiang and Mekalanos (1999)

pZJ2 mtpC internal fragment in pVIK112 This work

pWP2 mtpR internal fragment in pEX18Gm This work

pWP6 mtpS internal fragment in pEX18Gm This work

CCBAU Culture Collection of 
Beijing Agricultural University, 
Beijing, China
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containing a promoterless lacZ gene (pKGL3) (Xu and
Mekalanos, unpublished) from E. coli SM10�pir using Wlter
mating (Sambrook et al. 1989). The transconjugants were
selected on YMA medium with kanamycin and streptomy-
cin. Nonmucoid colonies were selected from ten libraries of
transposon insertion mutants for further characterization.

Arbitrary PCR and nucleotide sequence analysis 

Arbitrary PCR was performed as described previously (Gao
et al. 2006) to obtain short fragments of chromosomal DNA
Xanking transposon ends. The PCR products of the second
round were sequenced with the transposon primer used in the
second round, and the sequences were compared with the
Genbank DNA sequence database using the BLASTX pro-
gram. The full sequences were obtained by subcloning the
transposon insertion Xanking regions into pBluescript (Clone-
tech) and sequencing using the primer walking method.

�-Galactosidase activity assays 

Bacteria containing mtpC–lacZ transcriptional reporters
were grown in TY medium with appropriated antibiotics.
Samples were withdrawn at the time points indicated and
�-galactosidase activity was measured as described previ-
ously (Miller 1972).

Screening for exopolysaccharide regulatory genes 

The M. tianshanense strain containing a mtpC–lacZ tran-
scriptional fusion was mutagenized by the mariner transpo-
son pSC137 (Chiang and Mekalanos 1999) as described
previously (Sambrook et al. 1989). Transconjugants were
selected on TY plates with appropriate antibiotics and 5-
bromo-4-chloro-3-indolyl �-D-galactoside (X-gal) (100 �g/
ml) and white colonies, which lost the ability to activate
mtpC–lacZ, were isolated.

BioWlm formation assay 

Borosilicate glass tubes were Wlled with 1 ml of MM
medium containing 10 �l of saturated overnight cultures as
inoculum and appropriate antibiotics (Wang et al. 2004).
After 3 days incubation at 28°C with circular agitation, the
content of each tube was removed gently. The tubes were
rinsed with water and stained with 1.2 ml of 1% crystal vio-
let for 5 min, and tubes were then washed and dried and
photographs were taken.

Nodulation assays 

Glycyrrhiza uralensis (Asian licorice) seeds were sterilized
and germinated as previously described (Zheng et al. 2006).

After 6 days, plants were inoculated with 300 �l cultures of
wild-type or mutant M. tianshanense grown in TY medium
(OD600 = 2.0). The plants were pulled out to count the num-
ber of nodules at the time indicated. There were at least six
replicates for each inoculation.

Nucleotide sequence accession number 

The M. tianshanense polysaccharide biosynthesis gene
DNA sequence reported here has been deposited in the
GenBank database under accession number EU034647 and
EU034648.

Results and discussion

Screening of exopolysaccharide defective mutants 
in M. tianshanense 

Exopolysaccharides play important roles in establishing
rhizobium–plant interactions. However, little is known of
the regulation of EPS biosynthesis in rhizobia such as M.
tianshanense. To study the regulation of EPS production, a
transposon insertion mutant library of M. tianshanense was
screened for mutants defective in exopolysaccharide pro-
duction. By screening approximately 10,000 random trans-
poson insertion mutants on YMA agar, we isolated seven
nonmucoid mutants (Es2, Es3, Es4, Es5, Es6, Es8, Es10).
The colony morphology of these mutants is distinct from
that of wild type (Fig. 1a, left panel).

We then used arbitrary PCR followed by subcloning and
DNA sequencing to identify transposon insertion sites in
these seven EPS mutants. Sequence analysis revealed that
those transposons inserted in two clusters (Fig. 1b). The
Wrst gene cluster is similar to pssNOPT of R. leguminosa-
rum bv. viciae (Young et al. 2006). All these genes are
highly conserved in many Rhizobium species and involved
in the translocation of polysaccharides and polymerization
of the repeating subunits of EPS (Skorupska et al. 2006).
We thus propose to name these genes mtpABCD (Mesorhiz-
obium tianshanense polysaccharide genes ABCD). Another
gene isolated from the transposon screen was located
upstream of the mtpABCD operon and divergently tran-
scribed (Fig. 1b). This gene, which we named mtpE, was
similar to the exo5 gene in R. leguminosarum bv. trifolii.
exo5 encodes a UDP-glucose dehydrogenase responsible
for the oxidation of UDP-glucose to UDP-glucuronic acid
(Krol and Skorupska 1997); mutations in exo5 mutant
causes a pleiotropic phenotype and aVects the production of
glucuronic acid- and galacturonic acid-containing polysac-
charides (Laus et al. 2004). Of note, our screen for EPS
mutants may not be saturating, as all seven mutants have
diVerent insertion sites and we failed to obtain the regulators
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isolated from our second screen (see below). It is likely
that more genes are involved in EPS biosynthesis in
M. tianshanense.

To conWrm our screen results, we constructed a strain
containing a lacZ insertion (see “Materials and methods”)
in one of the EPS genes, mtpC, and measured the exopoly-
saccharide production in the mutant. As expected, the pro-
duction of exopolysaccharides was completely abolished in
the mtpC::lacZ mutant (Fig. 1a, right panel), indicating that
the mtpC gene product is essential in M. tianshanense EPS
production.

M. tianshanense eps genes are regulated 
by a two-component regulatory system

Various genes have been found to regulate the synthesis of
exopolysaccharides, but the mechanisms behind their regu-
latory roles are not very clear. In order to investigate the
regulatory genes of exopolysaccharides in M. tianshanense,
we constructed a chromosomal mtpC–lacZ transcriptional
reporter fusion and examined �-galactosidase activity at the
diVerent time points of bacterial growth. Expression of
mtpC reached maximal levels at the late-log phase and
slightly declined by stationary phase (data not shown).

To investigate how EPS genes are regulated in M. tian-
shanense, we mutagenized the M. tianshanense strain

containing the mtpC–lacZ reporter using a transposon and
screened for LacZ¡ transconjugants (white colonies on X-
gal plates). From approximately 10,000 transconjugants
screened, Wve mutants displayed low �-galactosidase activ-
ity. Sequence analysis of arbitrary PCR products from
those strains indicated that the mariner transposon dis-
rupted the lacZ gene in four mutants, while the transposon
insertion in one mutant (ES11) disrupted the sensor histi-
dine kinase gene of a two-component regulatory system.
Further sequencing indicated that a response regulator gene
is located immediately downstream of the senor kinase. We
therefore named them mtpS and mtpR, respectively
(Fig. 1b). The predicted gene products are similar to the
sensor kinase/regulator ActS–ActR of R. leguminosarum
bv.viciae (86% identity at amino acid levels), which has
previously been studied for its function in low pH condi-
tions (Boesten et al. 2000). In S. medicae, ActSR has been
shown to regulate many genes, including cbbS and narB,
and is required for the low pH and microaerobic induction
of the nitrogen Wxation regulators WxK and nifA (Fenner
et al. 2004). To conWrm the role of MtpRS in regulation of
EPS biosynthesis in M. tianshanense, we constructed mtpR
and mtpS insertional deletions in wild type and strains con-
taining mtpC–lacZ, respectively. Both mtpR and mtpS
mutants did not produce exopolysaccharides, similar to that
of mtpC mutants (Fig. 1a, right panel). Mutations in either
mtpR or mtpS gene also abolished mtpC–lacZ activity
(Fig. 2), indicating that this two-component regulatory sys-
tem is crucial for mtpC activation. Interestingly, both MtpR
and MtpS did not aVect mtpE transcription, as mtpE–lacZ
�-galactosidase activity in mtpRS mutants was similar to
that in wild type bacteria (data not shown). The actual
external signals required to modulate MtpRS activity is
currently under investigation. 

InXuence of EPS biosynthesis on bioWlm formation
and nodulation 

Rhizobia can form dense, structurally complex bioWlms on
abiotic surfaces as well as on root surfaces, and bioWlm for-
mation is important for rhizobium–legume symbiosis
(Ramey et al. 2004). S. meliloti exopolysaccharide-deWcient
mutants exhibit reduced bioWlm phenotypes that correspond
to their reduced nodulation abilities (Fujishige et al. 2006).
To examine whether EPS biosynthesis is involved in bioWlm
formation in M. tianshanense, we compared the bioWlm
formation of wild type and EPS mutants on glass surfaces.
Figure 3 shows that while wild type strains produced
signiWcant amount of bioWlm, while mtpC, mtpR, and mtpE
mutants all formed little bioWlms. These data indicate that
EPS is indispensable in forming bioWlms in M. tianshanense
and are accordance with exopolysaccharide mutants in many
other bacterial species, such as E. coli (Danese et al. 2000),

Fig. 1 Colony morphology and chromosomal locations of transposon
insertions of the exopolysaccharide-deWcient mutants. a M. tianshan-
ense and its EPS mutants were streaked on MM agar plates at 28°C for
2 days. b Genetic maps of genes involved in M. tianshanense EPS
production and transposon insertion locations (circles). The mtp stands
for M. tianshanense polysaccharide gene
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Pseudomonas aeruginosa (Friedman and Kolter 2004), and
Vibrio cholerae (Yildiz and Schoolnik 1999).

To test whether EPS production in M. tianshanense
plays a role in symbiosis, a nodulation assay on Asian lico-
rice (Glycyrrhiza uralensis) was performed using wild type
and EPS mutant mtpC, mtpR strains. On average 11.3 nod-
ules were formed per plant about 1 month after inoculation
of wild type bacteria. In contrast, no nodules formed on the
plant roots inoculated with either mtpC or mtpR mutant cul-
tures, indicating that M. tianshanense EPS mutants are pro-
foundly defective in nodulation. These results are not
unexpected as in many other rhizobia mutants that are
defective in EPS production usually induce abnormal
nodules or fail to nodulate at all (Becker and Pühler 1998;
Wielbo et al. 2004).

Mesorhizobium tianshanense, capable of nodulating and
Wxing nitrogen on various plants grown in arid environ-
ments, was only recently discovered, and the genes and
gene regulation involved in bacterium–plant symbiosis are
largely unknown. We have previously demonstrated that
LuxR/LuxI-type quorum sensing regulation is crucial for
root hair adherence and nodulation by this bacterium
(Zheng et al. 2006). In this study, we discovered genes
involved in M. tianshanense exopolysaccharides produc-
tion and regulation. Given the signiWcant role played by
this bacterium in the growth of important plant species, a
better understanding of exoploysaccaride function in
M. tianshanense symbiotic associations is important from
both economic and environmental points of view.
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