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Abstract
Microgrids serve an essential role in the smart grid infrastructure, facilitating the seamless integration of distributed energy
resources and supporting the increased adoption of renewable energy sources to satisfy the growing demand for sustainable
energy solutions. This paper presents an application of integral reinforcement learning (IRL) algorithm-based adaptive optimal
control strategy for automatic generation control of an is-landedmicro-grid. This algorithm is amodel-free actor-critic method
that learns the critic parameters using the recursive least square method. The actor is straightforward and evaluates the action
from the critic directly. The robustness of the proposed control technique is investigated under various uncertainties arising
from parameter uncertainty, electric vehicle (EV) aggregator, and renewable energy sources. This study incorporates case
studies and comparative analyses to demonstrate the control performance of the proposed control strategy. The effectiveness
of the technique is evaluated by comparing it with deep Q-learning (DQN) control techniques and PI controllers. The proposed
controller significantly improves performance metrics compared to the DQN and PI controllers. It reduces the peak frequency
deviation by 6% and 14%, respectively, compared to the DQN and PI controllers. When subjected to multiple-step load
disturbances, the proposed controller reduces the mean square error by 28% and 42%, respectively, while lowering both
the integral absolute error and the integral time absolute error by 21% and 35% compared to the DQN and PI controllers.
Additionally, when operating with renewable energy sources, the proposed controller decreases the standard deviation in the
frequency deviation by 17% compared to the DQN controller and 23% compared to the PI controller.
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List of symbols
J (x, u) Quadratic cost function
Q(x, u) Q-value function
A, B System matrices
Q,R Time invariant weights matrices
x System state
u Controller output
V (x) Value function
Q, Q− Current, target network
θ, θ− Parameters of current, target network
L(θ), Rl Loss function, reward for DQN
γ , αl Discount factor, learning rate
W Weight matrix
z [x u]T

φ(z) Quadratic polynomial basis set
⊗

Kronecker product
Tg Time constant of governor
Tt Time constant of turbine
TBESSi Time constant of i th BESS
TP Time constant of power system
TPV Time constant of PV
TWT Time constant of Wind
TFESS Time constant of FESS
Te Time constant of EV aggregator
KP Gain of power system
α Participation factor of EV aggregator
αi Participation factor of i th BESS
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ζ Tolerence
KI Integral gain
T Time step
Kei Gain of the i th EV
N Total number of EVs
N1 No. of EVs in SOC idle mode
N2 No. of EVs in SOC Controllable mode
η2 N2/N
η Maximum of η2
�Xg Deviation in governor position
�Pg Deviation in generator power
� f Deviation in frequency
�I Incremental change in integral control
�Pd Change in load disturbance
R Speed regulation of the governor
Ke Gain of EV aggregator
SOC State of charge
SOClow (high),i Low (High) battery SOC ith EV
SOCmax(min),i Max (Min) battery SOC ith EV
c Delayed time-step in DQN pre-learning
∇θt L (θt) Gradient of loss function
�PSolar Solar power change
�PWind Wind power change
�PPV Output solar power change
�PW Output wind power change
�PBESS Output battery power change
�PFESS Output flywheel power change
�Pe EV aggregator power change
	 Disturbance matrix
HJB Hamilton–Jacobi–Bellman
ARE Algebraic Recati equation
TD Temporal difference
DQN Deep Q-network
DDQN Double deep Q-network
DDPG Deep deterministic policy gradient
SAC Soft actor-critic
IRL Integral reinforcement learning
EV Electric vehicle
RLS Recursive least square
PV Photovoltaic
BESS Battery energy storage system
FESS Flywheel energy storage system
PI Proportional integral controller
PID Proportional integral derivative
MSE Mean squared error
IAE Integral absolute error
ITAE Integral time absolute error
AGC Automatic generation control
DG Distributed generation
LFC Load frequency control
RL Reinforcement learning
ADP Adaptive dynamic programming

1 Introduction

Renewable energy is a long-term and potentially sustainable
strategy for reducing green house gas emissions significantly.
Due to environmental concerns, economic expansion, and
the energy crisis problem, incorporating renewable energy
sources into the power system is nowgetting accelerated. The
transition from centralized to distributed generation (DG)
has enhanced the desirability and suitability of micro-grids
for integrating renewable energy sources [1]. Micro-grid is a
small-scale integrated energy system with multifarious dis-
tribution configuration consisting of several interconnected
distributed energy resources and loads situated within a spe-
cific local area and operating within a well-defined electrical
boundary [2].

Microgrids may be viewed as a more developed form of
distributed generation system with minimal influence from
the stochastically distributed generations through efficient
management of the storage systems and dispatched loads
[3]. Generally, a microgrid operates in grid-connected mode
or autonomous mode. However, due to their lower equivalent
inertia compared to the main grid, the management and con-
trols of autonomous microgrids are often more complex than
those of grid-connected ones. Consequently, even moderate
or minor disruptions in the power supply can cause issues
in power quality and stability, specifically, a deterioration
in the quality of the voltage and frequency [4]. Incorporat-
ing energy storage systems into microgrids can maintain the
instantaneous power balance and enhance the microgrid’s
dynamic performance, which is crucial in is-land operation
mode. The integration of multiple energy storage devices,
such as batteries and flywheel, has the potential to enhance
the stability of microgrids. However, this integration also
introduces increased complexity of control issues.

Frequency regulation is a significant challenge in autonom
-ous microgrids due to the low inertia of the system and the
large share of intermittent renewable sources [5]. Renewable
energy sources and energy storage systems must co-ordinate
in autonomous microgrids to limit the frequency deviations
byminimizing themismatchbetweengeneration anddemand
[6–8]. When there is an imbalance between generated power
and demand power, different control strategies are needed
to maintain the frequency stability of the system [9]. To
stabilize the system, primary droop controllers are widely
employed. Still, frequency deviations from the nominal value
are observed in the steady state. Consequently, a secondary
control strategy is employed to reach optimal frequency syn-
chronization. Generally, the primary droop and secondary
frequency control are called automatic generation control
(AGC). In generally, it is also known as load frequency
control (LFC). This paper mainly focuses on the automatic
generation control of micro-grid supported by renewable
energy and storage systems.
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Demand response, grid integration of electric vehicles,
smart homes, presence of noise on the sensor, etc. increase
the unpredictability in the power systemoperation [10].Huge
integration of renewable energy sources increases the uncer-
tainty of the system due to their intermittent in nature. During
the parameter measurement of the microgrid, the value of
internal parameters of the systemmaydeviate in a small range
from their nominal values. The presence of parameter uncer-
tainties and load disruptions introduces unpredictability and
uncertainty into the power system [11]. Due to the afore-
mentioned reasons, the dynamics of the power system varies
with time, and an accurate simulation model cannot always
be found. Conventional controllers such as Proportional-
Integral-Derivative (PID), Linear Matrix Inequality (LMI),
Sliding Mode Control (SMC), and Model Predictive Con-
trol (MPC) are developed using model-based techniques to
obtain the optimal control performance. These model-based
control techniques guarantee optimal the performance when
applied to a precise system model with no uncertainty. How-
ever, the interest of this paper is to design of controller for
unknown system dynamics.

Reinforcement learning (RL) and adaptive dynamic pro-
gramming (ADP) can solve the optimal control problem
from data without having the knowledge of the system
dynamics [12–14]. RL and ADP fill the gap between con-
ventional optimal control and adaptive control techniques.
The optimal solution is obtained by learning online the solu-
tion to the Hamilton–Jacobi–Bellman (HJB) equation [15].
The HJB equation reduces to an algebraic Recati equation
(ARE) for linear systems. RL adopts the temporal differ-
ence (TD) approach. TD method can learn directly from the
raw experience without having a model of the environment
dynamics. TD method implements mainly two steps [15,
16]: (1) to solve the temporal difference equation (known
as policy evaluation), (2) to find the optimal control strategy
(known as policy improvement). These steps are analogous
in solving Hamilton–Jacobi–Bellman (HJB) equation for the
optimal control problem. Policy and value iteration meth-
ods determine the sequence in which the TD equations
can be solved, and the corresponding optimal policies can
be obtained.

In recent years, extensive research on RL-basedAGCs has
been conducted, including DQN-based AGC [17], DDQN
based AGC [18], DDPG-based AGC [19, 20], SAC-based
AGC [21], and others. However, these controllers often
require multiple neural networks for designing the con-
trol strategy. Each algorithm presents its unique advantages;
however, increased use of neural networks increases the com-
plexity of the design. Considering the challenges associated
with design complexity and popularity of PID controllers
for AGC, authors of [22] propose RL-based adaptive PID
for AGC. The above discussion reveals that adaptive control
strategies to reduce design complexity have room for AGC.

In [23, 24], the authors present an integral reinforcement
learning (IRL) algorithm-based optimum control method for
automatic generation control in power systems. Papers [23]
present two different implementations of online IRL con-
trollers, each employing separate neural networks for actor
and critic networks, it lacks discussion on the neural network
configurations, raising concerns about the complexity of the
controller design. Conversely, the recursive least square-
based IRL [25] approach offers a solution to the optimal
control problem without relying on neural networks. The
authors in [23] utilized the gradient method to update neural
network parameters by computing the cost function gradi-
ent for each parameter. However, using the recursive least
squaremethod, the parameters of the IRL-based optimal con-
troller can be evaluated directly, eliminating the need for a
gradient descent approach [25]. This approach effectively
eradicates suboptimal control policies arising from local
optima.

The integration of renewable energy sources poses a
significant challenge to traditional power system control
methods, necessitating innovative approaches to ensure effi-
cient and reliable operation.While the integral reinforcement
learning (IRL) algorithm-based optimum control method
proposed by [23] and [24] shows promise in addressing
uncertainties and unknown dynamics in power systems, its
efficacy in the context of renewable energy sources remains
largely unexplored. Furthermore, IRL-based AGC needs to
investigate the impact of uncertainty and unpredictability
resulting from parameter uncertainty and external distur-
bances such as renewable integration and electric vehicle
(EV) integration. Moreover, it is crucial to emphasize that
the application of IRL controller for AGC of microgrids is
still limited, and further research is needed in this area. This
is because the IRL-based optimal controller offers notable
advantages: (1) similar to value-based model-free RL algo-
rithms, it does not rely on the discretization of action and
state spaces, and (2) akin to deep RL algorithms, it avoids the
necessity of training multiple neural networks. The proposed
work can be viewed as an energy management problem. A
comparison table of the proposed method with traditional
methods is provided in Table 1.

The main contributions of the paper are as follows:

• This paper investigates the automatic generation control
of an isolatedmicrogrid. The investigation focuses on the
impact of an EV aggregator, parameter uncertainty, and
the uncertainty associatedwith renewable energy sources
on the frequency stability of the system.

• This paper introduces an adaptive optimal control tech-
nique for secondary frequency control using the integral
reinforcement learning algorithm. Like other model-free
RL algorithms, it can learn the system without prior
knowledge of the system dynamics. During pre-learning,
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Table 1 Comparison of recent research on energy management

References Source Energy storage Methodology Adaptive

[26] Wind turbine, CHP-based bio-waste Hydrogen, Compressed air,
Thermal storage

Bi-level optimization, Unscented
transformation

No

[27] Wind turbine, PVs, CHP-based bio-waste Electrical energy storage, Thermal
energy storage

Unscented transformation No

[28] Wind turbine, EVs, CHP-based bio-waste Compressed air storage, Thermal
energy storage

Ant lion optimization No

[29] Wind turbine, PVs, Bio-waste Hydrogen storage Stochastic, Optimization No

[30] Wind, Demand response Energy storage system Uncertainty-based robust, Optimization No

[31] Micro-grids EV parking, Energy storage system Fuzzy hybrid, Stichastic robust
programming

No

[32] Renewable energy sources, Demand
responce

EV parking Stochastic programming No

[33] PV power, Fuel cell Battery water tank, Fuel tank Switched-model Predictive control No

[34] PV power, Utility grid, Diesel generator Battery Extended optimal, ε-Variable method No

Proposed PV wind power, EV-aggregator, Diesel
generator

Battery energy storage, Flywheel
energy Storage

Integral reinforcement Learning algorithm Yes

the recursive least square (RLS) method is implemented
to estimate the controller parameters.

• For comparison purposes, the effectiveness of the IRL
controller is compared with the performance of deep Q-
learning (DQN) techniques and PI controller.

The rest parts of the paper are organized as follows.
Section 2 describes the dynamic model of the system com-
ponents. In Sect. 3, the mathematical formulation of the
proposed control strategy is provided, followed by Sect. 4.
Section 4 presents the simulation results. Finally, Sect. 5 con-
cludes the paper.

2 Dynamic model of autonomousmicrogrid
understudy

The proposed microgrid is comprised of various system
components, including photovoltaic (PV) and wind power
generation, a diesel engine system, an electric vehicle (EV)
aggregator, and energy storage systems such as flywheel
energy storage systems (FESS) and battery energy storage
systems (BESS). This section presents the dynamic model
of these components and the microgrid’s state-space repre-
sentation. Figure1 illustrates the schematic diagram of the
system.

2.1 Diesel generator system

Diesel generators can provide reliable and stable power to
remote areas. The dynamic model of the diesel generator can

Fig. 1 General schematic of proposed micro-grid

be expressed as follows [35]:

�Ẋg(t) = − 1

Tg

(

�Xg(t) + 1

R
� f (t) − �I (t) − u(t)

)

�Ṗg(t) = − 1

Tt

(
�Pg(t) − �Xg(t)

)

� ḟ(t) = − 1

Tp

(
� f (t) − Kp�Pg(t) + Kp�Pd(t)

)

� İ (t) = KI� f (t)

(1)

where�Xg(t),�Pg(t),� f (t),�I (t) and�Pd denote devi-
ation in governor position, deviation in generator power,
deviation in frequency, incremental change in integral control
and change in load disturbance, respectively.
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2.2 Renewable energy sources

The renewable energies integrated to the micro-grid are PV
and wind power. The first-order dynamic equations of PV
and wind are given in Eqs. 2 and 3, respectively [40–42].

�ṖPV(t) = − 1

TPV
�PPV(t) + 1

TPV
�PSolar(t) (2)

�ṖW(t) = − 1

TWT
�PW(t) + 1

TWT
�PWind(t) (3)

2.3 Storage systems

In the proposed micro-grid energy storage systems, battery
energy storage system and flywheel energy storage systems
(BESS and FESS) are used. The capacity of the BESS should
reach a certain scale to significantly influence the system fre-
quency [36]. However, the capital cost of a large BESS is
relatively high. To get a large-scale BESS, aggregated multi-
ple small-scale BESS is implemented in [37] for LFC. In this
study, multiple small-scale BESS are aggregated for primary
frequency control of the micro-grid. The first-order dynamic
equations of i th BESS and FESS are given in Eqs. 4, and 5,
respectively [38, 39]. αi represents the participation factor of
each BESS and i =1, 2, 3.

�ṖBESSi(t) = − 1

TBESSi
�PBESSi(t) + αi

TBESSi
� f (t) (4)

�ṖFESS(t) = − 1

TFESS
�PFESS(t) + 1

TFESS
� f (t) (5)

2.4 EV Aggregrator

Assuming that all EVs participating in the EV aggregator
have same time constant (Te), the first-order dynamic model
of the EV aggregator is expressed in Eq.6 [43].

�Ṗe(t) = − 1

Te
�Pe(t) + Ke

Te
αPce(t) (6)

where Ke = ∑N
i=1 Kei/N , i = 1, . . . , N . Kei is the gain of

the i th EV. α is the the participation factor of EV aggregator.
N is the total number of EVs. The gain (Ke) depends on
the SOC of battery. An EV can take part in LFC with SOC
controllable mode or SOC idle mode. In SOC idle mode,
an EV can absorb or discharge power without considering
its battery SOC . The gain (Kei ) of the i th EV is considered
as K̄e = 1 in SOC idle mode. When SOC is considered
,the gain of i th EV can be modified as Kei = K̄e − K̄egi (t),
where

gi (t) =
(

SOCi − SOC low (high),i

SOCmax(min),i − SOC low (high),i

)2

(7)

Fig. 2 EV aggregator parameter a total number of EVs, b number of
EVs in Idle mode, c number of EVs in SOC controllable mode, and, d
η2 and its maximum value

When the SOCi ≥ SOChigh ,i , the i th EV will only deliver
power with Kei = K̄e. When the SOCi ≤ SOC low ,i , the i th
EV will only absorb power with Kei = 0. For other cases,
Kei is calculated using Eq.7.

Assume that among N EVs, N1 and N2 (= N − N1) are
participating in LFC with SOC idle mode and SOC con-
trollable mode, respectively. Then the gain of the aggregated
EVs can be written as

Ke =
N∑

i=1

Kei/N

= N1

N
K̄e + 1

N
K̄e

⎛

⎝N2 −
N∑

i=N1+1

gi (t)

⎞

⎠

= K̄e + �Ke

= K̄e − η2g0(t)K̄e

= K̄e(1 − ηg(t)) (8)

where η2 is N2/N , η = max(η2), g0(t) = ∑N
i=N1+1

gi (t)/N2 and g(t) = (η2/η)g0(t). N , N1 and N2 are vary-
ing with time. Figure2a–c represents the number of plug-in
EVs participating inLFC.Themaximumandminimumnum-
bers for the total number of available EVs (N ) have been set
at 650 and 900, respectively. The value of N , depicted in
Fig. 2a, is determined randomly between the minimum and
maximum values. Figure2b presents the number of vehicles
in idle mode. Similarly, Fig. 2c depicts the number of EVs
in SOC controllable mode and it is set in such way that the
η2 value should be less than given η. Given η is 0.5, Fig. 2d
shows η and η2 = N2/N . Based on these variables, g0(t) and
g(t) of Eq.8 are shown in Fig. 3a and b. The time-dependent
gain (Ke) is illustrated in Fig. 3c.
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Fig. 3 EV aggregator parameter: a g0, b g, and c Ke

Remark In [43], the total number of EVs of the aggrega-
tor is experiencing rapid fluctuations with time between the
minimum and maximum values. However, maintaining such
variation during all times may not be feasible in practice.
Therefore, in this paper, the total number of EVs is adjusted
slowlyover time andfluctuateswithin theminimumandmax-
imum values. A wide range of variations in total number of
EVs, including slow and fast variations and constant fluctu-
ations, are considered.

The complete state space model of the proposed micro-
grid is

ẋ = [A1
...A2]x + Bu + 	�Pd (9)

where x = [�Xg,�Pt ,� f ,�I ,�PPV ,�PW ,�PBESS1,

�PBESS2,�PBESS3,�PFESS,�Pe]T . u is the output of the
controller. �Pd = [�PSolar ,�PWind ]T . A1, A2, B, and 	

are as follows:

A1=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
Tg

0 −1
RTg

−1
Tg

0 0
1
Tt

−1
Tt

0 0 0 0

0 KP
TP

−1
Tp

0 KP
TP

KP
TP

0 0 0 KI 0 0
0 0 0 0 − 1

TPV
0

0 0 0 0 0 − 1
TWT

0 0 α1
TBESS1

0 0 0
0 0 α2

TBESS1
0 0 0

0 0 α3
TBESS1

0 0 0
0 0 1

TFESS
0 0 0

0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A2=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
KP
TP

KP
TP

KP
TP

KP
TP

KP
TP

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

− 1
TBESS1

0 0 0 0
0 − 1

TBESS2
0 0 0

0 0 − 1
TBESS3

0 0
0 0 0 − 1

TFESS
0

0 0 0 0 − 1
Te

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B = 1
Tg

0 0 0 0 0 0 0 0 0 αKe
Te

[ ]T

	 =
0 0 0 0 1

TPV
0 0 0 0 0 0

0 0 0 0 0 1
TWT

0 0 0 0 0

⎡

⎢
⎣

⎤

⎥
⎦

T

This paper aims to design a controller that can effectively
determine the u value, as per Eq.9, for the above system.

3 Adaptive controller design

3.1 IRL controller

In this section, an adaptive control strategy based on the IRL
algorithm is presented. The IRL is an online learning tech-
nique of internal system dynamics [25]. In this article, the
IRL algorithm is used for secondary frequency control. Con-
sider the linear continuous-time system

ẋ = Ax + Bu (10)

with the Q-value function

Q (x(t), u(t)) =
∫ ∞

t
J (x(t), u(t))dτ

=
∫ t+T

t
J (x(t), u(t))dτ

+ Q (x(t + T ), u(t + T ))

(11)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, A ∈ R

n×n and B ∈ R
n×m . J (x, u) is the quadratic cost

function. It is assumed that (A, B) is controllable. The cost
function J (x, u) is defined as J (x, u) = xTQx+uTRu.Q =
QT ≥ 0 ∈ R

n×n and R = RT > 0 ∈ R
m×m are

time-invariant weight matrices. By the Belllman’s optimal
principle [15], the Kvalue can be found as

K = R−1BT P (12)
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where P is the uniquepositive definite solution of the algebric
Reccati equation(ARE)

AT P + PA + Q − PBR−1BT P = 0. (13)

The optimal continuous time Q-value function can be pre-
sented in quadratic form [44] as shown in Eq.14.

Q∗(x, u) = [
xT uT

] [
S∗]

[
x
u

]

= [
xT uT

]
[
S∗
11 S∗

12
S∗
21 S∗

22

] [
x
u

]

= [
xT uT

]
[
AT P∗ + P∗A + Q P∗B

BT P∗ R

] [
x
u

]

(14)

It can be noticed that the S∗ is associated with P∗ in ARE.
By minimizing Q∗(x, u) with respect to u, the optimal solu-
tion u∗ can be found as follows:

u∗ = −K ∗x

= − (
S∗
22

)−1 (
S∗
12

)T
x

(15)

Problem Statement: Solving the value function (Eq.14)
yields the optimal policy (u); however, the system matrix B
is involved in this case, and it is unknown. The final objective
is to implement the online adaptive IRL algorithm to get the
optimal policy u∗ (as per Eq.15) without involving matrix
B.
Pseudo code of pre-learning of IRL algorithm:

1. Initialize Time step (t), Step size (T ), K (t),W (t),W (t−
T ) and x(t)

2. Calculate u(t) = −K (t)x(t). Apply the current policy
to the system and observe the next state x(t + T ). Then
calculate u(t + T ) = −K (t)x(t + T ). Collect dataset
(x(t), x(t + T ), u(t), u(t + T ) and compute φ(z(t)),
φ(z(t + T ))

3. Define the value function in parametric form as Q(x(t),
u(t)) = WTφ(z(t)), where W is weight matrix, φ(z(t))
is the quadratic polynomial basis set, z(t) is the vector
[x(t)T u(t)T ]. φ(z(t)) = z(t)

⊗
z(t) and

⊗
represents

the Kronecker product [45]. The number of elements of
W is n(n + 1)/2, where n represents the number of ele-
ments in z(t).

4. Calculate the weight matrix as follows

W (t + T )T = �φ−1
∫ t+T

t
J (x, u)dτ (16)

where �φ = φ(z(t)) − φ(z(t + T )). The inverse of �φ

cannot be found directly as it is a vector. In this study,
the inverse is determined using the recursive least square

(RLS) method [46]. So, �φ−1 = �φT
(
�φ�φT

)−1
.

5. Unpack the vector W (t + T ) into matrix S (shown in
Eq.14) and find K = (S22)−1 (S12)T .

6. Check condition ||W (t + T ) − W (t)|| < ζ (Tolerance).
If not so, set W (t) ← W (t + T ), t ← t + T . Go to Step
2. Else Go to Step 7.

7. Get the final K .

Fig. 4 Pictorial view of training process of DQN at time step t
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8. STOP

3.2 Deep Q-learning Controller

The DQN [47] uses two networks, namely the current (Q)
and target (Q−) networks. These networks are the same in
structure. θ and θ− are the parameter of the current network
and target network, respectively. The current network selects
the action (argmax Q(s, u; θ)) associated with the highest
Q value. The target network evaluates the Q value (Q(s′

t , u
′
t )

of the target state (s′
t ). In this paper, these networks are three-

layer backpropagation neural networks, with an input layer
of four dimensions and an output layer of seven.

DQN employs a replay buffer to collect the experiences at
each time step of pre-learning. At each time step (t), a mini-
batch of samples is drawn from the buffer and passed through
the current neural network.Theoptimal action, obtained from
greedy policy, is then executed in the environment, leading
to the observation of next state (s′) and the calculation of
reward (Rlt ). These experiences are stored as tuples con-
taining the current state, action taken, reward obtained, and
resulting next state. For example, the tuple for the i th sam-
ple is (si , ui , Rli , s

′
i ). Subsequently, the immediate next state

is provided to the target network to determine the maximum
Q−-value. The pictorial view of pre-learning of DQN at time
step (t) is shown in Fig. 4. After pre-learning the current net-
work is used as controller.

The loss function of i th sample of the mini-batch is
expressed in Eq.17.

Li (θ) =
[(
Rli + γ max Q−

i

(
s′, u′; θ−) − Qi (s, u; θ)

)2
]

(17)

Here, Rl and γ are reward function and discount factor,
respectively. The reward (R) is chosen using Eq. 10.

Rl = −10 � f 2 (18)

The parameters θ are updated using Eq.19, where N is the
number of samples in a mini-batch.

θt+1 = θt + αl
1

N

∑

i

∇θt Li (θt ) (19)

where ∇θt L (θt ) is the gradient of loss function with respect
to parameter of current network θ at time step t . After each
c time step, the critic network’s parameters are modified to
match the actor network’s. θ− is updated using Eq.20. θt+c

is the critic parameter

θ−
t = θt+c (20)

Table 2 Parameters of the micro-grid

Parameter Value Parameter Value Parameter Value

Tg 0.8 s TBESS2 0.8 s TP 20

Tt 0.3 s TBESS3 0.8 s α1 0.3

TPV 1 s TFESS 0.8 s α2 0.5

TWT 1 s Te 1 s α3 0.2

TBESS1 0.8 s KP 120 α 0.2

KI 0.5 γ 0.9

Table 3 Initial K value

Simulations K = K1, K2, K3, K4

Simulation1 (S1) {0.8267, 1.000, 1.0, 1.4142}
Simulation2 (S2) {0.267, .0500, 1.592, 2.4142}
Simulation3 (S3) {0.701, 0.998, 4.380, 1.660}
Simulation4 (S4) {3.082, 0.169, 0.491, 0.838}

Fig. 5 Convergence Curves: a ||Wt+T − Wt ||, b) ||Kt+T − Kt ||

4 Simulation

This section demonstrates the performance of the proposed
control technique for automatic generation control of the pro-
posed micro-grid subject to unpredictability and uncertainty
associated with load disturbances and an EV aggregator.
Table 2 displays the parameters related to the micro-grid.
Pre-learning of proposed technique:Algorithm 1 depicts the
pre-learning procedure of the IRL controller. It is assumed
that the states (x = [

�Xg,�Pt ,� f ,�I (t)
]T ) are observ-

able. Q and R, involved in cost function J , are chosen
as 0.001I4×4 and 0.08, respectively. The initial state x0 is
[0.1, 0, 0, 0]T . Step size (T ) is chosen as 0.1 s. Four differ-

123



Electrical Engineering

Fig. 6 Convergence Curves: a
K1, b K2, c K3, d K4

ent initial K values are chosen to show the convergence of
the controller. The values are given in Table 3. The corre-
sponding convergence curves are shown in Fig. 7, 5, and 6.
Figure7 shows the 2- norm of difference of weight matrix
(W) and the 2-norm of difference of K over consecutive
time steps. The convergence of elements of K are illustrated
in Fig. 5a–d. Figure6a–o illustrates the convergence of ele-
ments of weight matrix (W). Step size (T) is chosen as 0.1 s.
Based on algorithm 1, the kernel matrix S and optimal K val-
ues are found and expressed in Eqs. 21 and 22, respectively.
Likewise, Fig. 8 depicts the convergence curve of the DQN
in response to the sinusoidal load disturbance, as illustrated
in Fig. 9.

S =

⎡

⎢
⎢
⎢
⎢
⎣

−0.16104 0.03718 −0.012587 0.00035414 0.13471
0.03718 −0.0085838 0.002906 −8.1762e − 05 −0.031099

−0.012587 0.002906 −0.00098383 2.768e − 05 0.010529
0.00035414 −8.1762e − 05 2.768e − 05 −7.788e − 07 −0.00029623
0.13471 −0.031099 0.010529 −0.00029623 −0.20515

⎤

⎥
⎥
⎥
⎥
⎦

(21)

K = [−0.6566 0.1516 −0.0513 0.0014
]

(22)

4.1 Case 1: Performance comparison under step load
disturbance

This case study aims to investigate the performance of the
proposed controller under step load disturbance.Notably, this
analysis does not consider the uncertainties corresponding to
the PV and wind systems. To appraise the effectiveness and
adaptive performance of the proposed control strategy, a step
load disturbance of 0.01pu is applied to the system. Figure10
depicts the outcomes of the simulation. The numerical values
of the peak and peak time of the controllers are provided in
Table 4. The peak value of the proposed method is reduced
by 6% and 14% compared to DQN and PI controllers.
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Fig. 7 Convergence Curves: a W1, b W2, c W3, d W4, e W5, f W6, g W7, h W8, i W9, jW10, k W11, l W12, m W13, n W14, and o W15

From the simulation result, it is observed that the proposed
control enhances the transient performance by reducing the
peak of the frequency deviation. The proposed controller
shows a faster response compared to the DQN and PI con-
troller.

4.2 Case 2: Performance comparison under multiple
step load change

This case study evaluates the performance of the IRL con-
troller under step frequent load changes. The effect of PV
and wind power is not considered. The system is applied to

multi-step load perturbations, and the corresponding change
in frequency is illustrated in Fig. 11. The numerical value of
applied step load disturbances is given in Table 5.

The result demonstrates that the proposed controller helps
the system to reach its steady state faster despite frequent
disturbances. For performance evaluation, this case study
considers three performance indices: mean squared error
(MSE), integral absolute error (IAE), and integral time abso-
lute error (ITAE) [48]. Tracking accuracy is evaluated using
the MSE index. The IAE index evaluates the system’s over-
all overshoot. The ITAE index is used to assess the transient
response time. The numerical results for these indices of
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Fig. 8 Convergence curve for DQN

Fig. 9 Change in load for pre-learning of DQN

Fig. 10 Performance under step load disturbance: change in frequency
(� f ) in pu

frequency deviation are given in Table 6. The MSE for the
proposed controller is decreased by 28% and 42% compared
to the DQN and PI controller, respectively. Similarly, the
IAE and ITAE for the proposed controller are approximately
decreased by 21% and 35% percent compared to the DQN
and PI controller, respectively. From these numerical per-
formance values, it is observed that the proposed controller
achieves better tracking performance with smaller tracking
errors, smaller overshoots, and faster responses than other
controllers.

Table 4 Step response of the system

Controller Proposed DQN PI

Peak (pu) 0.0230 0.0244 0.0263

Peak time (s) 0.7 0.8 0.8

Fig. 11 � f (pu) Under multi-step load disturbances

4.3 Case 3: Performance comparison under
renewable sources

This case study investigates the robustness of the proposed
controller towards the PV and wind power uncertainty under
random load disturbances. The system subjected to random
load disturbances (�Pd ∈ [0.04,0.08] pu), as depicted in
Fig. 12a. The perturbations in wind and solar power applied
to the system are illustrated in Fig. 12b and c. The dynamic
performances of the system are shown in Fig. 13. For per-
formance evaluation, this case study considers the normal
distribution of the frequency deviation. Figure14 illustrates
this. The proposed controller reduces the standard devia-
tion in the frequency curve by 17% and 23% compared to
DQN and PI controller. It is observed that the proposed
controller exhibits a lower standard deviation compared to
others, indicating less deviation frequency from the mean
value. Furthermore, compared to other controllers, the mean
value of frequency deviation for the proposed controller is
closer to zero, which signifies a performance improvement.
Therefore, it is observed that the probability of getting the
frequency deviation close to zero is highest for the proposed
controller. From the above discussion, it is concluded that the
proposed controller effectively minimizes frequency devi-
ations against the uncertainties imposed by PV and wind
power.

4.4 Case 4: Sensitivity analysis

Theoretical examinations indicate that in cases where
the power system exhibits inherent stability, variations in
frequency remain relatively minor and constrained across
varying load-damping coefficients. Conversely, within an
unstable power system, disturbances can lead to amplified
frequency deviations over time [49]. To demonstrate the
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Table 5 Applied step load to
system

Time (s) 0–10 15–20 25–35 30–40 40–45 50–55 Else

Load (pu) 0.022 0.01 0.005 −0.005 0.015 0 0

Table 6 Numerical
performance results

Performance indices Proposed DQN PI

MSE 0.00044324 0.00057169 0.00063065

IAE 6.0292 7.311 8.1612

IATE 147.51 179.08 200.05

Fig. 12 a Change in Load (pu),
b Change in PV power (in pu)
and c Change in Wind power (in
pu)

Fig. 13 � f (pu) Under
renewable sources
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Fig. 14 Probability density of � f

robustness and efficacy of the proposed IRL controller in
a more challenging condition, some critical parameters of
the power system are varied and corresponding deviation in
frequency (� f ) is illustrated inFig. 15. The change in param-
eters are shown in Table 7. At a time of 2 s in this case study,
a step load disturbance of 0.02 per unit is applied. Figure15
unveils the adaptability and robustness of the IRL controller
to the variations in system parameters. Case 3 corresponds
to no change in parameters. Despite changes to the system
parameters, the desired outputs are bounded with small fluc-
tuations.

Based on the analysis of case studies 1 and 2, it has
been determined that the controller proposed is highly effec-
tive in reducing frequency deviations when faced with step
load disturbances, even in the presence of EV uncertain-
ties. Similarly, in case study 3, the proposed controller has
demonstrated effectiveness in minimizing frequency devia-
tions despite the uncertainties introduced by PV and wind
power. The controller has also been shown to be robust
against parameter changes, which further highlights its reli-
ability and efficiency.

In the given study, the target network of DQN updates its
parameters without requiring the gradient of the loss func-
tion; instead, it directly copies parameters from the current
network. In contrast, the current network requires the gradi-
ent of the loss function to update its parameters. As shown
in Fig. 4, the current networks employ gradient ascent to
update 77 (weights of the current network) parameters at
each time step. However, the proposed controller adopts the
RLS method, requiring only 15 parameter updates. In this
paper, the simulation results show that the proposed con-
troller performs better than the DQN algorithm. However,
DQN may achieve enhanced performance, particularly with
deep neural networks featuring more hidden layers and a
larger discretized action set. However, the complexity of the
controller will increase, causing an increase in the number of
parameter updates and learning time.Moreover, the proposed
controller needs no discretization of action set.

Fig. 15 � f (pu) under step load disturbance

Table 7 Change in parameters of the power system

Parameters Variations (%) Parameters/. Variations (%)

Case 1

R − 42 KP 25

Tg − 50 Tp 25

Tt 33

Case 2

R 40 KP − 25

Tg − 25 Tp 33

Tt − 17

5 Conclusion

Anoptimal control technique that uses integral reinforcement
learning has been successfully implemented for automatic
generation control of EV, renewable, and storage system inte-
grated is-landed micro-grid. The proposal includes four case
studies that analyze the robustness of the controller against
uncertainties due to load disturbances, EVaggregator, renew-
able integration, and parameter uncertainty. The case studies
show that the proposed IRL controller effectively minimizes
the frequency deviation. The proposed controller markedly
enhances performance metrics relative to the DQN and PI
controllers. Specifically, it achieves a reduction in peak fre-
quency deviation by 6% and 14% compared to the DQN and
PI controllers, respectively. Under multiple-step load distur-
bances, the controller decreases the mean square error by
28% and 42%, respectively, while reducing both the integral
absolute error and the integral time absolute error by 21%
and 35% in comparison to the DQN and PI controllers. Fur-
thermore, in scenarios involving renewable energy sources,
the proposed controller lowers the standard deviation in fre-
quency deviation by 17% compared to the DQN controller
and by 23% compared to the PI controller. The proposed
method is a policy iteration-based algorithm. The main lim-
itation of the proposed method is it needs permissible initial
conditions, which have been determined based on human
expertise in this study. This paper applies the method to
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a single-area microgrid, but future work could potentially
expand to interconnected multi-microgrids.
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