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Abstract The biosynthesis of aflatoxin in Aspergillus par-
asiticus is a complex process that involves the activities of
at least 18 pathway enzymes. The distribution of these en-
zymes within fungal colonies and fungal cells is not
clearly understood. The objective of this study was to in-
vestigate the distribution and subcellular location of 
Nor-1, Ver-1, and OmtA, which represent early, middle, and
late enzymatic activities, respectively, in the aflatoxin
biosynthetic pathway. The distribution of these three en-
zymes within A. parasiticus SU-1 was analyzed in time-
fractionated, 72-h fungal colonies (fraction 1, 48–72 h; frac-
tion 2, 24–48 h; fraction 3, 0–24 h). Western blot analysis
and immunofluorescence microscopy demonstrated the
highest abundance of Nor-1, Ver-1, and OmtA in colony
fraction 2. Fungal tissues in this fraction were analyzed by
immunoelectron microscopy. Nor-1 and Ver-1 were pri-
marily localized to the cytoplasm, suggesting that they are

cytosolic enzymes. OmtA was also detected in the cyto-
plasm. However, in cells located near the basal (substrate)
surface of the colony, OmtA was predominantly detected
in organelles tentatively identified as vacuoles. The role
of this organelle in toxin biosynthesis is unclear. The rela-
tive distribution of OmtA to the cytoplasm or to vacuole-
like organelles may depend on the age and/or physiologi-
cal condition of the fungal cells.

Keywords Aspergillus parasiticus · OmtA · Nor-1 · 
Ver-1 · Vacuoles · Immunoelectron microscopy · 
Immunofluorescence microscopy · Microbodies ·
Woronin bodies

Introduction

Aflatoxins are highly toxic and carcinogenic secondary
metabolites produced by several filamentous fungi, in-
cluding Aspergillus parasiticus, A. flavus, A. nomius, and
A. tamarii (Eaton and Groopman 1994; Payne and Brown
1998). Aflatoxins pose significant health and economic
problems in the USA and many other locations through-
out the world because they frequently contaminate food
and feed crops, such as corn, peanuts, tree nuts and cot-
tonseed (CAST 2003; Chang et al. 1998; Eaton and Groop-
man 1994).

The biosynthesis of aflatoxin is a complex process that
involves at least 18 enzyme activities (Payne and Brown
1998). The distribution of these enzymes within fungal
colonies and their location within fungal cells remain un-
known. We hypothesized that aflatoxin enzymes are com-
partmentalized in a subcellular organelle(s) and the end-
product, aflatoxin, is synthesized within this organelle;
this could provide one mechanism to protect fungal cells
from the potential deleterious effects of aflatoxin accumu-
lation in the mycelium. To address this hypothesis, the
distribution and subcellular location of representative en-
zymatic activities in the aflatoxin biosynthetic pathway
were investigated. Toward this end, we focused attention
on Nor-1 (Trail et al. 1994), Ver-1 (Liang et al. 1997) and
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OmtA (Yu et al. 1993), which catalyze early, middle, and
late enzymatic steps in the aflatoxin biosynthetic pathway,
respectively. Nor-1 and Ver-1 are NADPH-dependent keto-
reductases involved in the conversion of norsolorinic acid
(NA) to averantin (AVN), and versicolorin A (VERA) to
demethylsterigmatocystin (DMST), respectively; OmtA is
a methyltransferase that converts sterigmatocystin (ST) to
O-methylsterigmatocystin (OMST).

Although a small number of reports have presented
subcellular fractionation data, the main purpose of these
studies was to purify and characterize the relevant enzyme
activity (e.g. OmtA, OrdA, and VBS) (Cleveland et al.
1987; Watanabe and Townsend 1998; Yabe et al. 1999).
However, the precise intracellular locations of these en-
zymes were not determined. In addition, the methods used
in these experiments included grinding of mycelia under
liquid nitrogen to obtain a cell extract followed by differ-
ential centrifugation. The potential drawbacks of vigorous
cell disruption and time-consuming organelle isolation
procedures were reported previously in studies focused on
localization of penicillin enzymes in Penicillium chryso-
genum. Müller et al. (1991) reported that organelles could
be disrupted during grinding of mycelia and subsequent
fractionation procedures, resulting in either release of their
content into the cytoplasm or artifactual association of cy-
toplasmic proteins with the reformed organelles. Van der
Lende et al. (2002) reported that, for isolation of proto-
plasts and organelles, the time-consuming cell-wall diges-
tion procedure that is conducted under conditions of nutri-
tional starvation can cause enzymes to relocate from the
cytosol into the vacuole for protein degradation.

To avoid potential artifacts introduced by vigorous cell
disruption and time-consuming cell-wall digestion and or-
ganelle isolation procedures, we utilized another strategy
for in situ localization of aflatoxin proteins, immunoelec-
tron microscopy. To date, no in situ localization data for
aflatoxin enzymes have been presented. In this study, a
specific procedure was developed to detect the distribution
of aflatoxin enzymes in solid-cultured fungal colonies (by
colony fractionation, Western blot analysis, and immuno-
fluorescence microscopy) and the intracellular distribu-
tion of aflatoxin enzymes (by freeze-substitution and im-
munoelectron microscopy). The in situ localization of
aflatoxin enzymes was also conducted on fungal cells dis-
tributed vertically within a colony fraction. The results of
this study demonstrated that Nor-1, Ver-1 and OmtA are
found in highest abundance in colony fraction 2 (24- to
48-h-old) and Nor-1 and Ver-1 are found primarily in the
cytoplasm. OmtA was also detected in the cytoplasm.
However, in cells located near the basal (substrate) sur-
face of colony fraction 2, OmtA was predominantly de-
tected in organelles tentatively identified as vacuoles. Based
on current data, we hypothesize that the relative distribu-
tion of OmtA to cytoplasm or vacuole-like organelles de-
pends on the age and/or physiological condition of the
fungal cells.

Materials and methods

Fungal strains and time-dependent fractionation of fungal colonies

A. parasiticus SU-1 (NRRL5862, ATCC 56775) is a wild-type,
aflatoxin-producing strain. AFS10 (aflR via gene disruption) is a
non-aflatoxin producing strain derived from A. parasiticus NR-1
(niaD), which in turn was derived from strain SU-1 (Cary et al.
2002). Asexual conidiospores (5 x105) of A. parasiticus SU-1 and
AFS10 were inoculated onto the center of YES agar medium (2%
yeast extract, 6% sucrose, pH 5.8) overlaid with sterile cellophane
membranes, and incubated at 29 °C in the dark. After 72 h,
colonies of SU-1 (S) and AFS10 (R) were fractionated into three
concentric rings based on area covered at 24, 48, or 72 h of growth
(fraction 1, 48–72 h; fraction 2, 24–48 h; fraction 3, 0–24 h) to gen-
erate fractions S1, S2, S3, and R1, R2, R3, respectively, as de-
scribed by Lee et al. (2002). The harvested mycelia from appropri-
ate sections of the colony were used in sample preparation for
Western blot analysis and for fluorescence and electron micros-
copy.

Western blot analysis of proteins isolated from colony fractions

Sample preparation and Western blot analysis of A. parasiticus
proteins isolated from colony fractions were conducted using
methods described in Lee et al. (2002). Each lane on the 12%
SDS-polyacrylamide gel contained 60 µg protein. Nor-1, Ver-1,
and OmtA polyclonal antibodies were raised against maltose-bind-
ing-protein fusions generated for each aflatoxin protein (Liang et
al. 1997; Zhou 1997; Lee et al. 2002). Anti-Nor-1 serum (rabbit
no. 126) was generated in this study and used at a 1 to 5,000 dilu-
tion. Anti-Ver-1 IgG was used at 2 µg per ml.

Immunofluorescence labeling 
and confocal laser scanning microscopy

Preparation of paraffin-embedded fungal sections, immunolabel-
ing, and confocal laser scanning microscopy (CLSM) analysis uti-
lized methods described by Lee et al. (2002). The samples were
probed with primary antibodies against Nor-1 (1:500 dilution),
Ver-1 (20 µg/ml), or OmtA (20 µg/ml), followed by secondary an-
tibody conjugated to a fluorescent probe [goat anti-rabbit IgG-
Alexa 488 conjugate (5 µg/ml); absorbance 495 nm, emission 519
nm). Fluorescent image detection was carried out on a Meridian
INSIGHT plus laser-scanning microscope (Meridian Instruments,
Okemos, Mich., USA) with a 488-nm laser line. Alexa 488 green
fluorescence was detected using a BP 530/30 barrier filter. All im-
ages were captured using a 40× Zeiss Plan-NEOFLUAR oil objec-
tive lens (N.A.=1.3) (Carl Zeis, Germany) with a 1× cool-charged
detector (CCD) allowing analysis of a large number of cells in one
512×480 image. Fluorescence image analysis of strains SU-1 and
AFS10 was conducted using the same instrument parameter set-
tings. For all strain AFS10 samples, bright-field images were also
generated to demonstrate the size and number of cells analyzed.

Quantitative fluorescence intensity analysis

Alexa 488 fluorescence was quantified using the IQ Master Program
(V2.31) image analysis software that accompanied the Meridian
Insight laser-scanning microscope (Meridian Instruments). The
CLSM images were acquired under identical instrument settings
for samples analyzed in the same immunolabeling experiments.
For each colony fraction, 20 images were acquired for intensity
analysis and the average pixel number was reported.
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Sample preparation for immunoelectron microscopy

Circles of fungal tissue 3–5 mm in diameter were obtained from
fraction 2 of colonies of strains SU-1 and AFS10 grown on YES
agar plates. These circles were cut from the colony using sterile
200-µl pipette tips with the end removed with a sterile razor blade
to generate a cutting edge with the correct diameter. Samples were
immediately cryofixed at –190 °C in a commercial Jet-Freezer
(RMC MF7200, Tucson, Ariz., USA) and then transferred to a
tube containing acetone that had been frozen by immersion in liq-
uid nitrogen. The following substitution procedure was modified
from the method described by Xu and Mendgen (1994). Samples
in frozen acetone were stored at –80 °C for 6 days. Samples were
washed twice with fresh, ice-cold acetone (–20 °C) and then im-
mersed in fresh, ice-cold acetone (–20 °C) containing 0.2% gluta-
radehyde and stored at –20 °C for 24 h. After washing with fresh,
ice-cold acetone (–20 °C) three times, acetone in the samples was
replaced with 100% ethanol by a graded series of ethanol/acetone
[35, 50, 75, 90% (30 min each at –20 °C) and 100% (twice, 30 min
each at –20 °C)]. Samples were then infiltrated with a graded series
of LR White resin (Ted Pella, Redding, Calif., USA) ethanol: 
5, 10, 20, 40, 60% (3 h each at –20 °C), 90% for 24 h, and 100% 
(3 changes) for 2 days at –20 °C. Polymerization was carried out
under UV light (366 nm) at 4 °C for 48 h.

Immunogold labeling and electron microscopy

Fungal sections for immunogold labeling were cut to 90~100 nm
thickness using an MTX ultramicrotome (RMC). Sections were
collected onto Formvar-coated grids. Each grid contained approx-
imately 10–20 thin sections. For each labeling experiment, two
grids each from strain SU-1 and strain AFS10 tissues were used.
For each antibody, at least three independent labeling experiments
were done. First, grids with sections were incubated with blocking
solution (1% BSA and 0.1% saponin in TBS) at 4 °C overnight.
Primary antibody treatment (purified OmtA IgG, 50 µg per ml;
anti-Ver1 IgG, 140 µg per ml; anti-serum: anti-SKL serum, 1:200;
anti-Nor-1, 1:500) was carried out at room temperature for 4 h.
Secondary antibody treatment (goat anti-rabbit conjugated with
10-nm gold; 30-fold dilution) (Ted Pella) was done at room tem-
perature for 2 h. After each antibody incubation, grids were washed
once with Tris-buffered saline (pH 7.5) containing 1% BSA and
0.1% saponin for 5 min followed by five washes with TBS for 
25 min total. Finally, grids were washed with double-distilled wa-
ter for 30 s and post-stained with 3% uranyl acetate for 20 min.
Sections were observed using a JEOL 100CX II transmission elec-
tron microscope (Tokyo, Japan) at 100 kV.

Results

Both Western blot analysis and immunofluorescence de-
tection by CLSM confirmed the specificity of the Nor-1
and Ver-1 polyclonal antibodies used in this study (Figs. 1
and 2). Western blot analysis of Nor-1and Ver-1 isolated
from colony fractions 1, 2, and 3 of A. parasiticus strains
SU-1 and AFS10 demonstrated that Nor-1 and Ver-1 ap-
peared predominantly in full-length form in all strain SU-1
colony fractions (Fig. 1). In a similar analysis conducted
previously on OmtA only, increasing quantities of prote-
olytically cleaved enzyme were detected in fractions 1 and
2 (Lee et al. 2002). Unlike the results obtained with OmtA,
the proteolytically cleaved forms of Nor-1 and Ver-1 en-
zymes were not observed under the same culture condi-
tions. The highest quantity of Nor-1 and Ver-1 was in frac-
tion 2 of strain SU-1 (Fig. 1). Immunofluorescence detec-
tion byCLSM demonstrated that Nor-1 and Ver-1 were

present in all colony fractions of strain SU-1 (Fig. 2a for
Nor-1 and Fig. 2d for Ver-1). Very little signal was de-
tected in strain AFS10 samples under the same instrument
settings (Fig. 2b for Nor-1 and Fig. 2e for Ver-1). There-
fore, bright-field images of the strain AFS10 colony frac-
tions are shown in Fig. 2c, f to illustrate the typical size
and numbers of cells analyzed. Quantitative analysis of
the fluorescence intensity in the CLSM digital images
confirmed that the highest quantity of these three afla-
toxin enzymes occurred in fraction 2 (Table 1). Therefore,
immuno-transmission electron microscopy (TEM) analy-
sis focused on the proteins in this colony fraction.

Using our sample preparation, labeling, and imaging pro-
cedures, very few gold particles were observed on control
sections of wild-type strain SU-1 treated with secondary
antibodies only (Fig. 3A, B). Therefore, the intense signal
(black dots representing 10-nm gold particles) on sections
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Fig. 1A, B Western blot analysis of fungal protein extracts using
Ver-1 and Nor-1 polyclonal antibodies. Proteins were extracted
from time-fractionated colonies of Aspergillus parasiticus srtains
SU-1 and AFS10 grown on YES agar medium and subjected to
Western blot analysis with Ver-1 (A) and Nor-1 (B) polyclonal an-
tibodies. At 72 h, colonies were fractionated into three concentric
rings based on area covered at three time points: for S1 (strain SU-1)
1 and R1 (strain AFS10), 48–72 h; S2 and R2, 24–48 h; S3 and R3,
0–24 h. Lanes to the left and right contain molecular mass stan-
dards (M), which are marked at the right of A and B. The molecu-
lar masses of Ver-1 and Nor-1 (indicated by arrows at the left) are
28 and 31 kDa, respectively
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was interpreted as resulting from the interaction between
primary antibodies and their target proteins immobilized
within the cell. Use of the negative control strain AFS10
(no aflatoxin proteins produced) allowed non-specific la-
beling and cross-reactive binding to be recognized, and

thus specific structures could be ruled out as the target or-
ganelles for aflatoxin proteins. For example, labeling of
the cell wall, especially for anti-Ver-1, was occasionally
detected in certain sections of both strain SU-1 and strain
AFS10, leading to the conclusion that this was non-spe-

Fig. 2A, B Immunofluores-
cence confocal microscopy of
Nor-1 and Ver-1 in A. parasiti-
cus strains SU-1 and AFS10
(aflR knockout mutant) grown
on YES agar for 72 h. Colonies
of strains SU-1 and AFS10
were divided into three frac-
tions (see Material and meth-
ods). The paraffin-embedded
fungal sections were immuno-
labeled with anti-Nor-1 anti-
serum (A) (1:500) or anti-Ver-1
IgG (B) (20 µg/ml) followed
by Alexa-488-conjugated goat
anti-rabbit IgG. Fluorescence
intensities of strain SU-1 sec-
tions immunolabeled with anti-
Nor-1 and anti-Ver-1 are
shown in rows a and d, respec-
tively; and of strain AFS10
sections in rows b and e. The
related bright-field images of
the strain AFS10 colony frac-
tions are shown in rows c and
f. Bar 100 µm



cific labeling. It was reported previously that non-specific
labeling of the cell wall may result either from non-spe-
cific binding of primary antibodies or from cell-wall-reac-
tive antibodies that arise in rabbits exposed to or infected
by yeast or molds before or during antibody production
(Atkin 1999; Binder et al. 1996). Scattered gold particles
were found occasionally associated with the nucleus, mi-
tochondria, and cytoplasm in strain AFS10 (for example,
Fig. 3C), and with the nucleus and mitochondria in strain
SU-1. This background “noise” could be largely elimi-
nated by a further step of antibody purification using
affinity subtraction as described in Lee et al. (2002). As
shown in this study, very little labeling was noted in the
cell wall, mitochondria, and nucleus using affinity-puri-
fied antibodies to OmtA (Fig. 5 and Table 1).

When highly specific antibodies to Nor-1, Ver-1, and
OmtA were used to label sections from fraction 2 of strain
SU-1, high signal intensity was observed in the cytoplasm
(Figs. 3D, 4E, and 5D). The gold particles frequently ag-
gregated to form clusters (Figs. 3D and 5D); similar clus-
ters were not seen in the cytoplasm of control sections ob-
tained from strain AFS10 or when only gold-labeled sec-

ondary antibodies were used. The immunogold labeling
results are in good agreement with immunofluorescence
data in this and our previous study and may help explain
the “patchy” appearance of the fluorescent signal observed
(Fig. 2 and Lee et al. 2002).

The gross ultrastructure of cells observed in thin sec-
tions suggested that our fixation procedures successfully
preserved the integrity of organelles bounded by double
(nuclei and mitochondria) and single (vacuoles, micro-
bodies, Woronin bodies) membranes. Although the data
appeared quite convincing, it was possible that disruption
of organelles occurred during sample preparation and was
in part or fully responsible for the observed cytoplasmic
location of Nor-1, Ver-1, or OmtA. To minimize this pos-
sibility, we demonstrated that the ultrastructure of Woronin
bodies (derived from microbodies; Valenciano et al. 1998)
and microbodies, and the antigenicity of their content pro-
teins were preserved using our sample preparation methods.
Woronin bodies and microbodies were intensely labeled
by anti-SKL (peroxisomal targeting signal 1) (Fig. 4A–C)
but not by antibodies to Nor-1, Ver-1, and OmtA in strains
AFS10 and SU-1 (Fig. 4D, E), which provided a good
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Table 1 Quantitative fluores-
cence intensity analysis of As-
pergillus parasiticus strains
SU-1 and AFS10 immunofluo-
rescence labeled with Nor-1,
Ver-1, and OmtA antibodies.
*The data represent the aver-
age pixel number in 20 images
from each colony fraction

Fungal colony Strain SU-1 Strain AFS10
Protein/
colony fraction S1 S2 S3 R1 R2 R3

Nor-1 229.5 858.4 260.9 15.2 18.7 62.3
Ver-1 144.4 297.9 166.5 68.7 89.2 42.3
OmtA 120.0 940.1 146.7 4.3 3.9 21.6

Fig. 3A–D Immunogold label-
ing of Nor-1 in A. parasiticus
strains SU-1 and AFS10.
A, B Ultra-thin sections of fun-
gal tissues of the aflatoxin pro-
ducing strain SU-1 were pre-
pared for transmission electron
microscopy and labeled with
secondary antibodies only. 
Ultra-thin sections of fungal
tissues of strains AFS10 (C)
and SU-1 (D) were labeled
with primary antibodies against
Nor-1, followed by 10-nm gold
beads conjugated to goat anti-
rabbit IgG secondary antibod-
ies (1:30 dilution) as described
in Materials and methods.
cw Cell wall, mb microbodies,
M mitochondria, N nuclei,
V vacuole. Bars 500 nm (A),
250 nm (B–D)



positive control for sample preparation. Some labeling of
Woronin bodies did occur with anti-Ver-1 (Fig. 4F, G).
However, the observed labeling occurred in both strain
AFS10 (control) and strain SU-1, allowing us to interpret
this as non-specific labeling possibly due to high antibody
concentration or the binding of antibodies to cross-reac-
tive proteins located in this organelle. This interpretation
was likely because disruption of aflR in A. parasiticus
(such as in strain AFS10) results in loss of nor-1, ver-1,
and omtA gene transcripts (Cary et al. 2000, 2002) and
proteins (this study). Therefore, it is unlikely that Ver-1
exists at any location in strain AFS10. The ultrastructure
of double-membrane-bound organelles (nuclei and mito-
chondria) as well as other single-membrane-bound organelles
(vacuoles) were also maintained in this study. With the
exception of vacuole-like organelles in the basal region of
fraction 2, these organelles did not label with antibodies
against the aflatoxin enzymes (Figs. 3, 4 and 5). These re-
sults suggest that Nor-1, Ver-1, and OmtA do not localize
to nuclei, mitochondria, Woronin bodies, or microbodies.

Of particular interest, most cells located near the basal
surface of fraction 2 were closely packed and contained
one to several large organelles heavily labeled with OmtA
antibodies (Figs. 5E and 6). Because the absence of signal
in organelles (nuclei, mitochondria, Woronin bodies, or
microbodies) does not appear to be an artifact arising from
organelle breakage (Figs. 3,4 and 5), these data strongly
support the specificity of labeling of the vacuole-like or-
ganelles observed in the basal region of fraction 2 (Figs. 5E
and 6). In some cells, the large and small organelles ap-
peared to fuse together (Fig. 6). The highly dynamic struc-
ture of these organelles is consistent with a model for vac-
uolar development in Aspergillus (Ohsumi et al. 2002)
and the vacuolation phenomena observed by Paul et al.
(1994). The morphology and apparent developmental ori-
gin of the labeled organelles in fraction 2 prompted us to
tentatively identify them as vacuoles (Amor et al. 2000).
The labeling intensity suggested a high concentration of
OmtA in these organelles. In contrast, antibodies against
Nor-1 or Ver-1 did not label these organelles in sections
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Fig. 4A–G Immunogold label-
ing using anti-SKL and anti-
Ver-1 in A. parasiticus strains
AFS10 and SU-1. Ultra-thin
sections of fungal tissues ob-
tained from fraction 2 were la-
beled with primary antibodies
to PST-1 (anti-SKL) (A–C) or
primary antibodies to Ver-1
(D–G) followed by gold-la-
beled secondary antibodies as
described in Materials and
methods. A, B, D, F, G Ultra-
thin sections prepared from
fungal tissues of strain AFS10;
C, E ultra-thin sections pre-
pared from fungal tissues of
strain SU-1. cw Cell wall, mb
microbodies, wb woronin
body, st septum, M mitochon-
dria, V vacuole. Bars 250 nm



from the same location (basal portion of fraction 2) (Figs. 7
and 8). Cells located above the basal region contained
smaller organelles that were sporadically labeled by OmtA
and not at all by antibodies to Nor-1 and Ver-1. Similar or-
ganelles in AFS10 did not label with polyclonal antibod-
ies to any aflatoxin enzyme. We attempted to label these
organelles using antibodies against yeast vacuolar amino-
peptidase I (kindly provided by Dr. Klionsky (Division of
Biology, California Institute of Technology, Pasadena Calif.,
USA). However, no specific binding was observed (data
not shown). It is possible that antibody against yeast amino-
peptidase I is not suitable for A. parasiticus because the
proteins structures are not sufficiently conserved.

Discussion

Our goal was to analyze the distribution and subcellular
localization of the aflatoxin enzymes Nor-1, Ver-1, and
OmtA in A. parasiticus grown on YES agar medium. Im-
munofluorescence microscopy and Western blot analysis
of protein extracts from time-fractionated colonies dem-
onstrated that fraction 2 (cells 24- to 48-h-old) contained
the highest concentration of each target protein. In addi-
tion, proteolytic cleavage of OmtA occurred to a greater
extent in “older” fungal tissues (fractions 1 and 2) (Lee et
al. 2002) but this was not observed for Nor-1 and Ver-1
under these culture conditions. It was reported previously
that OmtA purified from A. parasiticus is a 40-kDa pro-
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Fig. 5A–E Immunogold label-
ing of OmtA in A. parasiticus
strains AFS10 and SU-1. Ul-
tra-thin sections of fungal tis-
sues of strains AFS10 (A, B)
and SU-1 (C, D) were labeled
with primary antibodies against
OmtA followed by gold-la-
beled secondary antibodies as
described in Materials and
methods. E The colony frac-
tionation procedure and the
cell distribution in a typical
thin section. The specific loca-
tion of OmtA in cells near the
basal surface of the colony
(gray) is also shown. cw Cell
wall, M mitochondria, N nu-
clei, V vacuole. Bars 500 nm
(A, C, E), 250 nm (B, D)



tein whereas the cDNA encodes a 45-kDa protein (Keller
et al. 1993; Liu et al. 1993; Yu et al. 1993). We speculate
that loss of the 5 kDa of N-terminal sequence may be as-
sociated with localization to the organelle and possibly
the function of the enzyme. The specificity and timing of
expression of the proteolytic enzymes and the potential
role of cleavage in activation/inactivation of aflatoxin en-
zymes is clearly of interest for follow-up studies.

To our knowledge, this is the first study to conduct in
situ localization of aflatoxin enzymes and to localize an
aflatoxin enzyme to a specific cellular organelle. We dem-
onstrated that Nor-1 and Ver-1 were primarily localized to
the cytoplasm, suggesting that they are cytosolic enzymes.
OmtA was also detected in the cytoplasm. However, in
cells located near the basal (substrate) surface of the
colony, OmtA was predominantly detected in organelles
tentatively identified as vacuoles. Vacuoles are reported to
associate with several biological functions in fungi, in-
cluding degradation or recycling of proteins and whole or-
ganelles (Amor et al. 2000), storage of metabolites, ions
and amino acids, enzyme maturation (e.g. aminopeptidase I)
and pH homeostasis (Klionsky et al. 1990; Thumm 2000).
At specific stages of appressoria formation in Magna-

porthe grisea, vacuoles serve as a compartment for lipid
degradation and glycerol production (Weber et al. 2001).
In yeast, the biological sulfonium compound S-adenosyl-
methionine (AdoMet), accumulates to high levels in vac-
uoles (Schwencke et al. 1976; Svihla et al. 1969). S-adeno-
syl-methionine is an important cofactor and provides the
methyl group in the reaction catalyzed by OmtA. Based
on the available data, it is difficult to determine whether
the localization of OmtA to vacuole-like organelles in
A. parasiticus occurs for protein recycling, enzyme acti-
vation, or some other purpose.

Two observations from this study are particularly note-
worthy. First, intensely labeled, weakly labeled, and unla-
beled cells could be found adjacent to each other in the
same thin section analyzed by TEM. These data suggest
that the extent and timing of aflatoxin gene expression
varies from cell to cell, even in an area of the colony that
is presumably the same age. This variation may be related
to the local concentration of available nutrients or the rel-
ative age of fungal cells (Calvo et al. 2002; Chiou et al.
2002; Luchese et al. 1993). Second, OmtA appeared in the
cytoplasm in certain cells and in vacuole-like organelles in
other cells in the same colony fraction. The large and
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Fig. 6A–E Immunogold label-
ing of OmtA in A. parasiticus
strain SU-1. Sections cut from
the basal surface of the colony
were labeled with primary anti-
bodies against OmtA. A The
gold-labeled vacuole-like or-
ganelles inside the cells were
numbered (1–8). B–E Higher
magnification images of these
organelles. cw Cell wall, M mi-
tochondria, N nuclei, V vac-
uole-like organelle. Bars 2 µm
(A), 1 µm (B–E)
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Fig. 7A–D Immunogold label-
ing of Nor-1 in sections cut
from the basal surface of
A. parasiticus strain SU-1.
A The vacuole-like organelles
inside the cells were numbered
(1–6). B, C, D Higher magnifi-
cation images of these organ-
elles. cw Cell wall, M mito-
chondria. Bars 1 µm

Fig. 8 Immunogold labeling
of Ver-1 in sections cut from
the basal surface of A. parasiti-
cus strain SU-1. A The vac-
uole-like organelles inside of
cells were numbered (1–9).
B, C, D Higher magnification
images of these organelles.
cw Cell wall, M mitochondria.
Bars 1 µm



small vacuole-like organelles were fused together, similar
to the vacuolation process, suggesting that these cells
were under nutrient limitation (Paul et al. 1994). We pro-
pose that a specific set of changes in cell age, physiologi-
cal conditions, or nutrient availability triggers the trans-
port of OmtA from cytoplasm into the vacuole-like or-
ganelle via a pathway similar to the yeast cytoplasm-to-
vacuole targeting (cvt) pathway. In Saccharomyces, the
cvt pathway is regulated by the availability or limitation
of specific nutrients (e.g. glucose or ethanol) (Klionsky et
al. 1990; Klionsky 1997; Thumm 2000). To date, no path-
way similar to cvt has been reported in filamentous fungi.

Based on data from this and previous studies, it is rea-
sonable to assign two potential alternative roles for the vac-
uole-like organelle in aflatoxin synthesis: (1) as a means
to reduce or limit aflatoxin synthesis, OmtA is transported
to and inactivated in the vacuole-like organelle via prote-
olytic cleavage; (2) as a means to shield the cell from 
the potential toxic effects of aflatoxin in the mycelium
(Saxena et al. 1991), OmtA is transported to the vacuole-
like organelle together with the late aflatoxin pathway in-
termediate ST. Here, OmtA is activated and ST is con-
verted to OMST and further converted to AFB1 by OrdA
(which catalyzes the final step of aflatoxin biosynthesis)
(Prieto and Woloshuk 1997; Yu et al. 1998) localized in or
on the same vacuole. These hypotheses form the basis for
our future studies on aflatoxin synthesis.
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