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Abstract
This paper proposes an approach for the single-ended and the double-ended traveling wave-based fault location algorithm
using the empirical mode decomposition associated with the Teager energy operator to extract characteristic data from the
faulted voltage signals of an overhead transmission line. The simulation of the power system uses the JMarti line model,
with an ideally transposed transmission line, and it was carried out using the alternative transients program (ATP) software.
Subsequently, the MATLAB® software was used for extracting the traveling wave arrival times and to perform the single-
ended and the double-ended fault location algorithms for all simulated scenarios in ATP. The numerical and graphical results
prove that the proposed methodology with the Teager energy operator and the double-ended analysis can better extract the
characteristic data of the voltage signals and estimate the fault location with good accuracy, with percentage error of 0.034%
for the best results, depending only on the fault type and the sampling rate adopted.
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1 Introduction

Fault location (FL) is a challenging problem in the electric
power system due to the vast extension of the electric power
transmission lines (TLs). It requires precise identification of
the occurrence and protection action of the affected section,
with the goal of restoring the power supply as fast as possible.

The development of fault location methods in overhead
systems has been investigated for many decades [1]. Cur-
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rent efforts are focused on developing intelligent protection
systems capable of accurately detecting, classifying, and
locating faults. Fault location methods can be categorized
into 3 main classes: circuit theory, traveling wave (TW) tech-
niques, and artificial intelligence applications [2, 3].

The methods based on circuit theory require the sam-
pling of nodal voltages and line currents at line terminals.
The impedance measurement method is expressed in the fre-
quency domain, and the fault distance is estimated based on
the impedance value calculated using primary current and
voltage data or current and voltage phasors. The main disad-
vantage of these methods is that their success depends on the
characteristics of the transmission lines and is influenced by
the value of the fault resistance [4].

The methods based on traveling wave theory indicate that
the electromagnetic wave generated following a fault in a
transmission line (TL) can be separated into a voltage wave,
produced by the electric field, and a current wave, associ-
ated with the magnetic field. These generated voltage and
current waves propagate in both directions along the line
from the fault occurrence. The precise fault location depends
on both initial instants of the transients and on the deter-
mination of the wave speed in the transmission line. The
main disadvantages of traveling wave-based fault location
methods are the difficulties in distinguishing between trav-
eling waves reflected from the fault and those reflected from
the remote end of the line, the requirement of a high sam-
pling rate, and the higher implementation costs compared to
impedance-based techniques [5].

The methods based on artificial intelligence applications
employ various approaches including expert systems, fuzzy
logic, and artificial neural networks. They are typically appli-
cable when multiple data inputs are available. The demand
for utilizing artificial intelligence (AI) algorithms has been
increasing among researchers in recent years including in
the field of fault location in power systems. References [6,
7], and [8] study the wavelet transforms and neural network
(WNN), the traveling wave frequencies and extreme learn-
ingmachine (ELM), and the convolutional adversarial neural
network (CANN), respectively, for detection, classification,
and fault location in power systems. The main disadvantages
ofmethods basedon artificial intelligence applications are the
significant computational demands for training and process-
ing, often requiring specialized high-speed microprocessors,
and the fact that data collection processmay require an exten-
sive communication system with high bandwidth to gather
synchronized information on a central server [4].

This paper presents an accuracy analysis from the applica-
tion of the empirical mode decomposition (EMD) technique
associated with the Teager energy operator (TEO) for the
extraction of characteristic data from voltage signals in TLs
based on traveling wave single-ended and double-ended FL
[9]. The voltage signals are used in this application because,

during the fault, the voltage transient signal changes aremore
severe than the current signals [10].

The application of theEMD technique for the extraction of
characteristic data was motivated because the signals under
analysis are non-stationary and because the characteristics
of this technique presented a better resolution to identify the
exact moment of the sudden change in the frequency of the
signal. Using the TEO associated with EMD allows high-
lighting the identification of variations in the magnitude and
frequency of the signal with high computational efficiency
and accuracy in identifying the TW arrival times [11, 12].
Single-ended (SE) and double-ended (DE) analyses were
used to compare the efficiency of the applied identification
methodology. Besides, the single-ended algorithm presents
some peculiarities when compared to the algorithmwith data
from double-ended, its implementation cost is low, and it
makes use of signals recorded at just one line terminal and
does not require means of communication or even data syn-
chronization [10, 13, 14].

Usually, in the analysis of fault location methods, the fol-
lowing situations should be considered: variation in the FL,
the fault incidence angle, and different fault resistances (RF ).
Reference [15] used classical EMD for the identification of
the arrival time of the traveling wave from a single-phase
fault in a power system, which can be precisely detected by
the instantaneous amplitude. Reference [16] demonstrates
the extraction of data features using EMD and the classi-
fication of faults employing a probabilistic neural network.
Reference [11] illustrates the utilization of DEMD (down-
sampling empirical mode decomposition) combinedwith the
TEO for fault detection in distribution systems with radial
and ring topologies. This approach ensures feasibility for
real-time applications due to low computational complexity
and immunity to data synchronization errors. The main con-
tributions of the work here presented are shown in Table 1
comparing them with the literature: using EMD associated
with TEO (EMDT) for an alternating current transmission
line, using the JMarti line model, therefore considering the
variation in the line parameters with frequency. The results
are compared with the standard approaches for the EMD to
prove the influence of the TEO on accuracy. As far as the
authors know, the EMD technique associated with TEO has
not been applied for this type of study yet, which consists of
an approach for the single-ended and the double-ended trav-
eling wave-based FL for an alternating current transmission
line with different sampling rate values and the influence of
the signal-to-noise ratio (SNR).

The text is organized as follows: Sects. 2 and 3 show the
empirical mode decomposition and Teager energy operator,
respectively. Section4 presents the application of the tech-
nique (EMDwith TEO) for extracting data characteristics for
FL in the TL. Section5 presents the case study adopted for
the analysis and discussion developed. Section6 presents the
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Table 1 Contributions
presented in this work

Subject Literature This work

Fault detection Downsampling EMD with
TEO for electrical distribu-
tion system [11]. EMD with
probabilistic neural network
[16]

Simple threshold is outlined
with the aerial mode of the
current signals

Fault classification

Fault location Classic EMDdata extraction
in TL with TW [15]

EMD with TEO data extrac-
tion in TL with TW

study of the sensitivity analysis variables for the approaches
applied in single-ended and double-ended scenarios: fault
resistances, incidence angles, fault types, sampling frequen-
cies, SNRs, and computational cost. Finally, the conclusions
of this work are presented in Sect. 7.

2 Empirical mode decomposition

The Hilbert–Huang transform developed in [17] is a very
applicable analysis method for non-stationary signals and
uses empiricalmode decomposition,which does not admit an
analytical definition and decompose non-stationary signals
into intrinsic mode functions (IMF) [18].

Thedecompositionof the signal into afinite, usually small,
number of intrinsic mode functions is part of the Hilbert-
Huang transform. It allows the identification of parameters
inherent to the signal, such as the variations in amplitudes
and frequencies. The process of extracting IMFs is called
sifting [17–19].

After decomposition, the Hilbert transform is applied to
the chosen IMF to obtain the instantaneous frequency of the
data. When the signal is decomposed into a series of IMFs
ci (t), its corresponding Hilbert transform [Hi (t)] is defined
by [15, 18]

Hi (t) = 1

π

∫ +∞

−∞
ci (τ )

t − τ
dτ (1)

The final results are an energy–time–frequency distribu-
tion, which is called the Hilbert spectrum [17]. Thus, an
analytical signal Zi (t) can be formed by

Zi (t) = ci (t) + j Hi (t) = ai (t)e
j�i (t) (2)

where ai (t) is the instantaneous amplitude and θi (t) is the
instantaneous phase defined as

ai (t) = [ci (t)2 + Hi (t)
2] 12 (3)

�i (t) = arctan

(
Hi (t)

ci (t)

)
(4)

The instantaneous frequency fi (t) of ci (t) is given by

fi (t) = 1

2π

d�i (t)

dt
(5)

3 Teager energy operator

The Teager energy operator is a nonlinear operator with the
advantages of high accuracy in signal demodulation and high
processing speed in addition to quickly identifying the instan-
taneous energy of the signal and efficiently detecting any
abrupt variation in the signal [12].

Reference [20] definedTEO in the discrete and continuous
time domains as a tool for analyzing signal components from
the energy point of view. For signals in the continuous time
domain, it can be defined by

�[x(t)] =
(
dx(t)

dt

)2

− x(t)
d2x(t)

dt2
(6)

where � is the TEO and x is the signal in the continuous
time-domain. The corresponding operator for the discrete
time-domain signal is given by

�[ f (n)] = f 2(n) − f (n + 1) f (n − 1) (7)

Graphically analyzing the energy values with such an
application, the first peak corresponds to the moment when
the wave arrives for its detection.

4 Application of EMDT for fault location

4.1 Test system studied

The test system studied, shown in Fig. 1, consists of a 360km
long TL, with ground resistivity of 100 �m, operating at 50
Hz, between 2 Thevenin equivalents representing large areas
with energy supply. The illustration shows a single-phase
fault (AG) applied at t = 0.045 s (when the switch closes).
The fault is eliminated at 0.1 s (when the switch opens).
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Fig. 1 Test system for the study of fault location

Table 2 Proposed system parameters

Parameters Thevenin equivalents
Terminal M Terminal N

Source voltage 400kVL−L ,20o 400kVL−L ,0o

Zs1 (2 + j1.5) � (2 + j1.5) �

Table 3 Line conductor characteristics

Type Diameter (mm) Resistance DC (�/km)

Phase conductors Cardinal 30.35 0.0586

Shield wire 7N8 9.78 1.4625

The system’s transmission line was characterized by uti-
lizing frequency-dependent distributed parameters, aiming
to create a more realistic model for the AC transmission
line systems. The complete transmission line consists of five
line sections, allowing the electrical power system simulation
with different FLs along the line. The details of the sources
and the transmission line are presented in Tables 2 and 3, and
in Fig. 2 [21].

4.2 Considerations adopted in the analysis

For the analysis of the test system, the current and voltage
signals were obtained at both terminals (M and N), as iden-
tified in Fig. 1. The effects of the main parameters that may
affect the single-ended and the double-ended FL accuracy are
analyzed in this study through the voltage signals, as shown
in Table 4, such as the variation in the fault resistance, the
incidence angle, the sampling rate, and the FL (distance from
the local terminal) for all fault types (where A, B, and C are
the phases and G is the ground).

Noise refers to undesired electrical signals, commonly
characterized by a broad spectrum typically below 200 kHz,
and they are superimposed on the power system voltage or
current in phase conductors. The typical noise magnitude
is less than 1% of the voltage magnitude [22]. To show the
influence of noise on the proposed algorithm, white Gaussian
noise is added to the voltage and current signals to produce
a specified signal-to-noise ratio (SNR). Different SNR val-

Fig. 2 Phase configuration of transmission line and tower size

Table 4 Fault simulation variables used in the analysis

Simulation variables Values

Fault location (km) 18, 108, 180, 252, 324

Fault type AG, BG, CG, ABG, BCG, ACG,
AB, BC, AC, ABC

Incidence angle 30◦, 60◦, 90◦

Fault resistance 1 �, 50 �, 100 �

Sampling rate 200 kHz, 1 MHz, 5 MHz

SNR 50 dB

ues are employed to observe the behavior of the proposed
approach in the presence of high noise levels in the analyzed
signal. The success rate for testing with noise is attributed
to the proposed approach after processing the faulted volt-
age signal for fault location because it is capable of setting
apart the relevant fault occurrence characteristics from the
noise associated and identifying the corresponding moment
of arrival of the first TW and the successive reflections from
the fault.

Based on the conditions above, in this paper, a SNR of 50
dB was added to the input signals across all scenarios. For
the specific case of fault in 50% of the total line length, with
an incidence angle of 60◦, a fault resistance of 100�, 1 MHz
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of sampling rate, the SNR values of 30 dB, 40 dB, 50 dB,
and 75 dB were used. The chosen SNR values were inspired
by values found in the literature used in this subject of fault
location [10, 13, 23].

The simulation of the power system was carried out using
the alternative transients program (ATP) software, using the
J. Marti’s TL model, which is very accurate for transposed
lines [24]. The transmission line was modeled using the
line and cable constants (LCC) block, considering an ideally
transposed transmission line, the skin effect, and the auto
bundling. The wave speed was obtained through the LCC
block. For a frequency of 1 kHz, the wave speed of the aerial
mode was obtained as 295,966km/s. The frequency at which
the transformation matrix is calculated was 1 kHz, and the
steady-state frequency was 50 Hz. The MATLAB® software
was used to perform the single-ended and double-ended FL
algorithms for extracting the TW arrival times. The signals
studied for analysis have a duration of 100ms (for five cycles
of 20 ms). The available data window is 40 ms for pre-fault
and 60 ms after fault occurrence. The techniques applied use
one cycle after the fault incidence for fault location analysis.

4.3 Proposedmethodology for fault location

The proposed approach in this paper involves 3 steps to
estimate the fault location: detection, classification, and esti-
mation of the distance from the fault occurrence to the
analyzed terminal.

• Fault detection is the process of monitoring the current
signals obtained at the terminal during system operation.
These signals are compared with a predefined threshold
characteristic of a healthy system.

• Fault classification identifies the fault type that has
occurred. This result is crucial to provide the right faulted
phase(s) for the signal processing in the next step.

• Fault location is carried out using the received faulted
voltage signals. These signals are applied to the sig-
nal processing stage based on the studied approaches.
The first arrived TW and the successive reflection from
the fault are identified from the instants corresponding
to the maximum values from the IMF1 (for SEEMD
and DEEMD) or from the TEO (for SEEMDT and
DEEMDT), and these instants are then used to estimate
the fault location for both single-end and double-end
measurements.

Detection is performed by analyzing the current signals
received at terminal M, starting from the third cycle time (40
ms).

The fault index (FI) was proposed for detecting the faulted
phase. The detection of the faulted phase is performed by
comparing the maximum absolute value found in the current

Table 5 Mode transient state
for each fault type

Fault type Mode
Zero α β

AG X X

BG X X X

CG X X X

ABG X X X

BCG X X

ACG X X X

AB X X

BC X

AC X X

ABC X X

signal of the analyzed phase with the pre-fault index, when
the system is healthy (FIh), multiplied by a constant defined
as the minimum threshold value.

The definition of the multiplier associated with FIh was
derived from the concept of rule based decision tree [25]. It
is noted that different fault types can be identified by apply-
ing decision rules that use threshold values derived from the
proposed fault index. To specify the FI, the magnitude of the
maximum value found in each vector of the faulted current
phases was identified and evaluated according to the fault
type they represented.

After the tests, it was observed that the threshold associ-
ated with the healthy state of the system, for all fault types,
was 135%. Thus, a single multiplier was used in the algo-
rithm to detect the presence of a fault in a particular phase,
achieving a success rate of 100% in all analyzed scenarios.

For the fault classification and location, the Clarke trans-
formationwas used to analyze the current and voltage signals
characteristic data. Equation (8) defines the Clarke compo-
nents of the phase currents, and they are analogous for the
phase voltages [26].

⎡
⎣Iα
Iβ
I0

⎤
⎦ = 1

3
.

⎡
⎣2 −1 −1
0

√
3 −√

3
1 1 1

⎤
⎦ .

⎡
⎣IA
IB
IC

⎤
⎦ (8)

Ideally, the α and β modes should show the transient state
for all fault types, while the zero mode should be sensibi-
lized only on faults involving ground. However, in the phase
analysis, for example, the fault transient is not seen in the
Vβ on the AG fault. In contrast, in BC and BCG faults, the
Vα mode does not contain a transient state when the fault
occurs. Due to this, the proposed algorithm uses the sum of
the Vα and Vβ . Thus, the fault locator has better accuracy for
all fault types. Table 5 can better illustrate in which mode the
transient state is visible for each fault type [10].

The estimation of the distance from the fault occurrence
to the analyzed terminal is found, using the TW single-ended
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Fig. 3 Lattice diagram

or double-ended theory by (9) and (10), respectively [27, 28].

d = (tb − t f ).v

2
(9)

d = l + (t11 − t21).v

2
(10)

where t f is the instant when the first TW arrives at the ana-
lyzed terminal, given in seconds; tb is the instant when the
successive reflection from the fault arrives at the analyzed
terminal, given in seconds; v is the TW speed; l is the length
of the transmission line, t11 is the instant when the first gen-
erated wave arrives at terminal M, given in seconds; t21 is
the instant when the first generated wave arrives at terminal
N, given in seconds. Figure3 illustrates the Lattice diagram
with the TWs arriving at the terminals.

Figure4 presents the steps adopted for the methodology
used by EMDT for FL using TW theory for the studied sys-
tem, and the following procedure is performed:

1. The simulation of the studied test system is performed
in the ATP software with the incidence angle, fault resis-
tance, and fault occurrence location defined;

2. In the MATLAB® software, the algorithm is initiated
by applying the SNR to the voltage and current signals
obtained from the terminals to start the fault location pro-
cess.

3. Detection (blocks 2 and 3 in Fig. 4): The pre-fault index,
when the system is healthy (FIh), is identified by the
maximum absolute value found of the current signal in
that period and a new one in the fault window is defined
from analyzing the occurrence. At the time of the fault,
the maximum absolute value of each phase is analyzed,
and at the moment equivalent to the peak of the current
signal, the index of this location is identified and called
the fault index (FI);

4. Given the FI identification, this value is compared with
135% of the FIh. If the FI value is above 1.35xFIh, the

Fig. 4 Applied methodology for fault location

phase is under fault. Otherwise, the phase is healthy. The
percentage value of 135% was the detection threshold
defined by the authors from the amplitude of the mea-
sured signal compared to the signal without fault for all
analyzed scenarios [29, 30];

5. The aerial mode of the current and voltage signals are
determined at the terminals of the transmission line;

6. Classification (block 4 in Fig. 4): After the faulted phases
are detected, the classification process is carried out
by identifying the faulted phases and analyzing ground
mode in the current signal to verify the presence of
ground. The faulted current signals are classified accord-
ing to their fault type;

7. Location (blocks 5-8 in Fig. 4): To estimate the FL, the
Vα and Vβ from the voltage signal are summed and the
resulting value is applied in the empirical mode decom-
position technique [10];

123



Electrical Engineering

8. The decomposition in IMFs by EMD is performed, and
the IMF1 (which is the first level of the intrinsic mode
function) is chosen due to its better resolution;

9. TEO is used to visualize specific points on the signal [12,
13]. In this case, the TEO is applied to the IMF1 vector;

10. The first arrived TW and the successive reflection from
the fault are identified from the instants corresponding to
the maximum values of the absolute energy vector found
at each terminal;

11. Fault location estimation using TW single-ended or
double-ended theory by (9) and (10), respectively.

12. The percentage error is calculated. The value is found
between the estimated distance and the theoretical dis-
tance, divided by the total line length, as presented in
[2].

5 Case study

Traveling wave theory is used to locate the simulated faults.
Thevoltage signal is processed after the classificationprocess
with EMDT to identify the TW’s arrival times at the terminal.
The results are compared with the standard approaches from
the EMD to prove the influence of the TEO on accuracy [29,
31].

In total, 5400 fault cases were analyzed considering the 2
characteristic data extraction techniques (EMDT, and EMD)
and their single-ended and double-ended approaches from
the voltage signals on the terminal for the 1350 scenarios
generated by the variation in the FL, the sampling rate, the
fault resistance (RF ), and the incidence angle for all types of
fault under consideration.

To demonstrate the behavior analyzed in each scenario,
Figs. 5 and 6 illustrate a single-phase fault (AG) that was
applied at t = 0.043 s, considering an incidence angle of 60◦,
RF = 100 �, at 50% of the total length of the TL. Figure5
shows theEMDof the addedVα andVβ from the aerialmode
of the faulted phase voltage signal with the sampling rate of 1
MHz in terminalM. The same analysis is done on terminal N.
Figure6 presents the application of TEO for the IMF1 from
EMD on terminals M and N. The analysis considers a single-
phase fault (AG). This type of fault and fault occurrence
were chosen due to the high incidence of single-phase faults
in the electrical power system, about 78%, and because the
incidence is further away from the first reading terminal [2].

The instants corresponding to the maximum amplitudes
in Fig. 6 represent the arrival times of the TW at each termi-
nal. After the identification of these instants, the values are
applied in (9) or in (10), depending on the studied approach
(SE or DE). The estimation of the FL performed with
SEEMDT and DEEMDT resulted in a percentage error of
0.03351% (121m from the theoretical location) and 0.0104%
(376m from the theoretical location), respectively.

Fig. 5 EMD from AG fault read at terminal M for a sampling rate of 1
MHz

Fig. 6 TEO applied to IMF1 from EMD on both terminals

6 Sensitivity analysis

6.1 The effect of fault resistance and incidence angle

Table 6 presents the percentage error considering anAGfault,
with FL at 70% of the TL, for all the sampling rates, the inci-
dence angles, fault resistances, and the studied approaches
(SEEMD, DEEMD, SEEMDT, and DEEMDT). The choice
of 70% of the TL is due to its strategic location, which is a
local with an intermediate difficulty for fault location estima-
tion to observe the efficiency of the approaches applied. Fault
resistance variations in the range of 1 �–100 � do not have
a significant effect on FL results using the proposed algo-
rithms, except in some situations in RF= 50�, that show the
highest error values.

In general, the results show that the best accuracy depends
on the technique applied for signal analysis (the best results
are with approaches using the TEO). As confirmed in the
literature, the TW theory has proved to be immune to fault
resistance and fault incidence angle for the values adopted
in this study [2]. The DEEMDT presented the best results
in most of the scenarios and lower variation among the fault
resistances and incidence angles.
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Table 6 Percentage error for
AG fault with all approaches
applied

Sampling rate Incidence angle Technique Fault resistance
1 � 50 � 100 �

200 kHz 30◦ SEEMD 8.830 30.4326 9.036

DEEMD 7.052 58.434 0.680

SEEMDT 0.198 0.008 0.008

DEEMDT 0.142 0.063 0.063

60◦ SEEMD 2.269 0.830 12.134

DEEMD 11.652 11.162 4.458

SEEMDT 0.008 0.198 0.198

DEEMDT 0.063 0.063 0.063

90◦ SEEMD 10.680 6.569 9.462

DEEMD 11.162 0.474 7.952

SEEMDT 2.8850 8.419 2.870

DEEMDT 0.063 0.063 0.348

1 MHz 30◦ SEEMD 29.589 24.327 27.986

DEEMD 16.790 7.829 1.622

SEEMDT 0.034 0.198 0.239

DEEMDT 0.146 0.015 0.105

60◦ SEEMD 9.668 2.212 8.707

DEEMD 0.351 5.202 1.210

SEEMDT 0.239 0.116 0.116

DEEMDT 0.146 0.104 0.104

90◦ SEEMD 13.968 11.928 9.488

DEEMD 23.412 15.930 17.945

SEEMDT 6.667 1.3487 1.899

DEEMDT 0.104 0.063 0.063

5 MHz 30◦ SEEMD 0.494 2.211 4.794

DEEMD 13.908 24.406 12.231

SEEMDT 0.190 56.6934 33.674

DEEMDT 0.146 0.146 0.137

60◦ SEEMD 26.415 24.212 17.421

DEEMD 32.192 58.106 30.877

SEEMDT 5.162 3.872 9.446

DEEMDT 0.137 0.137 0.121

90◦ SEEMD 12.127 14.125 15.481

DEEMD 9.304 5.095 15.881

SEEMDT 3.7411 1.949 3.741

DEEMDT 12.921 63.594 12.922

6.2 The effect of fault type

Figures7 and 8 present the average percentage error using
the sampling rates of 200 kHz, 1 MHz, and 5 MHz for
voltage-faulted signals, respectively. The SEEMD,DEEMD,
SEEMDT, and DEEMDT were applied in all types of faults,
every fault location presented in Table 4 of the TL extension,
with an incidence angle at 60◦, and a fault resistance of 100
�.

Using DEEMDT, the results are generally the best for all
fault types and Figs. 7 and 8 show it. Figure7 shows that,
for all sampling rates used, the behavior is similar for all
fault types and the lowest values found are using DEEMDT
with a sampling rate of 5 MHz. Figure8 shows the influ-
ence of fault type for the techniques SEEMDT, SEEMD, and
DEEMD. The best results are for AGwith SEEMDT, regard-
less of the sampling rate, and the worst results are using the
standard EMD technique, proving the superior performance
when using TEO.
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Fig. 7 Average error for all fault types applied to DEEMDT

Fig. 8 Average error for all fault types applied to SEEMD, DEEMD,
and SEEMDT

6.3 The effect of sampling rate

TheTWreal devices accuracy essentially depends on the high
sampling rate and they can already be found in the market
with sampling rates varying from 1 to 5 MHz. Some intel-
ligent electronic devices manufacturers have indicated plans
to implement 10 MHz sampling rates in the near future [32–

37]. Table 7 presents a comparison of applications (market
available devices and the methodology studied in this work)
that use the traveling wave theory with high sampling rates.

Hence, this section aims to present the analysis of the
techniques used in this work for different sampling rates and
to present its influence on the accuracy of TW-based FL.
Table 8 presents the total average percentage error for the
techniques analyzed in this work, considering occurrences
of AG faults in the TL extension, the incidence angle of 60◦,
and different sampling rates (200 kHz, 1 MHz, and 5 MHz).

In this analysis, it is observed that the DEEMDT presents
the smallest total average percentage error for all variations in
the sampling rate and the fault resistances. The best accuracy
is found at 5MHz, andwith this sampling rate it was easier to
estimate the FL in a larger number of samples of the analyzed
universe. Figure9 shows the results ofDEEMDT for a single-
phase fault (AG), all the incidence angles, with RF = 100 �,
on the entire TL extension, and the studied sampling rates.
The behavior throughout the TL was as expected, with the
typical V shape and the central minimum, except for the
incidence angle of 90◦, the sampling rate of 5 MHz, at FLs
of 50% and 70%of the total line length, where the percentage
errors are higher than 10%.With the behavior presented, it is
possible to observe the independence of the DEEMDT from
the variables changed.

A suggested optimal sampling rate is observed from
Table 6, with the individual results and behaviors for the
single-phase (AG) fault, with fault location at 70% of the
transmission line (an intermediate difficulty for fault estima-
tion according to Fig. 9), considering the variation in RF ,
the angle of incidence, and the sampling rate for all applied
approaches. It is observed that with a sampling rate of 200
kHz, the approaches that use EMDT provide greater accu-
racy and independence from the variables under observation,
such as RF and angle of incidence. This behavior was also
observed by the authors in the analysis of a transmission line
with different characteristics [29]. For sampling rates of 1

Table 7 Summary of available devices in the market and comparison with the method proposed in this work

Application Sampling rate FL method Performance

SEL-411L 1.5625 MHz Double-ended High compututional cost due to
high-frequency analysis and
complex algorithms

GE RPV311 5 MHz Single-ended Moderate computational cost for
high precision recording and
transient, analysis

SEL-T400L 1 MHz Double-ended Very high computational cost due
to high-speed sampling and
real-time processing

This work 200 kHz, 1 MHz, and 5 MHz Single-ended/ Double-ended Low computational cunt for
simulations in MATLAB®.
Methodology not commercial yet
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Table 8 Percentage error for
different sampling rates for an
AG fault

RF Sampling rate SEEMD DEEMD SEEMDT DEEMDT

1 � 5 MHz 8.658772 18.43762 23.87541 0.096298

1 MHz 28.76024 21.19967 7.975265 0.16347

200 kHz 19.21168 37.51204 1.197428 0.12106

50 � 5 MHz 10.66923 12.23001 26.57213 0.098135

1 MHz 12.51507 37.37972 26.92696 0.163474

200 kHz 6.569733 16.69153 4.2647 0.212875

100 � 5 MHz 6.543453 31.45554 8.611373 0.095396

1 MHz 25.22519 11.76763 8.560645 0.163505

200 kHz 24.71991 36.21245 8.068809 0.212875

Fig. 9 Percentage error along the entire length of the TL for DEEMDT

MHz and 5 MHz, the highest accuracy is regardless of the
RF at 90◦ and 60◦, respectively.

6.4 The effect of SNR

Figures10 and 11 present the SNRs of 30 dB, 40 dB, 50 dB,
and 75 dB applied to all sampling rates and fault types for
50% of the total line length, with an incidence angle of 60◦,
a fault resistance of 100 �, and for the DEEMDT technique.

From the results obtained, it is observed that for noisier
signals associatedwith the voltage signal for FL, at 30 dB and
40 dB (Fig. 10), the difficulty of fault estimation increases for
some of the fault types. Such analysis confirms the limitation
of the EMD, even associated with TEO, in the face of higher
noise superimposed on the signals analysis. The sampling
rate of 200 kHz showed better accuracy with noisier signals,
while the sampling rates of 1 MHz and 5 MHz presented
smaller errors for the SNR of 50 dB and 75 dB (Fig. 11). The
largest errorwas 0.4% for the single-phaseBGwith sampling
rate of 200 kHz.

Fig. 10 SNR analysis for all fault types with 30 dB and 40 dB

Fig. 11 SNR analysis for all fault types with 50 dB and 75 dB

6.5 Analysis of computational cost

The platform used for the simulations has a 64-bit operat-
ing system, with an AMD Ryzen 7 4800H processor, with
Radeon Graphics (2.90 GHz), 8 GB of RAM, and 512 GB
of ROM on SSD.

Considering that the majority of the computational cost
refers to the processing of the EMD application in the volt-
age signal, the required time for fault location is dependent
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Fig. 12 Computational cost along the entire length of the TL for
DEEMDT

Fig. 13 Average total computational cost for FLwith EMD approaches

on the sampling rate, the fault resistance, and the fault loca-
tion, and independent from the variation in the fault type and
the incidence angle. Thus, Fig. 12 presents the computational
cost for the single-phase fault along the entire length of the
TL, with an incidence angle of 90◦, and for all applied RF

and sampling rates. It is observed that the highest compu-
tational cost for fault location is at 5 MHz, with an average
value of 1.150 s considering all the fault locations along the
line, followed by 0.199 s for 1MHz, and 0.052 s for 200 kHz.

Figure13 presents the average total computational cost for
all incidence angles, fault resistances, sampling rates stud-
ied, for all FL, and the approaches adopted to extract the
characteristic data from the aerial mode of faulted voltage
signals. From the results obtained, it is observed that: the
computational cost is dependent on the sampling rate for the
EMD approaches, but the difference in timings between the
sampling rates of 200 kHz and 1 MHz is minimal; for each
studied sampling rate, the computational cost is similar for
different studied incidence angles; approaches using TEO,
in general, have lower computational cost; the average total
computational cost for the approaches and variables stud-
ied is 0.505s for SEEMD, 0.506s for DEEMD, 0.295s for
SEEMDT, and 0.294s for DEEMDT.

7 Conclusions

This paper presented a method of fault location using the
single-ended and the double-ended TW theory and EMDT
to extract characteristic data from voltage signals in their
aerial mode to estimate the distance from terminals to the
fault position in the AC transmission line.

By analyzing 5400 fault cases, it was confirmed that
faults were accurately detected and classified with a 100%
success rate. This outcome serves as evidence of the effec-
tiveness of employing the defined detection threshold, and it
demonstrated satisfactory location error rates for the EMDT
approach based on TW.

The numerical and graphical results prove that the pro-
posed methodology (EMDT) can extract the characteristic
data of the voltage signals and estimate the FL with high
accuracy for single- and double-ended analysis. The results
are compared with the standard approaches from the EMD
to prove the influence of the TEO on accuracy. According to
the results shown in Tables 6 and 8, the FL is affected when
TEO is not used, being more sensitive to variation in fault
resistance and sampling rate.

The SEEMDT and DEEMDT applied to faulted voltage
signals considering the presence of noise demonstrated the
best results regardless of the fault incidence angle, fault resis-
tance, and sampling rate. The average accuracy in Table 6 for
the single-phase fault, the most common fault type in trans-
mission lines, was 95.47% and 99.89%, at 200 kHz, and
97.44% and 99.90%, at 1MHz, for SEEMDT andDEEMDT,
respectively. The EMDT showed lower accuracy to the
higher sampling frequency, 5 MHz, with values of 92.00%
and 96.59% for SEEMDT and DEEMDT, respectively. The
results justify the theory of how the EMD technique is known
for limitations in noisy signals andhigher sampling rates [38].

To implement devices using the methodology proposed in
this paper, various hardware and software components are
required, such as intelligent protection relays, digital signal
processors, monitoring and control systems, and support-
ing infrastructure. Given the proposal for high-speed signal
processing and complex real-time calculations, advanced
processing hardware and high capacity memory are nec-
essary to handle the high data rate and the need for rapid
responses. As devices that use traveling wave theory and
high sampling rates, similar to those cited in the paper, have
been commercialized for real-time protection systems, the
authors believe in the feasibility of implementing the pro-
posed methodology in fault locators.

For futurework, the authors plan to improve themethodol-
ogy applied in order to upgrade the accuracy for fault location
with noisy signals and higher sampling rates since there
are devices with sampling frequencies in the MHz range.
Additionally, an exploration of the proposed approach is
applied for cross-country faults and evolving faults using

123



Electrical Engineering

the sampling rates from this paper (200 kHz, 1 MHz, and 5
MHz) [39, 40], and the impact of measurement errors on the
proposed method’s accuracy is planned. The authors shall
consider the presence of the instrument transformers since
their dynamic behavior for high-frequency transients may
have an important influence on FL accuracy. Nonetheless,
the results presented in this work are valid as a trend in accu-
racy for the different scenarios simulated.

Funding Funding was provided by Coordena o de Aperfei oamento de
Pessoal de N vel Superior (Grant No. Financing Code 001).
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