
Abstract Airborne fungal contaminants are increasingly
gaining importance in view of health hazards caused by
the spores themselves or by microbial metabolites. In ad-
dition to the risk for infection, the allergenic and toxigenic
properties, as well as the inflammatory effects are dis-
cussed in this review as possible health impacts of bio-
aerosols. A major problem is the lack of threshold values
for pathogenic and non-pathogenic fungi, both in the work-
place and in outdoor air. While the relevance of mycotox-
ins has been intensely studied in connection with contam-
ination of food and feed, the possible respiratory uptake
of mycotoxins from the air has so far not been sufficiently
taken into account. Toxic secondary metabolites are ex-
pected to be present in airborne spores, and may thus oc-
cur in airborne dust and bioaerosols. Potential health risks
cannot be estimated reliably unless exposure to mycotox-
ins is determined qualitatively and quantitatively. Micro-
bial volatile organic compounds (MVOC) have been sug-
gested to affect human health, causing lethargy, headache,
and irritation of the eyes and mucous membranes of the
nose and throat. The production of MVOC by fungi has
been discussed in connection with domestic indoor micro-
bial pollution, but the relevance of fungal metabolites in
working environments remains insufficiently studied.
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Introduction: health hazards associated with exposure
to microorganisms

In recent years, research on environmental health has in-
tensified, but up-to-date and in-depth literature on the rel-

evance of airborne fungi and their microbial metabolites
is sparse. Although a clear correlation between levels of
fungi in the air and health impacts has not been shown in
epidemiological studies (Bornehag et al. 2001; Burge
2001), fungi in indoor air must be regarded as potential
health hazards. Airborne microfungi impact human health
in four different ways: (1) they can infect humans, (2) they
may act as allergens, (3) they can be toxigenic, or (4) they
may cause inflammatory reactions. The microfungi of
concern in environmental and occupational hygiene are
mostly non-pathogenic or facultative pathogenic (oppor-
tunistic) species. Non-pathogenic species, such as the peni-
cillia and most soil fungi, are ubiquitous. They do not cause
infections but are relevant as allergens and mycotoxin
producers. The opportunistic pathogens, e.g. some der-
matophytes, the thermotolerant aspergilli (especially As-
pergillus fumigatus), Scopulariopsis sp., and some Muco-
rales, are also ubiquitous, but can only affect human
health when predisposing factors are involved. Pathogenic
fungi showing high virulence, such as Cryptococcus neo-
formans and Coccidioides immitis, are non-ubiquitous
species and will not be treated here.

If airborne fungal spores are inhaled down to the
bronchia and alveoli, they will be lysed and the human
body thereby exposed to primary and secondary metabo-
lites. In some cases, mycotoxins are clearly involved in
pathogenesis. Inhalation exposure has been suggested to
cause acute kidney failure (ochratoxin), central nervous
system damage (tremorgenic mycotoxins), and damage 
of the upper respiratory tract (Stachybotrys chartarum)
(Miller 1994).

Natural species composition in outdoor air 
and the anthropogenic air spora

Microfungi such as Cladosporium spp., Alternaria spp.,
Epicoccum nigrum, and Botrytis cinerea are known to be
an integral part of the fungal air spora outdoors (Table 1).
They cover more than 90% of the total fungal spore load.
The fungal spore load of penicilli and aspergilli is in the
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range of 2–10% and 1–3%, respectively (Lacey 1996).
The species composition in outdoor air has been studied
mostly by using slit-samplers and direct microscopy (as-
sessing total numbers of spores). Exact ratios of species
from genera such as Aspergillus and Penicillium in out-
door air are still unknown, but such data would provide a
basis for establishing guide values for evaluating fungal
spore counts in various environments. Species-differenti-
ated data, especially for the penicilli and aspergilli, can
only be assessed by air sampling in combination with sub-
culturing of fungi (viable spores counts). Numerous tech-
niques have been developed including impaction (Ander-
sen sampler, 1-, 6-, 8-stage; Reuter centrifugal sampler,
SAS-sampler, Loreco FH3, Klotz FH5), impingement (all-
glass impinger, AGI 30) and filtration (Sartorius MD-8,
MD-8 AirPort).

There is only limited knowledge on the emission of
fungal propagules from composting plants and their dis-
persal into the environment. Concentrations of up to 5×
102 CFU m–3 for A. fumigatus and Aspergillus niger have
been observed at distances of up to 2 km downwind from
a facility (Ostrowski et al. 1999), whereas the number of
CFU was below 10–20 CFU m–3 air in non-affected loca-
tions. In a residential area near an open-windrow compost-
ing plant in New York, a maximum of 1.4×104 CFU/m–3

of A. fumigatus has been found at 540 m distance (New
York State Department of Health 1994). While there are
currently no epidemiological investigations on the inci-
dence of A. fumigatus in different ecosystems in outdoor
air, spore counts above 10 CFU m–3 do not seem to be
likely unless there is an anthropogenic source (Haas et al.
1999).

Relevance of fungal infections

Nosocomial infections

In operating theatres, rooms, and corridors of wards in
hospitals, intensive measures to maintain air hygiene are
undertaken to reduce airborne fungal spores to almost
zero. Activities such as in-hospital construction, renova-

tion, excavation, and carpeting are regarded to be associ-
ated with outbreaks of nosocomial aspergillosis. Contam-
inated hospital ventilation systems, damp wood, or pot-
ting soil have been discussed as sources for pathogenic
fungi. An association between concentrations of A. fumi-
gatus and Aspergillus flavus exceeding 1 CFU m–3 in on-
cology wards and an increasing incidence of aspergillosis
has been controversially discussed (Arnow et al. 1991;
Hospenthal et al. 1998). For immunocompromised patients,
numbers even below 10 CFU thermotolerant aspergilli m–3

have been discussed as health hazards, since aspergillosis
is fatal despite appropriate treatment in more than 50% of
cases (Denning 1996). In an investigation carried out in
wards of an hospital in the United Arab Emirates, spore
numbers of up to 25 CFU m–3 air for A. fumigatus are
classified as low (Jaffal et al. 1997), an amount which is
questionable even if thermotolerant species are likely to
be more frequent in desert countries.

Infections in occupational environments

The level of opportunistic thermotolerant fungi in air has
become a matter of discussion, as the number of work-
places in the waste-handling industry increases and emis-
sions of microorganisms from these facilities are being
critically evaluated. It is extremely difficult to estimate
health risks, since severe infections have not been described
for workers, and only people suffering from immune defi-
ciencies are at risk for infection.

In addition to A. fumigatus, also A. niger, Aspergillus
terreus, Aspergillus flavus, Emericella nidulans, Aspergillus
niveus, Aspergillus restrictus, and Eurotium amstelodami
are potentially pathogenic to humans. In waste-handling fa-
cilities, extremely high concentrations of up to 107 CFU m–3

air for thermotolerant fungi have been found (Fischer
2000b). There are no reports in the literature indicating
that high fungal spore counts of pathogens increase the
risk for infection of workers with a normal immune status.
However, long-term exposure to living or dead particles
containing fungal toxins, e.g., aflatoxins, gliotoxin, ochra-
toxin, patulin, and trichothecenes is expected to eventu-

76

Table 1 Levels of airborne
fungi (CFU m–3) in different
environments and their impact
on health. I infectious, A aller-
genic, T toxigenic, + species
regularly present in low num-
bers, n.r. not relevant for air
hygiene, – no data available

(a)Hospenthal et al. (1998)
(b)Jaffal et al. (1997)
(c)Lacey (1996)
(d)Fischer (2000b)
(e)Verhoeff (1994)
(f)Senkpiel et al. (1996)

Species Type of Outdoors Hospitals Dwellings Occupational 
impact: (wards) environments

Alternaria alternata A T 101-102(c,f) – 101(f) +
Aspergillus candidus A + – <5 104(d)

Aspergillus flavus I A T n.r. <5 104-105(d)

Aspergillus fumigatus I A T <10–20 4–25(b) + 107(d)

A. fumigatus, A. flavus I A T See above 1–12(a) See above See above
Aspergillus versicolor A T <5(e) – <5(e) 106(d)

Cladosporium spp. A 103(c,e) – 102(e) 102 -103(d)

Epicoccum nigrum A 101(f) – 101(e) +(d)

Eurotium herbariorum A <10(e) – <5(e) +(d)

Penicillium brevicompactum A <10(e) – 101(e) 104(d)

Penicillium chrysogenum A + – Frequent 102(d)

Penicillium glabrum A <5(e) – <10(e) 104(d)



ally suppress or modulate the immune response in healthy
people. Since most investigations on immunomodulation
by mycotoxins have focused on oral application (Bondy
and Pestka 2000), further research remains necessary to
elucidate the role of exposure by pulmonary uptake.

Allergenic relevance of airborne spores

Fungi must generally be regarded as potential allergens
and have probably been underestimated because of inade-
quate, non-standardized diagnostic antigen preparations.
Alternaria and Cladosporium are considered to be the
most important fungal airborne allergens in outdoor air,
whereas Aspergillus and Penicillium have recently been
recognized as significant indoor air allergens (Li and Hsu
1997). In contrast to pollen allergy, the correlation between
fungal spore counts and positive skin-test frequencies has
been generally less marked. Conidia of Cladosporium,
which are present in large numbers in outdoor air, appear
to be less sensitizing than species such as Alternaria,
which is normally found in lower numbers (Cosentino et
al. 1995). Dose-effect responses between airborne spore
concentrations and health effects have not been described.
However, exceptional rates of admission for asthma tended
to occur on days with high total mould spore counts, al-
though no specific taxon has been consistently implicated
(Newson et al. 2000).

Indoor air

In buildings with mould problems, the incidence of peni-
cillia and aspergilli is often higher than in outdoor air. The
genera Penicillium and Aspergillus are more closely asso-
ciated with respiratory allergic symptoms and allergen
sensitization than the common outdoor moulds Cladospo-
rium and Alternaria. Although Cladosporium cladospori-
oides has not been associated with indoor air complaints
(Cooley et al. 1998), asthma has been associated with sen-
sitization to allergens of other fungi (Alternaria) and
house dust, with a prevalence of 25.4% for moulds among
eight different allergens tested (Boulet et al. 1997; Nor-
bäck et al. 1999). This low value is obviously due to Al-
ternaria being the only fungal allergen tested, both as in-
door and outdoor allergen. In households of patients with
asthma bronchiale and positive reactions to intracuta-
neous application of fungal allergens, spore counts have
been found to be four to 40 times higher than measured
outdoors, with a prevalence for Penicillium spp. and As-
pergillus spp. After renovation or change of residence,
complaints of patients decreased clearly (Senkpiel et al.
1996). Statistically significant differences in frequency of
distribution have been found for Cladosporium and Peni-
cillium between atopic and control groups. In contrast to
total spore counts, Penicillium spore counts are related to
home dampness (Li and Hsu 1995), which itself is associ-
ated with allergenic symptoms in children with asthma
and rhinitis (Li and Hsu 1997). Consequently, species of

the genera Penicillium and Aspergillus should be the fo-
cus of future studies. It seems that Aspergillus spp. are
somewhat more frequent in warmer climates than in cold
and temperate regions, but species-differentiated data are
still lacking.

Occupational environments

In occupational environments where waste, biowaste, or
compost are handled, spore counts of Penicillium and As-
pergillus are two to four orders of magnitude higher than
in domestic environments. This may indicate a high risk
for employees to acquire respiratory allergic diseases or
sensitization to different moulds. Various cases of allergic
alveolitis due to massive fungal exposure have been de-
scribed for a series of professions in the fields of agricul-
ture, forestry, and food production (Table 2). Repeated ex-
posure to high concentrations of bioaerosols and exposure
over long periods may be critical (Lacey and Dutkiewicz
1994). Frequent complaints of gastrointestinal symptoms
by biowaste collectors have been associated with expo-
sure to bioaerosols (Lundholm and Rylander 1980; Ivens
et al. 1997). Long-term exposure to fungal spores exceed-
ing 106 spores m–3 air has been found to be related to res-
piratory symptoms and symptoms of organic-dust toxic
syndrome (ODTS) in sawmill workers (Eduard et al. 1993).
Moreover, health problems have been found in workers
employed in garbage-sorting facilities, and respiratory
disorders and atopy occurred in Danish refuse workers
(Malmros et al. 1992; Sigsgaard et al. 1994). Waste col-
lectors are at increased risk for pulmonary diseases, infec-
tions, and skin and mucous membrane irritation, possibly
caused by exposure to bioaerosols (Poulsen et al. 1995).

77

Table 2   Forms of allergic alveolitis and causal agents accord-
ing to Hawksworth et al. (1995)

Form of allergic alveolitis Causal agent

Farmer’s lung Thermophilic actinomycetes, some-
times Aspergillus flavus, Aspergillus
versicolor, Eurotium rubrum

Cheese-washer’s lung Penicillium casei
Malt-worker’s lung Aspergillus clavatus, Aspergillus

fumigatus
Suberosis (workers in
cork industries)

Penicillium glabrum

Maple-bark stripper’s
lung

Cryptostroma corticale

Sawmill worker’s lung Rhizopus rhizopodiformis,
Penicillium spp., Aspergillus
fumigatus, Trichoderma viride

Sequoiosis Aureobasidium pullulans,
Graphium sp.

Mushroom picker’s lung Pleurotus ostreatus, Pholiota
nameko, Aspergillus fumigatus,
Doratomyces stemonitis

Allergic alveolitis from
citric acid fermentations

Aspergillus fumigatus, Aspergillus
niger, Penicillium spp.



Compared to waste collectors, the high exposure of com-
post workers to bioaerosols was significantly associated
with a higher frequency of health complaints and diseases
as well as higher concentrations of specific IgG antibodies
for A. fumigatus, A. niger, and P. crustosum (Bünger et al.
2000).

Inflammation relevance

Besides the endotoxins of gram-negative bacteria, compo-
nents of the fungal cell wall such as glucans and struc-
turally related compounds seem to cause inflammations of
the airways (Thorn and Rylander 1998). This is of major
relevance in occupational environments due to high amounts
of β-glucans and possible interactions with endotoxins in
workplaces (Lacey and Dutkiewicz 1994). Fungal spores
have been shown by in vitro testing to trigger the produc-
tion of inflammatory mediators in macrophages (Ruot-
salainen et al. 1998; Murtoniemi et al. 2001). Publications
on cytotoxicity testing of spore-associated mycotoxins
(using human embryonic fibroblast lung cells, ciliated res-
piratory tract cells of chicken, and feline fetus-lung cells)
are too numerous to be referred to here in detail. However,
interactions between glucans and spore-associated myco-
toxins (Fischer et al. 2000a) need to be studied further
with respect to inflammation of the airways.

Relevance of (M)VOC

The low concentration range – indoor air

The role of fungi in affecting the quality of indoor air has
become increasingly controversial. There is, however, gen-
eral agreement that volatile organic compounds (VOC)
and microbial volatile organic compounds (MVOC) are
involved in the sick-building syndrome (SBS). In experi-
ments with humans exposed to VOC mixtures, irritation
of the eyes and upper respiratory tract, as well as inflam-
matory reactions have been described among several
other symptoms (Wiesmüller 1998). In buildings with vis-
ible fungal growth, compounds such as dimethyldisulfide,
2-methyl-1-butanol, 1-octen-3-ol, and isobutyl ether have
been found in concentrations of 10–100 ng m–3 air (Keller
et al. 1998). Total concentrations of 18 MVOC correlated
to some extent with odor perception in dwellings when
cases have been classified in three groups: (1) fungus-like
odor not recognizable (<35 ng m–3), (2) slight fungus-like
odor (50–1,720 ng m–3), (3) strong fungus-like odor (160–
12,300 ng m–3). The authors concluded that concentra-
tions ≥50 ng m–3 air may indicate an indoor contamination
with moulds, while outdoor concentrations are usually
≤10 ng m–3 air (Keller et al. 1998). In Germany, a maxi-
mum  tolerable value for the total VOC concentration
(TVOC) of 0.3 mg m–3 air has been defined for indoor air.
During the last few years, a general trend has been ob-
served concerning different types of VOC. Both the num-
bers and the concentrations of aldehydes have tended to

increase, whereas chloro-carbohydrates have decreased
(Seifert 1999). In older studies on dose-effect concentra-
tions associated with TVOC values, irritations in humans
have not been observed at concentrations of less than 
0.2 mg m–3 air, but above 25 mg m–3 air headache and
neurotoxic effects occurred (Mølhave 1991). Recent in-
vestigations have only partly confirmed these earlier re-
sults. Positive dose-response relationships have been found
for mixtures of VOC using an experimental “eye-expo-
sure system” that may serve to either determine threshold
concentrations inducing sensory irritation or to validate
predictive animal models (Hempel-Jorgensen et al. 1999).
Korpi et al. (1999) determined the potential of three mi-
crobial volatiles, 1-octen-3-ol, 3-octanol, and 3-octanone,
to decrease the respiratory frequency of mice by 50%
(RD50 value). The data supported the conclusion that a
mixture of MVOC may have synergistic effects, which con-
strains the interpretation and application of recommended
indoor air levels of individual MVOC. Nonetheless, toler-
able indoor air levels calculated from the individual RD50
values are considerably higher than the reported indoor air
levels. This indicates that the contribution of known
MVOC to the above-mentioned symptoms is less impor-
tant than previously supposed. A promising technique for
assessing MVOC profiles to predict fungal contamination
in indoor air has been described (Ström et al. 1994). Ex-
periments with house dust or common indoor moulds
grown on plasterboard and cardboard showed that the pro-
files may be used to identify indoor contaminants at the
species level (Sunesson et al. 1996; Wilkins et al. 2000).
Even on poor substrates, such as house dust, production of
MVOC has been observed (Pasanen et al. 1997; Wilkins
et al. 1997). Since the number of prevalent mould species
developing in contaminated buildings is limited to about
10–20, these could be identified by pattern recognition of
their MVOC profiles (Larsen 1995; Fischer et al. 1999a).
A compilation of relevant MVOC is given in Table 3.
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Table 3 Microbial volatile organic compounds found to be char-
acteristic for fungi in indoor and occupational environments

Furanes: 2-/3-Methylfurana–d, 2-pentylfurana,c,d

Alcohols: 2-Methyl-1-propanol (isobutanol)a,c–e, 2-pentanola,c,e, 
3-methyl-1-butanola,c–e,  2-methyl-1-butanola,c–e, 1-octen-3-ola–d, 
3-octanola,c,d

Aldehydes: 2-Hexanonea,b, 3-hexanoned, 2-heptanonea–c, 
3-octanonea–d

Ester: Ethylisobutyratea,d, ethyl-2-methylbutyratea,d

Ether: Methylisobutyletherc, 2-methylisopentyletherc

Sulfur compounds: Dimethyldisulfidea,c–e, dimethyltrisulfidec

Terpenes, terpene alcohols: Borneolc,d, β-farnesenec,d, Geosmina,c,d

aStröm et al. (1994)
bPasanen et al. (1997)
cKeller et al. (1998)
dFischer et al. (1999a, 2000b)
eWilkins et al. (2000)



The high concentration range – occupational environments

If humans in indoor environments are affected by rela-
tively low levels of VOC, it is likely that employees in
waste-handling facilities respond to levels of (M)VOC in
these environments that are one to two orders of magni-
tude higher. However, concentrations of the most abun-
dant aliphatic hydrocarbons and alkylbenzenes in the air
of composting facilities have been observed to be below
the maximum concentrations recommended by national
and international guidelines. In The Netherlands, the thresh-
old limit value for limonene, which occurred in concentra-
tions of up to 150 mg/m3 air in composting facilities, is
560 mg/m3 air (Heida et al. 1995). Current regulations do
not cover relevant (M)VOC, and further research will be
necessary to evaluate the relevance of the great diversity
of compounds in workplaces. A promising technique for
assessing MVOC profiles in occupational environments
has been developed (Fischer et al. 1999a). A great diver-
sity of volatiles, both microbial- and plant-derived, has
been identified in different workplaces in composting fa-
cilities, and the spectrum of compounds changed with the
composition of fungal species in the air (Fischer 2000b).
Future studies on the exposure to bioaerosols must in-
clude those volatiles that are possibly derived from mi-
croorganisms. Until now, there has been no evidence that
MVOC are toxicologically relevant (Kreja and Seidel
2002), but further epidemiological research is necessary
to elucidate their role as irritants and health hazards to hu-
mans.

Occurrence and activity of mycotoxins in bioaerosols

Reports on health effects due to ingestion of mycotoxins
are of concern only in livestock breeding and food micro-
biology. In air hygiene, the inhalation of such compounds
must be considered. The production of mycotoxins basi-
cally depends on the type of substrate available. Myco-

toxins are excreted into the substrate or can be present in
fungal cells. Consequently, two routes for mycotoxins be-
coming airborne are possible: (1) the dust may be conta-
minated by mycotoxins excreted by the fungi; (2) the
conidia (and spores fragments) contain toxic metabolites
which become air-borne by propagation. It seems that the
amount of mycotoxins basically depends on the number
of conidia present in airborne dust (Fischer et al. 1999b,
2000a). Thus, only in highly contaminated environments
such as workplaces  mycotoxins are relevant as health
hazards. The pulmonary uptake of mycotoxins and its ef-
fects have not been investigated sufficiently in animal and
in vitro experiments. In addition, epidemiological studies
are needed to increase our knowledge of possible symptoms
and health impacts in connection with exposure levels.

Exposure to airborne mycotoxins in workplaces in
agriculture was intensely studied during the 1980s (Burg
and Shotwell 1984; Sorenson et al. 1984, 1987), and its
relevance for both environmental health and occupational
medicine was clearly defined in the early 1990s (Hendry
and Cole 1993; Miller 1994). Until now, the only toxins
detected in airborne dusts and bioaerosols have been tri-
chothecenes of Stachybotrys chartarum, aflatoxins of As-
pergillus flavus, and metabolites of A. fumigatus (Table 4).
However, investigations on the potential of distinct spe-
cies to produce mycotoxins on semi-natural substrates in-
dicated that compounds in addition to those already found
in native bioaerosols may occur (Fischer et al. 2000a).

During harvesting and handling of airborne dust from
maize, concentrations of up to 107 ng aflatoxin m–3 air
were reached, whereas dust from peanuts contained 250–
400 ng aflatoxin per g dust (Burg and Shotwell 1984).
During on-farm grain handling activities, aflatoxin B1 was
found in concentrations of up to 4,849 ng m–3 (Selim et al.
1998). At these concentrations, workers could inhale 40–
2,500 ng aflatoxin in a 45-h workweek. Sorenson et al.
(1984) found amounts of 0.4–7.6 ng m–3 air in work places.
These authors calculated that, assuming a breathing rate
of 1 m3 h–1 and an airborne aflatoxin concentration of 
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Table 4   Occurrence of airborne mycotoxins

Mycotoxins Species Substrate / type of sample Concentration Reference

Aflatoxins Aspergillus flavus,
Aspergillus parasiticus

Grain dust (maize) 206 ppbfi107 ng m–3 Burg and
Shotwell (1984)

Aflatoxin B1 Aspergillus flavus,
Aspergillus parasiticus

Respirable peanut dust 22.7 – 612.4 ppbfi0.4–7.6 ng m–3 Sorenson et al.
(1984)

Satratoxins G, H Stachybotrys atraa Artificially generated
aerosols/dusts from
laboratory experiment

9.5 ng mg–1 dust Sorenson et al.
(1987)

Aflatoxin B1 Aspergillus flavus Airborne grain dust 0.04 – 4,849 ng m–3 Selim et al.
(1998)

Trypacidin,
tryptoquivaline

Aspergillus fumigatus Bioaerosols, total dust
from composting facility

Semi-quantitative analysis:
5–50 mg per 109 conidia, no
standards available

Fischer et al.
(1999b)

Ochratoxin Aspergillus ochraceus,
Penicillium spp.

Dust from heating ducts Up to 58–1,500 ppb Richard et al.
(1999)

aStachybotrys atra Corda 1837 = Stachybotrys chartarum (Ehrenb. Ex Link) Hughes 1958. Stachybotrys atra is a facultative syn-
onym of Stachybotrys chartarum, thus based on different type material



0.2 ng m–3, a worker could inhale 1.6 ng in an 8-h work-
shift and 8.0 ng in a 40-h workweek. Similar or even
higher levels of exposure to microfungi can be found in
waste-handling facilities; however, aflatoxins could not
be extracted from samples of biowaste and compost, al-
though strains of A. flavus isolated in situ proved to be
partly toxigenic (Déportes et al. 1997). These results can
be attributed to the fact that extraction of aflatoxins from
compost is difficult, as was proven by spiking the samples.
Aflatoxin does not seem to be relevant in indoor air, since
its formation during fungal growth on building materials
has not been observed (Rao et al. 1997; Ren et al. 1999).

Stachybotrys chartarum produces trichothecenes, e.g.
satratoxines H and G, verrucarins B and J, trichoverrins,
and atranones A and H, some of which have proven to 
be of toxicological relevance following exposure to 103–
104 CFU m–3 air (Sorenson et al. 1987). Few clinical re-
ports on human cases of toxicosis due to Stachybotrys
chartarum have been described in the literature. Symptoms
observed in connection with contamination by Stachy-
botrys spp., include coughing, rhinitis, sore throat, nose
bleeding, moderate fever, diarrhea, headaches, dermatitis,
fatigue and general malaise (Schiefer 1994), and a not yet
validated report of acute pulmonary hemorrhage in infants
(Etzel et al. 1998). A clear cause-effect relation between
occurrence of the fungus and symptoms observed in pa-
tients is difficult to establish, which can partly be attrib-
uted to the fact that isolation from substrates with ex-
tremely high amounts of airborne fungal spores is diffi-
cult. Detection of conidia by direct microscopy is neces-
sary. Moreover, it has recently been shown that three
chemotypes can be distinguished in Stachybotrys char-
tarum, all differing with respect to their toxic and inflam-
matory potential as characterized by cytotoxicity assays
(Andersen et al. 2002). However, there is no doubt that
mycotoxins produced by Stachybotrys chartarum are the
most toxic ones known.

The occurrence of mycotoxins from A. fumigatus in
native dusts and bioaerosols sampled in a composting fa-
cility has been demonstrated (Fischer et al. 1999b). The
compounds, i.e. tryptoquivaline (tremorgen) and trypacidin,
were estimated to be present in an amount of 5–50 µg per
109 conidia. The detection of these compounds coincided
with an extraordinary high density of conidia in air 
(107 CFU m–3). Compounds such as gliotoxin, verruculo-
gen, and the fumitremorgens A and B have so far not been
detected in the bioaerosols.

A report of ochratoxin in house dust was published by
Richard et al. (1999). Samples of dust collected from
heating ducts yielded up to 1,500 ppb of ochratoxin A. In
air samples taken previous to this sampling, Aspergillus
ochraceus and Penicillium spp. had been found. The pro-
duction of the mycotoxin could not solely be ascribed to
A. ochraceus as the penicillia present in the dust were not
identified to the species level. It has often been falsely as-
sumed that ochratoxin is produced by several Aspergillus
and Penicillium species (Richard et al. 1999; Robbins et
al. 2000), which is not true for the penicillia (Frisvad and
Thrane 1993).

The number of species that have been studied in exper-
iments on exposure to mycotoxins in air is still limited. If
data from the last two decades are critically evaluated,
taxonomic, toxicological, and chemical expertise must be
considered to reliably estimate possible health effects. The
recent literature on health effects of mycotoxins in indoor
air does not provide compelling evidence that exposure at
levels expected in most mould-contaminated indoor envi-
ronments is likely to result in measurable health effects
(Robbins et al. 2000). Therefore, if effects of substrates
are taken into consideration, occupational environments
can be taken as model system to investigate the relation
between microorganisms and microbial metabolites in air
(Fischer 2000b). The most important aims for further re-
search on mycotoxins will be to analyze extracts of aerosol
samples for microbial metabolites, to study the effect of
pulmonary exposure to relevant mycotoxins, and to study
their effects on mammalian systems in vivo and in vitro.

Conclusions and perspectives

Since it is not possible to quantify the risk of infection by
thermotolerant fungi, guide values or threshold limit val-
ues should be established that are based on the natural
fungal air spora in outdoor air. Therefore, the species
composition must be thoroughly identified in urban and
rural regions. New insight into pathogenic and allergenic
effects can only be achieved by epidemiological investi-
gations, both in environmental and occupational medi-
cine, and by assessing relevant compounds and species.
To achieve a profound assessment of all environmental
factors involved, investigations must include microbio-
logical, taxonomic, and toxicological expertise.

The role of fungi as allergens has probably been un-
derestimated because of inadequate, nonstandardized di-
agnostic antigen preparations. There is a strong need to
characterize the allergenic potential of different species
even within more complex genera such as Penicillium.
Allergists and environmental microbiologists must use the
same names for microorganisms so that medical data can
directly be compared to data from exposure assessments.
A striking example is Penicillium chrysogenum Thom
1910, one of the most common representatives of its genus
on interior finishes. In allergy diagnosis, the old name, 
P. notatum Westling 1911, is still in use for this species.

The production of mycotoxins is to a wide extent spe-
cies-specific. Therefore, proper identification of species
according to current taxonomic concepts is a prerequisite
for a reliable estimation of expected exposure levels. In
numerous publications, the production of certain myco-
toxins has been ascribed to wrongly identified species or
vice versa (Samson 1992), which has to be considered
when older publications are referred to.

Since the number of composting facilities has risen
during the last years, emissions from these sources may
possibly influence the natural air spora in outdoor air. Hu-
man activities in urban areas such as waste collection may
contribute to additional emissions that can eventually alter
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the ratios of individual species. The importance of such
emissions becomes apparent by calculating the proportion
of land where the air spora may be altered due to such
emissions. In Germany, approximately 650 composting
facilities exist. The total area exposed to such emissions is
2,600 km2, that is nearly 1%. This calculation does not in-
clude microbial emissions from other types of activities or
facilities, e.g. landfill areas, livestock facilities, sewage
treatment plants, food-processing and recycling plants, and
farmland. Taking the longevity of fungal propagules into
account, the proportion of land potentially influenced by
anthropogenic emissions of microorganisms must not be
underestimated.
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