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Abstract
The microgrid energy management with renewable energy is efficiently integrating intermittent sources like solar and wind
while ensuring grid stability and reliability is difficult. The gravitational sear search method is employed in MG energy
management with renewable energy sources (RESs) to address these problems. The gravitational search technique is used in
the proposedmethod (GSA). In order to build a database of control signals that take into account the power differential between
the source and load sides, GSA is used to precisely identify the control signals for the system. The proposed technique’s main
goal is to deliver the best performance at the lowest possible cost. The constraints are the availability of the RESs, energy
consumption as well as the storage elements’ level of charge. Batteries are utilized as an energy source to steady and allow
the renewable power system components to continue operating at a constant and stable output power. The proposed method
cost is 1.1$ that is lower than the existing methods. The MATLAB platform is used to implement the proposed method, and
its efficacy is assessed in comparison to established techniques like modified PSO (MPSO), genetic algorithm (GA), particle
swarm optimization (PSO), and proportional integral controller (PI) (MPSO).

Keywords Renewable energy sources · Energy management · Gravitational search algorithm · Optimization strategy ·
Batteries · Load variation

1 Introduction

Recent advancements in renewable energy sources (RESs)
have garnered significant attention from both engineers and
academics due to their potential to reduce fossil fuel reliance
and mitigate environmental issues [1]. RESs offer notable
benefits including reduced power losses, improved power
quality, increased reliability, and environmental advantages
[2]. However, their integration into distribution networks
poses challenges such as increased complexity in control,
protection, and operation [3]. The concept of microgrids
(MGs) has emerged as a promising solution to address these
challenges by combining controllable loads with distributed
generation (DG) systems [4]. The development of electric
vehicles (EVs) and increased energy efficiency relies on
microgrids (MGs), which can function both independently
and in conjunction with the main grid. [5–8]. Despite their
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advantages, integrating high RES penetration and EVs can
lead to issues like power quality degradation, increased sys-
tem demand, and infrastructure [9] costs. Before proceeding
further, Table 1 lists the abbreviations for a better understand-
ing of the paper.

Many related studies based on MG energy management
using renewable energy may be found in the literature. A few
of them are assessed here.

Torkan et al., [10] has developed a multi-objective genetic
algorithm (MOGA) to address the MG’s technical and finan-
cial issues. Reactive loads, demand response (DR) programs,
and uncertainties resulting from renewable energy sources
are all taken into account in this stochastic programming.

Kavitha et al., [11] have developed an energy manage-
ment plan based on Mimosa pudica for the best microgrid
scheduling to minimize production overheads while taking
into account underlying system limits. Furthermore, the sug-
gested method was developed to control the power balancing
between the dispersed resources and utilities using a common
communication protocol.
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Table 1 List of Abbreviations

Abbreviation

RES- Renewable energy sources SLO- System-level
optimization

GSA- Gravitational search
algorithm

ECMS- Equivalent fuel
consumption minimization
strategy

MG- Microgrid GHG- Greenhouse gas

MPSO- Modified particle swarm
optimization

PV- Photovoltaic

GA- Genetic algorithm WT- Wind turbine

PSO- Particle swarm optimization FC- Fuel cell

PI- Proportional integral DG- Diesel generator

MOGA- Multi-objective genetic
algorithm

PCC- Point of common
coupling

DR- Demand response ARO- adaptive random
optimization

EMS- Energy management system HWOA-PS- Hybrid whale
optimization algorithm and
pattern search

MOST- Metaheuristic optimization
searching technique

Bukar et al., [12] have introduced a metaheuristic opti-
mization searching method (MOST) and a rule-based algo-
rithm for the size of an autonomous microgrid and energy
management (EM), respectively. The energy management
scheme’s (EMS) goal was to establish a power supply sched-
ule for each of the microgrid’s several parts.

Merabet et al., [13] have suggested improving the energy
management system to reduce the battery storage and energy
coasts of a hybrid solar and wind microgrid with grid con-
nectivity.

Hai et al., [14] have investigated in the research the impacts
of different weather conditions on the PV unit’s power out-
put and the best time to schedule the MG. In order to do
this, solar irradiance measurements were collected on four
separate days throughout each of the four seasons. The
single-objective optimization framework that was utilized to
generate the scheduling problem states that the target func-
tion should be to minimize the total operational cost over
the scheduling period. The "hybrid whale optimization algo-
rithm and pattern search (HWOA-PS)" optimization method
can handle the aforementioned day-ahead scheduling prob-
lem, and energy storage systems, as well as non-renewable
and renewable producing units, were described.

Sun et al., [15] have presented a system-level optimization
technique for engines and motors that uses layered design to
address the issue of linking the control algorithm’s parame-
ters with the physical system’s characteristics.

Sun et al., [16] have developed a system-level optimization
(SLO) that relies on the collection of road information. The
control strategy was categorized into online and offline parts.
First, the speed information throughout the entire driving
process was obtained by integrating the global positioning
systemwith real-time vehiclemap data. Subsequently, the K-
means clustering method was employed to classify distinct
kinematic segments based on several characteristic parame-
ters.

Sun et al., [17] have suggested a method for energy man-
agement that takes power splitting and gear shift control into
account. The dynamic programming approach was used to
compute a large quantity of gear-switching data for gear shift
management under various working situations. In the offline
portion, these data are used to train the neural network so that
in the online model, it can deliver the proper gear-switching
signal on time. This paper primarily chooses an enhanced
equivalent fuel consumption minimization method (ECMS)
for power-split control, and then iteratively solves the best
equivalent factor using the gray wolf optimization technique.

Recent research on microgrid (MG) energy management
using renewable energy sources highlights several opti-
mization approaches with distinct strengths and limitations.
One method utilizes a multi-objective genetic algorithm
(MOGA) to address technical and economic challenges,
focusing on minimizing costs and greenhouse gas (GHG)
emissions through demand-side management. While effec-
tive, its stochastic nature may limit adaptability to changing
conditions. Another approach employs a bioinspired scheme
based on plant behavior for optimal scheduling and power
balancing, though its implementation can be complex. Rule-
based algorithms combined with metaheuristic optimization
techniques offer effective power delivery solutions but may
not fully account for the variability of RES. Advances in
energy management systems for hybrid solar and wind
microgrids emphasize optimizing battery usage and energy
costs, but may struggle with fluctuating electricity prices.
Stochastic optimization methods provide robust day-ahead
scheduling but may need refinement for broader appli-
cability. System-level optimizations integrating parameter
coupling between physical systems and control algorithms
offer detailed sensitivity analysis but face challenges in gen-
eralizability. Methods focusing on gear shift control and
power splitting, using neural networks and optimization
algorithms demonstrate advanced control but require com-
prehensive data integration. By filling these gaps, energy
management answers may become even more effective and
applicable.

The gravitational search algorithm (GSA) was chosen for
this study due to its strong capability to balance exploita-
tion and exploration, which is crucial for optimizing complex
microgrid energy management systems. While many exist-
ing studies have applied improvements to GSA to address
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stagnation issues, the proposed method introduces a novel
adaptation by focusing on the precise identification of control
signals based on power differentials between RESs and load
sides. This adaptation enhances the traditional GSA frame-
work by optimizing performance specifically for microgrid
applications, addressing constraints like energy consump-
tion and storage levels more effectively. The novelty of this
approach lies in its tailored use of GSA to create a cost-
efficient solution that outperforms established techniques,
such as modified PSO (MPSO) and genetic algorithms
(GAs), concerning both cost and performance.

• Novel application of the gravitational search algorithm
(GSA) to optimize energymanagement in microgrids with
re RESs, enhancing performance and efficiency.

• Achieved a notable reduction in energymanagement costs,
with the proposed method demonstrating a cost of $1.1,
outperforming existing optimization techniques.

• Validated the proposed methodology through detailed
MATLAB simulations, showcasing its superior perfor-
mance compared to established methods.

• Developed an innovative approach for accurately man-
aging control signals, and optimizing power distribution
between the source and load sides.

• Provided a thorough performance evaluation and statisti-
cal analysis, including comparisons with modified particle
swarm optimization (MPSO), GA, and PSO, demonstrat-
ing the proposed method’s effectiveness across multiple
metrics.

This paper’s remaining sections are organized as follows:
the configuration of microgrid energy management with the
renewable energy system is shown in Part 2. Part 3 provides
the proposedmethod based on themicrogrid. In Part 4, results
and a discussion are given. The manuscript is finally con-
cluded in Part 5.

2 Configuration of microgrid energy
management with renewable energy
system

This incorporates sophisticated control algorithms that give
priority to renewable energy sources like solar, wind, or
hydroelectric electricity while constantly balancing supply
and demand. Batteries and other energy storage technologies
are frequently used to reduce intermittent power and provide
steady power supply. Smart grid technologies improve sys-
tem resilience and efficiency by enabling adaptive control
and real-time monitoring.

Figure 1 depicts the architecture of a microgrid energy
management system integratingRESs like solar PV andwind
turbines, managed by a proposed controller based on the

Fig. 1 Architecture of Proposed Method

GSA. The microgrid comprises three feeders: Feeder A is
connected to the solar PV system, while Feeder B integrates
wind turbines, a battery storage system and a fuel cell, which
is managed by a charge controller. Feeder C is linked to
the main grid through a transformer at the point of com-
mon coupling (PCC). On every feeder, power and voltage
(P&V) meters and circuit breakers are installed to monitor
and regulate the flowof electricity. TheGSA-based controller
optimizes the energy management by accurately identifying
control signals, considering the power differential between
the RESs and the load. A static switch is used to manage the
connection between Feeder B and the grid, ensuring stable
power flow and system reliability. The battery storage system
helps stabilize the output by compensating for fluctuations
in renewable energy generation, allowing the microgrid to
efficiently manage energy resources while minimizing costs.

2.1 Controller withmicrogrid

The architecture consists of a range of MG kinds, including
PV, WT, FC, and DG, as well as point of common coupling,
radial feeders, and delicate loads. The breakerswill shield the
system from damage in an unexpected disaster [18, 19]. To
meet the load requirement and charge the battery, the entire
system is utilized. The MGs architecture generated the elec-
trical power. Fuel must be added to the FC and DG energy
sources in order for them to produce electricity. The MG
setup and the mathematical model were taken into consider-
ation. To fulfill the load requirement and charge the battery,
the complete system is used. All of the MGs supply the load
and the batteries. The output of MGs is directly delivered to
power the battery and satisfy load requirements, which can
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be mathematically described as follows,

n∑

i�1

Pgi � Pl − Ppv − Pwt − PBat (1)

here,the power generation is denoted by Pgi , the power
demand by Pl, the battery’s output power, expressed in kW,
by PBat , The output power of the solar system by PPV , and
the output power of WT by Pt . The following boundaries
can be used to limit the generated power.

Pmin
gi ≤ Pgi ≤ Pmax

gi (2)

here Pmin
gi is the minimum and Pmax

gi be the maximum power
generated in unit i . Grid and load mode analysis is used to
examine the PFM of HRES [20]. The following power bal-
ancing equation is conveyed; both the DC-link and the PCC
must satisfy it.

Phres(t) � Pwt (t) + Ppv(t) + Pf c(t) + Pbat (t) (3)

In this instance, the total power of the available RES at
time t is indicated by Phres(t). The equation above serves as
an illustration of the system total power flow concept. The
system power balances in the grid and load connected mode
are obtained from the previous Eqs. (4) and (5), and with the
HRES results, the active power control procedure is complete
and the necessary loads Pgrid (t), and Pload (t).

Pgrid (t) � Pload (t) − Phres(t) (4)

Pload (t) � Phres(t) + Pgrid (t) (5)

The following algorithms are used to find Qgrid (t) and
Qload (t), which perform reactive power regulation in grid
and load linked mode:

Qgrid (t) � Qload (t) − Qhres(t) (6)

Qload (t) � Qhres(t) + Qgrid (t) (7)

When the battery power storage device is charging, it
is referred to as the load, and when it is discharging, it is
called the source. The amount of power generated by the
load through the DC connection may be ascertained using
the following equation:

PDC−link(t) � CDC−link
dVDC−link

dt
VDC−link (8)

PDC−link(t) � Phres(t) − Pgrid (t) (9)

here the grid power operator at time t is Pgrid (t), the DC-link
voltage and capacitance are VDC−link and CDC−link , and the
DC-link resulting power during time t is PDC−link(t).

2.2 Modeling of solar PV

Understanding the solar resources available at themicrogrids
location is essential. This involves assessing solar irradiance
levels, weather patterns [21, 22], and seasonal variations to
estimate the energy generation potential of the solar photo-
voltaic system.

The solar photovoltaic panel’s single diode equivalent cir-
cuit is displayed. Equation can be used to express the solar
PV array’s output current.

(10)

Ipv � IpbNp − IoNp

⎛

⎜⎜⎜⎝e

⎛

⎝
V+I Rs

(
N
Np

)
q

n∗K∗T∗Ns

⎞

⎠

− 1

⎞

⎟⎟⎟⎠

−
V + I Rs

(
N
Np

)

Rp

(
Ns
Np

)

I0 stands for reverse saturation current, Iph for photon
current, and for an Ipv solar panel output, Np and Ns stand
for the quantity of solar PV modules linked in parallel and
series, respectively. Electron charge is represented by q, and
the Boltzmann constant by k, the factor of ideality (1 or 2)
by n, solar panel surface temperature T, and so on. Reverse
saturation current I0 temperature-dependent characteristic.

By addressing these key aspects of energy management, a
microgrid powered by solar PV can achieve increased energy
efficiency, reliability, and resilience while reducing carbon
emissions and dependence on traditional grid infrastructure.

2.3 Modeling of fuel cell

Fuel cells with proton exchange membranes have several
advantages, including the ability to run quietly, swiftly, at
low temperatures, and with a high energy density despite
their tiny size (up to 2 W/cm2). Its efficiency can reach up to
45%. The primary benefit of the PEMFC is its low pollution
level, as the hydrogen fuel utilized in FC doesn’t have any
negative environmental consequences [23, 24]. Despite the
benefits of the FC, there are many drawbacks as well. These
include the FC’s unstable output voltage, poor reaction to
changes in load, limited lifespan due to increased current
ripple, and relatively high cost.
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The modeling and simulation of the FC were discussed in
eq.

A � RT

zαF
(11)

Eoc � EnKc (12)

io � zFk
(
PH2 + PO2

)

RH
e

−�G
RT (13)

here, Kc represents the voltage constant under normal
operating conditions, while T represents the operating tem-
perature., �G is the activation barrier’s size, which varies
depending on the catalyst and electrode type utilized; h
denotes Planck’s constant, z stands for the number of elec-
trons in motion; k represents the Boltzmann’s constant; PH2

indicates the hydrogen partial pressure inside the stack and
PO2 indicates the oxygen partial pressure within the stack.

The following formula is used to get the fuel and air usage
factor:

U f O2 � nrO2

ninO2

� 6000RT Ni f c

2zFPair Vimp(air)y%
(14)

U f H2 � nrH2

ninH2

� 6000RT Ni f c

zFPf uelVimp( f uel)x%
(15)

In the case where Pair indicates the air supply pressure in
absolute terms and Pf uel denotes absolute supply pressure
of fuel; "N" stands for "number of cells." In Block B, the
Nernst voltage is calculated as follows:

(16)

ENernstt � 1.229 − (T − 298.15)
−44.43

zF

+
−RT

zF
ln

(
PH2 P

1
2
O2

)

(17)

ENernstt � 1.229 − (T − 298.15)
−44.43

zF

+
−RT

zF
ln

⎛

⎝ PH2 P
1
2
O2

PH2O

⎞

⎠

when T > 100◦C ,

In block B, the partial pressures for H2, O2, and H2O are
also computed using the following formula:

PH2 � (
1 −U f H2

)
x%Pf uel (18)

PH2O � (
W + 2y%U f O2

)
Pair (19)

PO2 � (
1 −U f O2

)
y%Pair (20)

here, W stands for the proportion of water vapor in the oxi-
dant, and PH2O indicates the water vapor’s partial pressure
within the stack. The updated values of the open circuit volt-
age and exchange current Io are PH2O , based on the partial
pressure and Nernst voltage.

2.4 Modeling of battery

Optimizing the utilization of diverse energy sources within a
confined grid system is the aim of microgrid energy manage-
ment using renewable energy and batteries [25, 26]. Here’s
a breakdown of key components and considerations:

These include solar PV panels, WTs, and sometimes
hydroelectric or biomass sources. The intermittency of these
sources requires sophisticated management to ensure a
steady power supply. When renewable energy output is at
its lowest, batteries are crucial for storing extra energy pro-
duced during peak production periods (such as sunny or
windy days). Since lithium-ion batteries have a high energy
density and efficiency, they are widely employed. An EMS is
the brain of the microgrid, responsible for monitoring energy
supply and demand in real-time, forecasting energy produc-
tion, and maximizing the use of battery storage and RES to
satisfy demand while lowering costs and ensuring depend-
ability.

In discharge mode, the following is an illustration of the
battery voltage equation:

(21)

Vbatt � E0 − K

(
Q

Q − i t

)
i∗

− K

(
Q

Q − i t

)
i t + AeBit

(
i∗ > 0

)

here, E0 stands for constant voltage in V , and K for polar-
ization constant in Ah−1. In A, i∗ indicates the dynamics of
low-frequency currents; Q denotes highest possible capacity
of battery.

By effectively integrating renewable energy sources with
battery storage and implementing advanced energy manage-
ment strategies, microgrids can enhance energy resilience,
lower greenhouse gas emissions, and support the develop-
ment of more sustainable energy sources [27].

2.5 Modeling of wind turbine

Managing a microgrid with a wind turbine involves similar
principles to those with other renewable energy sources like
solar PV.Here’s howenergymanagementwith awind turbine
typically works within a microgrid context:

Variable-speed operation is required for the adjustment of
blade pitch. The following is the extracted power that a wind
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turbine produces:

Pmw � 0.5ρAV 3
wCp(ωw, βw) (22)

here Vw, ρ, and Cp stand for wind speed, rotor sweep area,
and power factor, respectively,Cp depending on the turbine’s
rotatory velocity, the wind speed, and the blade specifica-
tions.

By effectively managing energy production from wind
turbines and integrating them into microgrid systems, com-
munities can harness clean, renewable energy to enhance
energy resilience, mitigate climate change, and lessen depen-
dence on fossil fuels [28, 29].

3 Gravitational search algorithm for optimal
microgrid energymanagement

The GSA is employed to optimize microgrid (MG) con-
figurations by efficiently addressing load requirements and
minimizing operational costs. In this context, wind turbines
(WTs) and photovoltaic (PV) systems are leveraged for their
cost-free generation capabilities, while fuel cells (FCs) and
diesel generators (DGs) are utilized tomanagepower require-
ments and handle fuel costs. The GSA, inspired by Newton’s
laws of motion and gravity, operates by treating potential
solutions as search agents, each represented by masses that
reflect their performance [30]. These agents are influenced by
gravitational forces, which guide them toward optimal solu-
tions.Heaviermasses, indicating higher fitness values, attract
lighter masses, causing the system to converge on solutions
with better performance. The algorithm iteratively adjusts
gravitational constants and inertialmasses to refine solutions,
balancing exploration and exploitation effectively. By using
load demand as input, the GSA generates optimal MG con-
figurations, addressing constraints and reducing operational
costs. This approach offers a significant advancement over
existing optimization methods by providing a more dynamic
and effective solution to managing complex microgrid sys-
tems. Below is a description of the algorithm’s steps.

Step 1: Initialization.
Set the initial values for power and voltage inputs.
Step 2: Random Generation.
In a matrix, the input parameter appears arbitrarily.

X �

⎡

⎢⎢⎢⎣

x1, 1 x1, 2 ... x1, d
x2, 1 x2, 2 ... x2, d
... ... ... ...

xn, 1 xn, 2 ... xn, d

⎤

⎥⎥⎥⎦ (23)

here, X indicates the population of the location, n indicates
the count of methods, d indicates the number of variables.

Step 3: Fitness Calculation.

Using F to find the fitness value

F � α.Cop + β.Cpen (24)

where Cop represents the operational cost, which includes
expenses related to energy generation, consumption, and
storage, Cpen is a penalty term applied when constraints
are not fully satisfied, specifically addressing unmet load
demand.

The penalty function Cpen is defined as:

Cpen �
N∑

i�1

max
(
0, Di − Pgen, i − Pstor , i

)
(25)

In this equation, Di denotes the load demand at time
i , Pgen, i indicates the power generated at time i , Pstor , i
indicates the power supplied by storage systems at time, N
indicates the overall number of time periods.

The term max
(
0, Di − Pgen, i − Pstor , i

)
represents the

shortfall in meeting the load demand. If Di exceeds the com-
bined power from generation and storage, the shortfall is
penalized.

Optimization of Load Demand:
During the optimization process, the GSA algorithm iter-

atively adjusts parameters related to energy generation and
storage to minimize the fitness function F. By exploring and
exploiting potential solutions, the algorithm aims to balance
operational cost with the need to meet load demands, as indi-
cated by the penalty term Cpen .

The goal is to find optimal values for generation schedules
and storage capacities that bothminimize cost and ensure that
the load demand constraints are met effectively.

Step 4: Constant Gravitational Computation.
The derivation Eq. (26), which uses the iteration, is used

to determine the constant gravitational G(t).

S(t) � G0 exp

(
−α

t

T

)
(26)

here, T stands for the total number of iterations, t stands
for the current time, G0 indicates the gravitational constant
selected at random, and α represents the constant.

Step 5: Update the Inertial Masses.
Subsequent iteration t updates both the gravitational and

inertial masses.

mg j (t) � f i t j (t) − worst(t)

best(t) − worst(t)
(27)

here f i t j (t) indicates the j th factor’s fitness.
Below is the mass of the j th factor.

Mgj (t) � mg j (t)∑n
i�1 mgi (t)

(28)
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Step 6: Total Force Calculation.
The following is the assessment of the overall force

applied to the j th agent at iteration t.

Fd
j (t) �

∑
i∈kbesti �� j

randi F
d
ji (t) (29)

here, randi stands an arbitrary value within the range [0, 1]
and the initial K agents consist of those with the highest mass
and optimal fitness value.

The force exerted on the j th mass (Mj (t)) from the i th

mass (Mi (t)) is given by the following equation, which is in
accordance with the gravitational theory.

Fd
ji (t) � G(t)

Mj (t) × Mi (t)

R ji (t)+ ∈
(
xdi (t) − xdj (t)

)
(30)

here, Euclidian distance between the j th and i th agents is
indicated by R ji (t). and ∈ indicates the constant.

Step 7: Acceleration and Velocity Calculation.
The acceleration adj (t) at iteration t and the velocity of the

j th agent at iteration (t + 1) in the dth dimension are updated
using the following equation, which makes use of the laws
of motion and gravity.

adj (t) � Fd
i (t)

Mgdj (t)
(31)

vdj (t + 1) � rand j × vdj (t) + adj (t) (32)

Step 8: Update the best solution.
Next, the following modification was made to the j th fac-

tor’s location in the dth dimension.

xdj (t + 1) � xdj (t) + vdj (t + 1) (33)

Step 9: Termination.
Check that the stopping requirements are met; if so, the

process is finished; if not, go to step3. Figure 2 shows the
gravitational search algorithm’s flowchart.

4 Results and discussion

The experimental evaluation outcomes of the proposed tech-
nique are displayed in this part in comparison to other
methods. The proposed method’s performance analysis is
compared to the existing approaches, which include PI con-
troller, GA, PSO, and MPSO.

Fig. 2 GSA flowchart

4.1 Performance analysis of the proposed approach

An evaluation of the proposed strategies efficacy is done.
By evaluating the proposed method performance and com-
paring it to the existing in use method, its effectiveness is
ascertained.

4.1.1 Case 1: load variation

Figure 1 illustrates the relationship between irradiance and
time, showing that the irradiance is maintained constant at
1000 W/m2 despite any load shifts.

Figure 2 provides insights into various power generation
and consumption components over time. Subplot 2(a) shows
the stability ofwindpower between0 and1 s.Thewindpower
starts at 0 watts, peaks at 3600 watts, and then remains con-
stant after a reduction to its minimum level at 0.5 s. Subplot
2(b) depicts the stability of photovoltaic (PV) power within
the same time frame. The PV power ranges from a maxi-
mum of 5000 watts to a minimum of 4000 watts, stabilizing
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Fig. 3 Irradiance vs. Time

Fig. 4 Power analyses of (a) Wind (b) PV (c) Battery (d) FC using
proposed technique

between 0.2 and 1 s. In subplot 2(c), the battery power ini-
tially rises from 0 watts to a maximum of 1400 watts, then
drops to 0 watts, and subsequently increases to 8000 watts at
2.03 s, remaining constant from 0.3 to 1 s. Finally, subplot
2(d) shows the power produced by the proposed method,
which increases to 2600 watts within 0.25 s after initially
reaching amaximum of 1500watts. This power then remains
steady from 0.3 to 1 s.

Figure 3 presents the power analyses of load, grid, and
total power using the Gravitational Search Algorithm (GSA)
technique. Subplot 3(a) shows the load power, which peaks at
1.7 watts from 0 to 0.1 s and remains steady between 0.3 and
0.75 s, extending to 2.3 watts and stabilizing from 0.3 to 1 s.
Subplot 3(b) depicts grid power, which reaches a maximum
of 2 watts between 0.01 and 0.21 s, and remains constant
at this level from 0.25 to 1 s. Subplot 3(c) illustrates total
power, peaking at 2 watts from 0.01 to 2.5 s and staying con-
stant from 0.25 to 1 s. Figure 4 compares the grid, battery,
and total power. In subplot 4(a), grid power starts at a max-
imum of 1500 watts at 0 s, extends to 6000 watts between
0.01 and 0.25 s, and remains constant at this level from 0.25
to 1 s. Subplot 4(b) shows battery power reaching a maxi-
mum of 3500 watts at 0 s and stabilizing between 0.3 and

Fig. 5 Power analyses of (a) Load (b) Grid (c) Total power

Fig. 6 Power comparison of (a) Grid (b) Battery (c) Total power

1 s. In subplot 4(c), total power peaks between 0.4 and 1.9
watts, drops to a minimum of 0.6 watts, and then remains
constant until reaching an extended level of 0.8 watts at 0.5
s. Figure 5 analyzes individual power sources and inverter
voltage. Subplot 5(a) shows that individual power reaches a
maximum of 1400 watts from 0 to 0 s, with a constant level
from 0.25 to 1 s using the proposed method with PV, wind,
FC, grid, and battery. Subplot 5(b) depicts the inverter volt-
age, rising to a maximum of 10 watts from 0 to 0.2 s with
PI, GA, PSO, and MPSOmethods, and then stabilizing from
0.25 to 1 s. Figure 6 compares the fitness of the proposed
method with existing techniques (PSO, MPSO, GA, PI). The
fitness function ranges from 2.3 to 2.62 watts between 30
and 100 s. The proposed method achieves a fitness value 2%
lower than other methods, indicating superior performance
in minimizing inaccuracies.

4.1.2 Case 2: step irradiation

Figure 7 illustrates the power analysis for wind, battery, pho-
tovoltaic (PV), and fuel cell (FC) systems using the proposed
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Fig. 7 Comparison analysis of (a) Individual power (b) Inverter voltage

Fig. 8 Fitness comparison of proposed with existing techniques

method. Subplot 7(a) shows wind power reaching a maxi-
mum of 3500 W between 0 and 0.7 s, after which it drops to
a minimum and remains constant. Subplot 7(b) depicts PV
power, which ranges from 2400 to 4000 W between 0 and
0.75 s. It then decreases to a minimum of 600 W at 0.75 to
0.9 s and stays constant. Subplot 7(c) displays battery power,
peaking at 15000 W from 0 to 0.3 s and then remaining con-
stant at 0Wfrom0.3 to 1 s. In subplot 7(d), FCpower grows to
2600W at 0.25 s after initially reaching 1500W, and remains
constant from 0.3 to 1 s. Figure 8 provides power analyses of
the load, grid, and total power using the Gravitational Search
Algorithm (GSA). Subplot 8(a) shows load power reaching
its peak of 1.7W between 0 and 0.2 s, remaining steady from
0.3 to 0.75 s, and then extending to 2.3 W, stabilizing from
0.3 to 1 s. Subplot 8(b) presents grid power, which peaks at
3500 W, then rises to 2000 W between 0.01 and 0.21 s and
remains constant from 0.3 to 1 s. Subplot 8(c) illustrates total
power, generating a maximum of 1.5 W between 0 and 0.5
s, extending to 2.5 W from 0.01 to 2.5 s, and remaining con-
stant from 0.25 to 1 s. Figure 9 compares the power of grid,
battery, and total power. Subplot 9(a) displays grid power,
which reaches a maximum of 1600W at 0 s, extends to 6000
W between 0.01 and 0.25 s, and remains constant from 0.25
to 1 s. Subplot 9(b) presents battery power, peaking at 3500
W at 0 s and remaining constant from 0.3 to 1 s. Subplot 9(c)
displays total power, reaching a maximum between 0.4 and
1.9 W, dropping to a minimum of 0.6 W at 1.5 s, and then
rising to 0.8 W at 0.5 s before stabilizing.

Figure 10 provides comparative analyses of individual

Fig. 9 Power analyses of (a) Wind (b) PV (c) Battery (d) FC using
proposed technique

Fig. 10 Power analyses of (a) Load (b) Grid (c) Total power

power and inverter power. Subplot 10(a) displays that indi-
vidual power reaches a maximum of 1400 W between 0 and
0.25 s, with the proposed technique integrating PV, Wind,
FC, Grid, and Battery systems. Between 0.25 and 1 s, this
power stays constant. In Subplot 10(b), the inverter volt-
age increases to a peak of 10 W between 0 and 0.2 s, with
the proposed method being compared to PI, GA, PSO, and
MPSO techniques. The inverter voltage stays constant from
0.25 to 1 s. Figure 11 presents the fitness comparison of the
proposed method against existing techniques (PI, GA, PSO,
and MPSO). The fitness function ranges from 2.3 to 2.62 W
over a 30 to 100-s period, with the proposed method show-
ing a 2% improvement over the other methods. Figure 12
illustrates irradiance held constant at 1000 W/m2 from 0 to
1 s, despite load variations. Figure 13 details power stabil-
ity across wind, PV, battery, and FC systems: Subplot 13(a)
shows wind power starting at 0 W, peaking at 3600 W, and
then maintaining a constant minimum level from 0.5 to 1 s.
Subplot 13(b) depicts PV power varying from 2600 to 5000
W, dropping to 4000 W between 0.75 and 0.9 s, and remain-
ing constant from 0.2 to 1 s. Subplot 13(c) illustrates battery

123



Electrical Engineering

Fig. 11 Power comparison of (a) Grid (b) Battery (c) Total power

Fig. 12 Comparison analysis of (a) Individual power (b) Inverter voltage

Fig. 13 Fitness comparison of proposed with existing techniques

power reaching a maximum of 1400 W from 0 to 0.3 s,
expanding to 8000W at 2.03 s, and remaining constant from
0.3 to 1 s. Subplot 13(d) shows the proposed method’s power
growing to 2600 W at 0.25 s after an initial maximum of
1500 W and remaining unchanged from 0.1 to 1 s. Figure 14
presents power analyses of load, grid, and total power using
the Gravitational Search Algorithm (GSA): Subplot 14(a)
shows load power peaking at 3500 W between 0 and 0.1 s,
steady from 0.3 to 0.75 s, and increasing to 2.3W from 0.3 to
1 s. Subplot 14(b) depicts grid power reaching 2 W between
0.5 and 2 s, and remaining steady from 0.25 to 1 s. Subplot
14(c) illustrates total power generating up to 2 W between 0
and 0.5 s, extending to 2.5 W from 0.01 to 2.5 s, and remain-
ing constant from 0.25 to 1 s.

Fig. 14 Irradiance vs. Time

Fig. 15 Power analysis of (a) Wind (b) PV (c) Battery (d) FC using
proposed technique

In Fig. 15 the Power comparison of Grid, Battery, and
Total power are given in subplot 15(a)-(c). In 15(a) illustrated
about the grid power.During the time interval of 0s, the power
reaches the maximum level at 0-1500w. And at time period
0.01–0.25, the power in extended level and it remain constant
at 0.25-1s at the level of 6000w. In subplot 15(b) &(c), the
Battery and total power is considered. In 15(b), the power
achieves its maximum level at 0-3500w at time interval 0s,
and it stays constant at 0.3-1s. In 15(c) from 0.4 to 1.9, the
power reaches the maximum level and it remains minimum
level at 1.5–0.6w. After that, it stays constant until it reaches
the extended level at 0.8w at 0.5s. Figure 16 illustrates
the microgrid system’s performance with the GSA across
various load conditions. Subplot 16(a) shows load power
peaking at 14,000 W and stabilizing at 5,000 W, indicating
consistent demand. Subplot 16(b) depicts inverter voltage
reaching 35 V within the first 0.2 s and then remaining con-
stant, reflecting effective voltagemanagement. Subplot 16(c)
illustrates the total power output of the proposed system,
emphasizing its peak performance and stability over time.
The plot reveals that the system, optimized using the GSA,
maintains a high and consistent power output, crucial for
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Fig. 16 Power analysis of (a) Load (b) Grid (c) Total power

Fig. 17 Power comparison of (a) Grid (b) Battery (c) Total power

Fig. 18 Comparison analysis of (a) Individual power (b) Inverter voltage

reliably meeting load demands. This stability is significant
as it reflects the system’s capability to effectively integrate
and manage power from various renewable sources and stor-
age units. The observed performance underscores the GSA’s
efficacy in ensuring consistent power delivery and optimiz-
ing the energy management strategy. Figure 17 breaks down
power contributions from different sources, with Subplot
17(a) showing grid power peaking at 1,500 W and stabi-
lizing at 6,000 W, Subplot 17(b) indicating battery power
reaching 3,500 W, and Subplot 17(c) combining these to
demonstrate total power availability. Figure 18 compares the

Fig. 19 Fitness comparison of proposed with existing techniques

Fig. 20 Comparison of proposed with existing techniques

performance of individual power sources and inverter volt-
age stability across different control strategies, highlighting
the proposed method’s effectiveness. Figure 19 illustrates
the fitness comparison between the proposed and existing
methods. The proposed method is contrasted here with other
methods that are currently in use, including PI, GA, PSO,
and MPSO. The fitness function of PI controller converges
at the iteration of 48 and GA converges at 42. The PSO con-
verge the iteration of 40 and MPSO is 33 and the proposed
technique converges efficiently than the existing methods.
Figure 20 presented a cost comparison of the proposed and
existing methods. The cost reduction analysis further high-
lights the advantages of using GSA over other optimization
techniques. The GSA achieves a notable cost reduction, with
a total operational cost of $1.1, compared to $2.2 for the GA,
$3.2 for PSO, and $4.2 forMPSO. This substantial difference
demonstrates the GSA’s superior efficiency in minimizing
costs while maintaining system performance. The reduced
expenditure is attributed to GSA’s optimized resource alloca-
tion and effective reduction of unnecessary operational costs.
This performance not only enhances the economic viabil-
ity of the energy management system but also showcases
the GSA’s potential for broader application in optimizing
cost-effective energy solutions. Test system parameters are
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Table 2 Test system parameters

Parameter Value Description

Irradiance 1000 W/m2 Constant irradiance
for PV system
evaluation

Wind power generation
range

0–3600 W Range of power
output from wind
generation

PV power generation
range

2600–5000 W Range of power
output from PV
panels

Battery power
generation range

0–8000 W Range of power
output from the
battery

Load power
consumption range

0–2300 W Range of power
consumption by
the load

Grid power generation
range

0–6000 W Range of power
output from the
grid

Inverter voltage Adjustable Voltage adjustable
based on power
requirements

Table 3 Parameter table of GSA

Parameter Value/description

Dimension of problem 4

Number of agents 50

Max iteration 50

Velocity Controlled by the clock for internal
synchronization

Acceleration Linked to the gateway node flag

Mass (Ma, Mp, Mi, M) Time master node flag

Position of agents Determined for internal clock
synchronization

Distance between agents Used for external clock
synchronization

presented in Table 2. Statistical parameters of different opti-
mization approaches is presented in Table 3. Table 4 presents
a comparative analysis of different optimization algorithms,
focusing on performance metrics such as best, worst, mean,
median values, variance, standard deviation, and elapsed
time. The proposed method achieves the best performance
with the lowest best value of 389.315 and a mean value
of 415.800, outperforming MOST, ARO, and HWOA-PS.
It also demonstrates superior efficiency with the shortest
elapsed time of 192.085 s. The proposed method’s variance
(795.807) and standard deviation (0.00047) are significantly
lower than those of the other approaches, demonstrating

Table 4 Statistical Parameters of Different Optimization Approaches

Algorithm GA PSO MPSO The
proposed

Best 592.86 650.224 426.960 388.319

Worst 561.777 893.344 618.611 470.792

Mean 472.646 711.403 499.505 412.805

Median 451.175 657.768 492.909 402.908

Variance 3510.38 10783.5 4705.33 782.810

Standard dev 0.001 103.843 68.5954 0.00048

Elapsed time
(s)

488.855 294.593 325.146 185.057

improved consistency and stability of the results. However,
itsworst value of 469.758 is higher thanMOST’sworst value,
suggesting some potential for higher worst-case scenarios.
Overall, the proposed method excels in both efficiency and
reliability.

5 Conclusion

The proposed method effectively demonstrates its utility
in managing microgrid (MG) systems that integrate vari-
ous renewable energy sources (RES) and storage units. By
employing the Gravitational Search Algorithm (GSA), the
proposed technique addresses key issues in energy manage-
ment andoffers amore efficient solution compared to existing
methods. Evaluated using MATLAB, the proposed method
outperforms conventional approaches like GA, PSO, and
MPSO in terms of performance and cost efficiency. Specif-
ically, the GSA achieves a total operational cost of $1.1,
significantly lower than the costs associated with GA ($2.2),
PSO ($3.2), and MPSO ($4.2). This substantial cost reduc-
tion, combined with the superior convergence efficiency of
GSA, highlights its effectiveness in optimizing energy man-
agement and improving system performance.

5.1 Limitations of the proposed work

Despite its advantages, the proposed GSA-based method
has certain limitations. One key limitation is its reliance on
idealized models for renewable energy sources and storage
systems, which may not fully capture real-world variability
and operational uncertainties. This idealization can affect the
algorithm’s performance in practical scenarios where such
variability plays a significant role.
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5.2 Future extensions

Future studies should concentrate on integrating more accu-
rate and realistic models of m RESs and storage systems
in order to overcome these constraints. By integrating real-
time data into the optimization process, the adaptability
and responsiveness of the energy management system can
be enhanced. Such advancements would improve the algo-
rithm’s ability to handle real-world challenges and further
refine its effectiveness in diverse operational contexts.

Author contributions Mr. Praveen Kumar T (Corresponding Author)
performed conceptualization, methodology, andwriting—original draft
preparation. Supervision was conducted by Mr. Ajith K, Mr. Srinivas
M, and Dr. Sunil Kumar G.

Funding This research received no specific funding from governmen-
tal, private, or nonprofit organizations.

Data availability Since no new data were created or analyzed for this
study, the work does not come under the data sharing policy.

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval This article contains none of the authors’ studies that
used human participants.

References

1. Zhang X, Wang Z, Lu Z (2022) Multi-objective load dispatch
for microgrid with electric vehicles using modified gravitational
search and particle swarm optimization algorithm. Appl Energy
306:118018

2. RoyK,Mandal KK,Mandal AC (2020) Energymanagement of the
energy storage-based micro-grid-connected system: an SOGSNN
strategy. Soft Comput 24(11):8481–8494

3. Nazir MS, Abdalla AN, Zhao H, Chu Z, Nazir HM, Bhutta MS,
JavedMS, Sanjeevikumar P (2022) Optimized economic operation
of energy storage integration using improved gravitational search
algorithm and dual stage optimization. J Energy Storage 50:104591

4. Suresh V, Janik P, Jasinski M, Guerrero JM, Leonowicz Z (2023)
Microgrid energy management using metaheuristic optimization
algorithms. Appl Soft Comput 134:109981

5. Sureshkumar K, Ponnusamy V (2020) Hybrid renewable energy
systems for power flowmanagement in smart grid using an efficient
hybrid technique. Trans Inst Meas Control 42(11):2068–2087

6. Kumar TP, Subrahmanyam N, Sydulu M (2021) Optimal control
pulses establishment for the power flow management in hybrid
renewable energy sources usingBCRFAcontroller. Int Trans Electr
Energy Syst 31(12):e13167

7. Rajesh P, Shajin FH, Umasankar L (2021). A novel control scheme
for PV/WT/FC/battery to power quality enhancement inmicro grid
system: a hybrid technique. Energy Sources, Part A: Recovery,
Utilization, and Environmental Effects. 1–7.

8. RoslanMF, HannanMA, Ker PJ, Begum RA,Mahlia TI, Dong ZY
(2021) Scheduling controller for microgrids energy management
system using optimization algorithm in achieving cost saving and
emission reduction. Appl Energy 292:116883

9. Khan NH, Wang Y, Jamal R, Iqbal S, Elbarbary ZM, Alshammari
NF, Ebeed M, Jurado F (2024) A novel modified artificial rabbit
optimization for stochastic energymanagement of a grid-connected
microgrid: A case study in China. Energy Rep 11:5436–5455

10. Torkan R, Ilinca A, Ghorbanzadeh M (2022) A genetic algorithm
optimization approach for smart energy management of micro-
grids. Renewable Energy 197:852–863

11. Kavitha V, Malathi V, Guerrero JM, Bazmohammadi N (2022)
Energy management system using Mimosa Pudica optimization
technique for microgrid applications. Energy 244:122605

12. Bukar AL, Tan CW, Said DM, Dobi AM, Ayop R, Alsharif A
(2022) Energy management strategy and capacity planning of an
autonomous microgrid: Performance comparison of metaheuristic
optimization searching techniques. Renew Energy Focus 40:48–66

13. Merabet A, Al-Durra A, El-Saadany EF (2022) Energy manage-
ment system for optimal cost and storage utilization of renewable
hybrid energy microgrid. Energy Convers Manage 252:115116

14. Hai T, Zhou J, Muranaka K (2023) Energy management and oper-
ational planning of renewable energy resources-based microgrid
with energy saving. Electric Power Syst Res 214:108792

15. Sun X, Dong Z, Jin Z, Lei G, Tian X (2023). System-level energy
management optimization of power-split hybrid electric vehicle
based on nested design. IEEE Trans Ind Electron.

16. Sun X, Dong Z, Jin Z, Tian X (2024) System-level energy
management optimization based on external information for
power-split hybrid electric buses. IEEE Trans Ind Electron
71(11):14449–14459. https://doi.org/10.1109/TIE.2024.3370928

17. Sun X, Jin Z, Xue M, Tian X (2023) Adaptive ECMS with gear
shift control by grey wolf optimization algorithm and neural net-
work for plug-in hybrid electric buses. IEEETrans Industr Electron
71(1):667–677

18. Reza MS, Rahman N, Wali SB, Hannan MA, Ker PJ, Rahman SA,
Muttaqi KM (2022) Optimal algorithms for energy storage systems
in microgrid applications: an analytical evaluation towards future
directions. IEEE Access 10:10105–10123

19. Shukla A, Momoh JA (2021) Pseudo inspired gravitational search
algorithm for optimal sizing of grid with integrated renewable
energy and energy storage. J Energy Storage 38:102565

20. Karimi H, Jadid S, Hasanzadeh S (2023) Optimal-sustainable
multi-energy management of microgrid systems considering inte-
gration of renewable energy resources: a multi-layer four-objective
optimization. Sustain Prod Consum 36:126–138

21. RoyK (2021)Optimal energymanagement ofmicro grid connected
system: a hybrid approach. Int J Energy Res 45(9):12758–12772

22. Kathiresan J, Natarajan SK, Jothimani G (2020) Energy man-
agement of distributed renewable energy sources for residential
DC microgrid applications. Int Trans Electrical Energy Syst
30(3):e12258

23. Ferahtia S, Rezk H, Abdelkareem MA, Olabi AG (2022) Opti-
mal techno-economic energy management strategy for building’s
microgrids based bald eagle search optimization algorithm. Appl
Energy 306:118069

24. Lingamuthu R, Mariappan R (2019) Power flow control of grid
connected hybrid renewable energy system using hybrid controller
with pumped storage. Int J Hydrogen Energy 44(7):3790–3802

25. Venkatesan K, Govindarajan U (2019) Optimal power flow con-
trol of hybrid renewable energy system with energy storage: A
WOANN strategy. J Renew Sustain Energy. https://doi.org/10.
1063/1.5048446

26. Amirtharaj S, Premalatha L, Gopinath D (2019) Optimal utiliza-
tion of renewable energy sources in MG connected system with
integrated converters: an AGONN approach. Analog Integr Circ
Sig Process 101:513–532

123

https://doi.org/10.1109/TIE.2024.3370928
https://doi.org/10.1063/1.5048446


Electrical Engineering

27. Hajiamoosha P, Rastgou A, Bahramara S, Sadati SM (2021)
Stochastic energymanagement in a renewable energy-basedmicro-
grid considering demand response program. Int J Electr Power
Energy Syst 129:106791

28. Govindasamy S, Balapattabi SR, Kaliappan B, Badrinarayanan V
(2023) Energy management in microgrids using IoT considering
uncertainties of renewable energy sources and electric demands:
GBDT-JS approach. Electr Eng 105(6):4409–4426

29. Mandal S, Mandal KK (2020) Optimal energy management of
microgrids under environmental constraints using chaos enhanced
differential evolution. Renew Energy Focus 34:129–141

30. Mittal H, Tripathi A, PandeyAC, Pal R (2021) Gravitational search
algorithm: a comprehensive analysis of recent variants. Multimed
Tools Appl 80:7581–7608

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	Microgrid energy management with renewable energy using gravitational search algorithm
	Abstract
	1 Introduction
	2 Configuration of microgrid energy management with renewable energy system
	2.1 Controller with microgrid
	2.2 Modeling of solar PV
	2.3 Modeling of fuel cell
	2.4 Modeling of battery
	2.5 Modeling of wind turbine

	3 Gravitational search algorithm for optimal microgrid energy management
	4 Results and discussion
	4.1 Performance analysis of the proposed approach
	4.1.1 Case 1: load variation
	4.1.2 Case 2: step irradiation


	5 Conclusion
	5.1 Limitations of the proposed work
	5.2 Future extensions

	References


