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Abstract
In modern power systems, uncertainties related to loads and renewable energy sources increase the need for reliable tools
for steady-state and dynamic studies. These uncertainties are commonly modeled using probability density functions. In the
context of the probabilistic small-signal stability analysis of power systems, the challenge lies in developing computationally
efficient tools that accurately calculate the probability of ensuring security (minimum damping ratio greater than or equal
to a desired value) and stability (negative spectral abscissa) requirements. This paper proposes an optimization approach for
designing power system stabilizers to maximize the probability of meeting these security and stability requirements. The
innovation of this approach is the integration of the unscented transformation (UT) with the particle swarm optimization
(PSO). The UT is advantageous, as it requires a smaller number of samples to compute the mean and standard deviation of the
output variables, especially compared to the Monte Carlo simulation (MCS), whereas PSO provides high-quality solutions.
The New-England test system is employed in a case study to validate the proposed approach. This case study highlights
the method’s accuracy and computational efficiency advantages, showcasing its potential to address the challenges posed by
increasing uncertainties in modern power systems.

Keywords PSS tuning · Small-signal stability enhancement · Particle swarm optimization · Unscented transformation ·
Probabilistic analysis
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DE Differential evolution
ESS Energy storage system
FFOA Fruit fly optimization algorithm
FO Firefly optimization
GA Genetic algorithm
VSC-HVDC Voltage source converters based high volt-

age direct current systems
LFO Low-frequency oscillations
LHS Latin hypercube sampling
MCS Monte Carlo simulation
MICA Modified imperialist competitive algorithm
PID-PSS Proportional-integral-derivative PSS
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PDF Probability density functions
POD Power oscillation damper
PSO Particle swarm optimization
PSS Power system stabilizer
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STATCOM Static synchronous compensators
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SSSA Small-signal stability assessment
UT Unscented transformation
WG Wind generator.

1 Introduction

Low-frequency oscillations (LFO) in power systems are
mainly caused by imbalances in mechanical and electrical
torques at synchronous generators following minor distur-
bances, such as variations in load or changes in controller
reference values [1]. These oscillations have been a signifi-
cant topic of study in the power systems literature since the
1970s [2–5]. The predominant strategy for damping these
oscillations involves the implementation of power oscillation
dampers (POD).AmongvariousPODs, the power systemsta-
bilizer (PSS) is themost recognized, installed at synchronous
generators. The PSS modulates the field voltage during tran-
sient events, thereby helping dampen the LFO [1, 6, 7].

Small-signal stability assessment (SSSA) is essential for
studying LFO and PSS tuning. This assessment involves
linearizing the power system model at a specific operating
condition. Subsequently, the angular stability of the system is
evaluated through modal analysis, which is essentially based
on the calculation of eigenvalues, as detailed in [7].

In contemporary power systems, uncertainties in loads
and renewable energy generation are critical in the planning
and operational stages. Traditional deterministic small-signal
stability assessment (D-SSSA) does not account for these
uncertainties, which can lead to imprecise results, as high-
lighted in [8, 9]. Consequently, probabilistic approaches
to small-signal stability assessment (probabilistic SSSA,
P-SSSA) have become increasingly relevant. P-SSSA specif-
ically addresses the challenge of computing the mean and
standard deviation of the output variables (minimum damp-
ing ratio and spectral abscissa) from the mean and standard
deviation of the input variables (loads and powers gener-
ated from renewable sources). Recently, [10] emphasized the
importance of considering uncertainties in scenarios with a
high penetration of renewable energy sources. This consid-
eration is crucial regardless of the technology employed for
power oscillation damping [10].

As described in [8] [11], approaches for performing prob-
abilistic analyzes in power systems canbe classified into three
main categories: (i) analytical, (ii) numerical and sampling-
based, and (iii) approximate methods.

Numerical and sampling methods, includingMonte Carlo
Simulation (MCS), Latin Hypercube Sampling, and Quasi-
MCS, play a crucial role in probabilistic analyses in power
systems. MCS, in particular, relies on generating many sam-
ples for random input variables (like loads and generations),
applying the nonlinear model to each sample to obtain out-
put variables, and then calculating statistical variables (mean

and standard deviation) for each output. Despite its accu-
racy, MCS is known for its high computational demand.
For example, in [12] a quasi-MCS technique is proposed
for P-SSSA, considering uncertainties related to electric
vehicles and wind generation. Similarly, [13] introduces an
approach to the probabilistic design of conventional PSS in
synchronous generators, focusing on maximizing the prob-
ability of meeting the system security requirements under
uncertainties in wind generation. This method utilizes a
combination of Genetic Algorithm andMCS. A Latin hyper-
cube sampling-based approach has been proposed in [14] for
the probabilistic design of conventional PSS at synchronous
generators and POD at wind generators. This method aims
to maximize the number of stable scenarios and employs
differential evolution for problem-solving. A cooperative
coevolutionary algorithm and the MCS for the probabilis-
tic design of conventional PSS is proposed in [15]. This
approach considers uncertainties in wind powers and loads.
A framework based on Monte Carlo simulation for stochas-
tic eigenvalue analysis of electric power systems is proposed
in [16]. This framework, which addresses systems with high
penetration of inertialess renewable generation, focuses on
the influential factors affecting eigenvalue movement due to
reduced inertia. In [17], Monte Carlo simulation is used to
calculate the probability of occurrence of unstable scenarios
resulting from network failures. In [18], the MCS is used
to propose a framework for defining multi-stability opera-
tional boundaries of power systems. This framework takes
into account varying penetration levels of power electronic
interfaced generation and the uncertainty in system loading.
Finally, [19] employsMCS to evaluate probabilistic stability,
considering controllers designed by classical methods.

Analytical approaches such as the cumulant method
have been proposed to minimize the computational cost of
numerical-basedmethods. Thesemethods rely on linearizing
equations and provide results with a lower computational
burden. However, significant fluctuations in input random
variables can lead to substantial linearization errors. In [20],
the differential evolution and an analytical method based on
Taylor series are combined for the probabilistic design of
conventional PSS considering load uncertainties. Conven-
tional PSS for synchronous generators and power oscillation
damping (POD) at static voltage compensators are designed
in [9], taking into account uncertainties in wind power using
the cumulant method and the fruit fly optimization algo-
rithm. The paper [21] employs four bio-inspired optimization
algorithms (bat algorithm, cuckoo search, firefly algorithm,
and particle swarm optimization) along with the cumulant
method for probabilistic tuning of conventional PSS and
POD in wind generators and solar panels. The probabilistic
design of conventional PSS is executed using the cumulant
method and the directional bat algorithm in [22], consider-
ing the uncertainties of power load and wind generation. In
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[23], the cumulant method and the firefly optimization algo-
rithmareutilized todesign conventional PSS for synchronous
generators and POD in energy storage systems. In [24], a sur-
rogate method using deep learning, the bat algorithm-based
optimization, and the cumulant method are integrated for a
probabilistic design of POD controllers of wind and pho-
tovoltaic generators. In [25], the probabilistic small-signal
stability in systems with uncertain wind power is evaluated
by series expansion and maximum entropy theory, providing
excellent accuracy and sufficient efficiency.

Abalance between accuracy and efficiency in systemanal-
ysis can be achieved by employing approximate methods
like the unscented transformation (UT) [26] and two-point
estimate method (2PEM) [27]. These methods determine
a reduced number of samples in a deterministic way. The
2PEM is used in [28] to assess the power system small-signal
stability analysis (P-SSSA). In [29], the impact of wind gen-
eration uncertainty in systems equipped with conventional
PSS—not subject to tuning—is evaluated using the 2PEM.
[30] discusses a probabilistic design of conventional PSS for
synchronous generators and POD for wind generators and
static synchronous compensators (STATCOM), utilizing the
modified imperialist competitive algorithm and the 2PEM.
In [31], the gradient optimization method and the 2PEM are
utilized to optimize the virtual inertia and pitch angle param-
eters of wind turbines.

Finally, in [32], it is proposed an optimal procedure to
design a robust PID-PSS using interval arithmetic for the
single-machine infinite bus system. Interval methods, while
helpful in ensuring safety under uncertainty, have notable dis-
advantages compared to probabilistic methods. They do not
provide probability distributions within established ranges,
leading to overly conservative solutions that may be less effi-
cient and more costly. In addition, interval methods suffer
fromhigh computational complexity in large-scale problems,
as they consider all possible values within limits.

Table 1 summarizes the publications mentioned above.
This review highlights that the area of probabilistic design
for power system stabilizers and power oscillation damping
controllers, particularly employing bio-inspired optimiza-
tion techniques together with the unscented transformation,
remains unexplored. The UT is an approximate technique
based on a reduced set of samples called sigma points, which
are deterministically calculated.

1.1 Main contributions

This paper introduces a novel optimization approach for
enhancing the probabilistic design of conventional power
system stabilizers (PSS) in transmission systems. Lever-
aging particle swarm optimization (PSO) in tandem with
unscented transformation (UT), the method aims to maxi-
mize the probabilities of meeting predefined thresholds for

both the minimum damping ratio (small-signal security) and
the spectral abscissa (small-signal stability). A key innova-
tion lies in the utilization of UT to evaluate each individual of
the PSO within a probabilistic small-signal stability assess-
ment (P-SSSA), which constitutes the primary contribution
of this research.

To capture the uncertainties inherent in loads and wind
power generation, the model uses a normal distribution. The
efficacy of the approach is demonstrated through a compre-
hensive case study using the New-England test system [33].
Furthermore, validation is conducted via nonlinear time-
domain simulations.

Of particular significance, the proposed probabilistic tun-
ing method exhibits superior performance compared to
deterministic approaches, especially when subjected to sce-
narios unforeseen during the design phase. This underscores
the robustness and practical applicability of themethodology
in real-world transmission systems.

2 Background: probabilistic small-signal
stability assessment

2.1 Deterministic small-signal stability

The small-signal stability analysis of transmission systems
employs linearized models considering specific operational
conditions. These conditions are provided by the power
flow solution corresponding to a given load and genera-
tion profiles. The linearized models are represented through
state-space formulations, both in open-loop and closed-loop
configurations.

Figure1 illustrates the static excitation system of a syn-
chronous generator. This system’s primary function is to
ensure that the terminal voltage, denoted as �VT , remains
consistent with the reference value, �VREF , achieved by
controlling the field voltage �EFD . In this static excitation
system model, the parameters KA and TA correspond to the
gain and the time constant, respectively [7]. Additionally,
in Fig. 1, the transfer function of the power system stabi-
lizer, PSS(s), is distinctly highlighted in red. This controller
interacts with the excitation system during transient events,
introducing a supplementary signal, �VPSS , to ensure the
power system’s stability [2]. Notably, in this configuration,
the stabilizer’s input signal is derived from the synchronous
generator terminal velocity �ω, though alternative input
types could also be adopted [7].

From Fig. 1, two distinct operational modes can be iden-
tified: (i) open-loop operation (without the PSS) and (ii)
closed-loop operation (incorporating the PSS). The state-
space representation corresponding to the open-loop oper-
ation is delineated in (1). For completeness, the differential
equations associated with the generator and automatic volt-
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Table 1 Publications on recent P-SSSA

Year Probabilistic method Optimal tuning? Controller Reference

2007 2PEM Only assessment – [28]

2008 Taylor series DE PSS-SG [20]

2012 2PEM Only assessment PSS-SG [29]

2013 Quasi-MCS Only assessment PSS-SG [12]

2014 MCS GA PSS-SG [13]

2015 Cumulant FFOA PSS-SG, POD-SVC [9]

2016 LHS DE PSS-SG, POD-WG [14]

2019 Cumulant BA, CS, FO, PSO PSS-SG, POD-WG [21]

2019 2PEM MICA PSS-SG, POD-WG POD-STATCOM [30]

2020 Cumulant DBA PSS-SG [22]

2020 Cumulant FO PSS-SG, POD-ESS [23]

2020 MCS CCA PSS-SG [15]

2020 MCS Only assessment PSS-SG [16]

2020 Interval arithmetic Gradient method PID-PSS-SG [32]

2021 Cumulant BA POD-WG, POD-PV [24]

2021 MCS Only assessment PSS-SG [19]

2021 MCS Only assessment PSS-SG [17]

2022 2PEM Gradient method Virtual inertia and WG parameters [31]

2022 MCS Only assessment VSC-HVDC [18]

2024 Series expansion and maximum entropy theory Only assessment PSS-SG [25]

2024 UT PSO PSS-SG Proposed

Fig. 1 Static excitation system

age regulator models are presented in Appendix A.

�ẋ = AO�x + BO�u

�y = CO�x
(1)

where

• AO , BO , and CO are the state-space, input, and output
matrices, respectively;

• �x represents the vector of states, encompassing angular
speeds, internal angles, internal voltages, and field volt-
ages. Similarly, �u denotes the vector containing input
values, specifically �VREF , while �y signifies the vec-
tor associated with output variables, in this case, �ω.

The state-space model for closed-loop operation, denoted
by the subscriptC in (2), is derived from (1) using a feedback
procedure that takes into account the transfer function of the
PSS, as defined in (3) [7].

�ẋ = AC�x + BC�u

�y = CC�x
(2)

PSSp(s) = Kp
sTw

1 + sTw

⎛
⎝ 1 + s

√
αp

ωp

1 + s 1
ωp

√
αp

⎞
⎠

nb

(3)

where (for the pth generator)

• PSSp(s) represents the transfer function of the PSS;
• Tw denotes the time constant of the washout filter, ensur-
ing that the PSS operates exclusively during transients;

• Kp is the gain associated with the PSS;
• αp andωp specify the parameters for the lead-lag stage of
the PSS, which serves as the phase compensation stage;

• nb indicates the total number of lead-lag stages.

Each PSS comprises five parameters that require tuning:
Kp, αp,ωp, Tw, and nb. Typically, Tw and nb are predefined,
leaving only the gain and the two lead-lag parameters to be
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fine-tuned. Consequently, for a system with ng generators
equipped with PSS, a total of 3 × ng parameters require
design adjustments [34–36].

Once the state-space representation is obtained, it is pos-
sible to evaluate the small-signal stability through the modal
analysis. It is done by calculating the m eigenvalues for a
state-space matrix (order m × m). Equation (4) brings the
i th eigenvalue (with real σi and imaginary ωi components),
whose damping ratio ξi is calculated according to (5). The
system is stable when all σi are negative and ξi are positive
[7].

λi = σi ± jωi (4)

ξi = −σi√
σ 2
i + ω2

i

(5)

In the context of deterministic small-signal analysis,
establishing the minimum damping ratio ξmin and the spec-
tral abscissa σmax is essential. It is made according to (6).
In power system operation, we say that the power system is
secure when its minimum damping ratio ξmin is greater than
or equal to a security level (10%, for instance) [37].

σmax = max (1, . . . , σi , . . . , σm)

ξmin = min (1, . . . , ξi , . . . , ξm)
(6)

In the context of power system analysis, we refer to deter-
ministic small-signal analysis when all loads and generation
from renewable sources are precisely known. However, a
more comprehensive probabilistic analysis becomes essen-
tial when uncertainties are incorporated. This will be the
focus of the subsequent subsection.

2.2 Probabilistic model of loads and renewable
energy

In the present study, we perform a probabilistic analysis,
accounting for uncertainties both in active and reactive power
loads as well as in the generation from renewable sources,
specifically wind generation. These uncertainties are mod-
eled employing the Normal Distribution as depicted in (7)
[15, 22, 23, 38].

f (Pdk) = 1

σPdk

√
2π

e
−

(
Pdk−μPdk

)2

2σ2Pdk

f (Qdk) = 1

σQdk

√
2π

e
−

(
Qdk−μQdk

)2

2σ2Qdk

Fig. 2 Illustrative example of a sample

f
(
Pwind
gk

)
= 1

σPwind
gk

√
2π

e

−

(
Pwindgk −μ

Pwindgk

)2

2σ2
Pwindgk (7)

where

• μPdk , μQdk , and μPwind
gk

represent the mean values of

loads and wind generation at a node k;
• σPdk , σQdk , and σPwind

gk
represent the standard deviations

of loads and wind generation at a node k.

2.3 Procedure for probabilistic small-signal
assessment using theMonte Carlo simulation

The probabilistic evaluation of the small-signal stability con-
sists of calculating the mean (μσmax and μξmin ) and standard
deviation (σσmax and σξmin ) values of the spectral abscissa and
the minimum damping ratio, taking into account the uncer-
tainties on loads and generation of renewable sources (see
Sect. 2.2).

The Monte Carlo simulation is the predominant method
for probabilistic analysis, utilizing a suite of random samples
in its numerical approach. Figure2 provides an illustrative
example, showcasing a sample vector for a system compris-
ing three buses and one wind generator.

Figure3 outlines the procedure to evaluate probabilistic
small-signal stability using the Monte Carlo simulation. In
Step 1, the necessary number of samples, power system data
(including nodes and branches), and stabilizer parameters
are imported. Moving to Step 2, a sample, as exemplified in
Fig. 2, is generated following Eq. (7). For Step 3, the state-
space model in open-loop operation is established by solving
the power flow and then linearizing the nonlinear system [7,
36]. In Step 4, a feedback procedure calculates the closed-
loop state-space model, incorporating all the power system
stabilizers.Step 5 then computes theminimumdamping ratio
and the spectral abscissa based on (6).After storing the values
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Fig. 3 Flowchart—Monte Carlo Simulation

of σmax and ξmin in Step 6, Step 7 verifies if the desired
number of samples has been achieved. If achieved, Step 8
calculates the mean and standard deviations, concluding the
process in Step 9. If not, the procedure returns to Step 2 to
generate another sample. For the sake of completeness, an
illustrative example is presented in Appendix D.

2.4 Procedure for probabilistic small-signal
assessment using the unscented transformation

The unscented transformation method employs a reduced set
of samples deterministically calculated so that the computa-
tional burden is significantly lower compared with theMonte
Carlo simulation. Each sample is referred to as a sigma point
χi with the same structure shown in Fig. 2. Figure4 brings
the steps required to assess the small-signal stability through
the unscented transformation. Step 1 and steps 4 to 7 are
similar to step 1 and steps 3 to 6 of Fig. 3, respectively.

Firstly, the vector of means zm and the matrix with
variances Pz are defined according to Eq. (8) in Step 1. Con-
sidering nb load nodes and nren nodes with wind generators,

Fig. 4 Flowchart—unscented transform based small-signal analysis

the dimensions of zm and Pz are ((2nb + nren) × 1) and
((2nb + nren) × (2nb + nren)), respectively.

zm =
⎡
⎢⎣

μPdk
μQdk

μPwind
gi

⎤
⎥⎦

Pz =
⎡
⎢⎣

σ 2
Pdk

0 0
0 σ 2

Qdk
0

0 0 σ 2
Pwind
gi

⎤
⎥⎦

(8)

where k = 1, · · · , nb and i = 1, · · · , nren.
Being n uncertain variables (in this paper n = 2nb +

nren), in Step 2 2n + 1, sigma points are calculated. Each
sigma point χi is a column vector representing a sample
whose structure follows the one shown in Fig. 2. Different
from the Monte Carlo simulation, sigmas points are deter-
ministically calculated according to Eqs. (9)–(11).

χ1 = zm (9)

χi+1 = zm + ui , i = 1, . . . , n (10)
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χi+1 = zm − ui , i = 1, . . . , n (11)

where ui is a row vector of the matrixU , computed using
the Cholesky decomposition, as presented in Eq. (12) [26].

UTU = (n + κ)Pz (12)

In (12), κ is a parameter empirically tuned so that the
results (means and variances of output variables) are close
to those provided by the Monte Carlo simulation [39, 40]. In
this paper, κ = 0 is considered.

For each sigmapoint, it is performed adeterministic small-
signal analysis (Steps 4 to 7 in Fig. 4) to obtain the minimum
damping ratio and the spectral abscissa based on (6): σmax i

and ξmin i (here, i denotes the i th sigma point).
Once all sigma points are evaluated, the means (μσmax

and μξmin ) and standard deviations (σσmax and σξmin ) of out-
put variables are estimated in Step 9 by (13)-(14). For this
purpose, weight factors Wi are required.

μσmax =
2n+1∑
i=1

Wi · σmax i

μξmin =
2n+1∑
i=1

Wi · ξmin i

(13)

σσmax =
√√√√2n+1∑

i=1

Wi · (
μσmax − σmax i

)2

σξmin =
√√√√2n+1∑

i=1

Wi · (
μξmin − ξmin i

)2
(14)

The weight factors Wi are obtained by (15)-(17). It is
important to say that the sum of all weights must be equal to
unity (see (18)).

W1 = κ

n + κ
(15)

Wi+1 = (2(n + κ))−1, i = 1, . . . , n (16)

Wi+n+1 = (2(n + κ))−1, i = 1, . . . , n (17)
2n+1∑
i=1

Wi = 1 (18)

2.5 Confidence levels

According to [37], a system is considered to be secure from
the angular small-signal point of view if its minimum damp-
ing ratio ξmin is greater than or equal to a desired security
margin ξd . In the context of probabilistic small signal, it is
essential to define the security using probabilities as given in

(19):

Pr {ξmin ≥ ξd} ≥ γξmin

Pr {σmax ≤ 0} ≥ γσmax

(19)

where γξmin and γσmax are the confidence levels. It is
important to say that probabilities are calculated by using
the values of means and standard deviations in (13)- (14).

3 Proposed approach for PSS tuning

3.1 Optimization approach

The main contribution of this paper is an optimization
approach for the probabilistic design of power system stabi-
lizers. The optimization uses the particle swarm optimization
[41], and the unscented transformation performs the proba-
bilistic analysis.

Themathematical formulation of the proposed approach is
presented in (20)-(25). The objective function in (20) aims to
maximize the probabilities of satisfying the minimum damp-
ing ratio requirement (ξmin ≥ ξd ) and the stability (given by
the spectral abscissa σmax). Equation (21) ensures that the
mean value of the minimum damping ratio μξmin is greater
than or equal to the security margin (ξd ). Additionally, (22)
ensures that the mean value of the spectral abscissa μσmax is
negative (condition to stability). Finally, the parameters to be
tuned (Kp,αp, andωp)must be into the limits, as constrained
in (23)-(25).

max f (x) = Pr {ξmin ≥ ξd} + Pr {σmax < 0} (20)

s.t. μξmin ≥ ξd (21)

μσmax < 0 (22)

Kmin
p ≤ Kp ≤ Kmax

p (23)

αmin
p ≤ αp ≤ αmax

p (24)

ωmin
p ≤ ωp ≤ ωmax

p (25)

where p = 1, . . . , npss, being npss the number of stabi-
lizers to be tuned. Each PSS has the transfer function defined
in (3).

3.2 Fitness function calculation

Solving the optimization problem in (20)-(25) through an
analytical approach is hard, and this paper uses particle
swarm optimization for this task. It is a population-based
method in which each individual represents a solution for
the problem. In this section, the process to calculate the fit-
ness function of each individual is presented.
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In this paper, an individual indi is a vector with the values
of gains and parameters of the compensation stage (a pos-
sible solution) as defined in (26). The quality of the tuning
provided by this individual is measured by its fitness function
f i ti , calculated according to (27).
The fitness function f i ti in (27) is composed of three

parts: F1, F2, and F3. The first component (F1) is defined in
(28) and deals with the objective function in (20). The second
and third components (F2 and F3 defined in (29)-(30)) are
necessary to deal with the constraints (21) -(22). They are
applied penalizations in case of violations (ξmin < ξd or
σmax > 0). Each component has its weight β, empirically
defined.

indi = [
K1 . . . Knpss α1 . . . αnpss ω1 . . . ωnpss

]
(26)

f i ti = β1 · F1 − β2 · F2 − β3 · F3 (27)

where β1 = 1 and β2 = β3 = 104.

F1 = Pr {ξmin ≥ ξd} + Pr {σmax < 0} (28)

F2 =
{ | penal1 | if μξmin < ξd

0 otherwise
(29)

where penal1 = ξd − μξmin .

F3 =
{ | penal2 | if μσmax ≥ 0

0 otherwise
(30)

where penal2 = μσmax .
It is important to say that constraints (23)-(25) are directly

handled by the PSO method for constrained optimization.
Finally, Fig. 5 brings an illustrative example regarding

the Fitness Function f i ti evaluation for a given individual
indi . The first step is to perform a probabilistic small-signal
stability analysis through the unscented transformation to
calculate the means and standard deviations of the minimum
damping ratio (μξmin and σξmin ) and the spectral abscissa
(μσmax and σσmax ), as discussed in Sect. 2.4 and Fig. 4. These
values are used to calculate the probabilities in (20) and (28)
[42]. Finally, the fitness function f i ti is calculated as defined
in (27)-(30).

3.3 Optimizationmethodology flowchart

As discussed in Sect. 3.2, the proposed approach in (20)-(25)
is solved by the particle swarm optimizationmethod. In addi-
tion, the calculation of the fitness function is illustrated in
Fig. 5. Figure6 illustrates the integration of the PSO method
and the unscented transformation for the probabilistic anal-
ysis of small-signal stability.

Fig. 5 Fitness function evaluation

The optimization method unfolds in a systematic manner.
It commences in Step 1 with the definition of variable lim-
its and the PSO and UT parameters. Step 2 initializes the
iteration (or generation) counter, followed by the population
initialization in Step 3. The population is randomly initiated,
taking into account the constraints (23)-(25). Step 4 initial-
izes the individual counter, and for each individual indi , a
fitness function f i ti is calculated, as explained in 5 to 7.

The first procedure to calculate the fitness function is, in
Step 5, to execute the algorithm for the probabilistic analy-
sis of the stability of the small signal discussed in Sect. 2.4
and Fig. 4. In this step, the uncertainties of wind and load
generation are included in the analysis. Once the proba-
bilistic analysis is complete, the probabilities of security
(Pr {ξmin ≥ ξd}) and stability (Pr {σmax < 0}) are calculated
in Step 6. The fitness function is calculated in Step 7 as dis-
cussed in Sect. 3.2.

In Step 8, it is checked if all individuals were evaluated. If
not, the individual counter is increased in Step 9 and Steps 5
to 7 are carried out until all individuals have been evaluated.

Once all individuals are evaluated for a given genera-
tion/iteration t , the tuning process is finished in Step 13. On
the other hand, the algorithm follows to Step 11 to update
the iteration counter and Step 12 to update the population of
individuals according to the PSO method discussed in [41].

4 Case study

4.1 System description

TheNew-England test system, depicted in Fig. 7, will be used
to discuss the results derived from the proposed approach.
Comprising 39 nodes and ten generators, the detailed data
for this system can be accessed in [33, 36, 43]. In the base
case, this system has a total load of 6097.1 MW and 1408.9
MVAr, with active power generation of 6140.8 MW. In this
specific case study, a wind generator with a dispatch capacity
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Fig. 6 Flowchart—optimization appraoch

of 920MW is placed at node 14, representing approximately
15% of the active power generation of the base case [44].
The unity power factor is adopted for the wind generator.

For the power system stabilizer (PSS) tuning process, both
loads and wind generation are assumed to follow a normal
distribution. The same assumptions have been made in [15,
22, 23, 38]. The mean values are set equal to the base case
values, and the standard deviations are established at 5% of
thesemean values. In particular, the generator located at node
39 represents an equivalent system and is therefore excluded
from receiving a PSS.

4.2 Parameters of the optimizationmethods

In the specialized literature, it is known that parameteriza-
tion of a metaheuristic is essential for securing high-quality
solutions. Given that this parameterization is specific to a
problem being addressed, the process is inherently empiri-
cal, often necessitating significant time investment from the
user. In this study, the authors relied on the standard param-
eters delineated in the literature for PSO. To determine the
optimal population size and the number of generations, we

Fig. 7 New-England test system

Table 2 Open-loop
electromechanical eigenvalues
for the base case scenario

Eigenvalue λi ξi (%)

−0.1699 ± j8.4996 2.00

−0.2414 ± j8.5012 2.84

−0.2162 ± j8.3441 2.59

0.0646 ± j7.0392 −0.92

−0.1339 ± j7.0707 1.89

−0.0313 ± j6.6870 0.47

0.1787 ± j6.2090 −2.88

0.1197 ± j5.9955 −2.00

0.2045 ± j3.3790 -6.04

set a benchmark of 500 executions of the fitness function.
Based on this, the following parameters were established:

• PSO: 25 particles, 20 iterations (25 × 20 = 500), c1 =
c2 = 2 (acceleration constants), ωmax = 0.9, ωmin = 0.4
(inertia constants).

4.3 Open-loop eigenvalues in the base case

Deterministic small-signal analysis (see Sect. 2.1), consid-
ering the base case condition, reveals an unstable operation
with a damping ratio of −6.0421% (ξmin = −6.0421%) and
a spectral abscissa of +0.2045 (σmax = 0.2045). Table 2
gives all electromechanical eigenvalues for the base condi-
tion that are plotted in Fig. 8.

The necessary action involves either a deterministic or
probabilistic design of the power system stabilizers. The
deterministic tuning is extensively discussed in the literature
[34, 35]. Studies [9, 21, 45] indicate that the deterministic
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Fig. 8 Open-Loop eigenvalues for the base case scenario

designmaynot be appropriate in the presence of uncertainties
in power loads and renewable generations. In such instances,
the probabilistic tuning presented in this paper is particularly
compelling, given the low computational burden required by
the unscented transformation.

In this paper, the design of power system stabilizers, for
the base case, is carried out using two approaches: (i) the
proposed probabilistic approach and the (ii) the deterministic
one presented in Appendix B. A target damping ratio of 10%
(ξd = 10%) is considered.

It is important to emphasize that the deterministic approach
aims at positioning the dominant eigenvalue (that with ξmin)
in the complex plane so that ξmin is close to ξd in the base
case. In this case, the deterministic method does not consider
the probabilities of security and stability in the design stage.

Table 14, inAppendixC, presents the limits utilizedduring
the design process. Both load and renewable generation are
modeled with a mean equal to their nominal values and a
standard deviation of 5% of these mean values.

4.4 Deterministic validation of the results

Tables 15 and 16, in Appendix C, displays the optimized
parameters obtained using the probabilistic and the deter-
ministic approaches, respectively. It is important to note that
these designs must be validated considering other operating

Table 4 Deterministic validation of the probabilistic design ∗

Caso Dominant eigenvalue ξmin (%)

01 −0.74843 ± j7.1266 10.445

02 −0.75359 ± j7.1335 10.506

03 −0.77348 ± j7.1018 10.827

•[*] Values in this table are obtained using the deterministic approach
in Sect. 2.1 using the PSS parameters of Table 15

Table 5 Deterministic validation of the deterministic design ∗

Caso Dominant eigenvalue ξmin (%)

01 −0.88385 ± j8.4227 10.436

02 −0.24738 ± j3.1418 7.8497

03 −0.73759 ± j7.1454 10.268

•[*] Values in this table are obtained using the deterministic approach
in Sect. 2.1 using the PSS parameters of Table 16

conditions to assess the robustness of the controller, as dis-
cussed in [35]. Table 3 presents the operating conditions used
for tuning (the base case) and the other conditions used for
the assessment stage.

Table 4 presents the dominant eigenvalue and the min-
imum damping ratio for each operating condition in Table
3. These values are obtained from a simple deterministic
evaluation of the small-signal stability (when uncertainties
are not considered in the analysis as discussed in Sect. 2.1).
However, the PSS’s parameters are provided by the proposed
probabilistic design. It is essential to notice that in both sce-
narios 01 (base case used in the tuning stage) and 02 and 03
(used for assessment), the system is stable and secure (with
ξmin > ξd ). It shows the robustness of the proposed approach
in ensuring security in scenarios not considered in the tuning
stage.

However, the deterministic design, whose results are pre-
sented in Table 5, could not provide a secure condition (with
ξmin < ξd ) in Scenario 02 (associated with the reduction of
load and wind generation).

To ensure completeness, the eigenvalues of the closed-
loop operation are presented for each scenario in Table 3,
as shown in Figs. 9 through 11. In these figures, the red
crosses indicate the closed-loop eigenvalues considering the
PSS tuned by the deterministic design, while the blue crosses
are associated with the probabilistic tuning. A line in the

Table 3 Operating conditions considered

Caso Operating condition Information

01 Base case Used in the tuning stage

02 Load reduction (20%) and wind generation reduction (100%) Used to assess the PSS’s robustness

03 Load increase (50%) and wind generation constant (920MW) Used to assess the PSS’s robustness
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Fig. 9 Closed-loop eigenvalues for the base case scenario: probabilistic
(blue) and deterministic (red) (color figure online)

Fig. 10 Closed-loop eigenvalues for the second scenario: probabilistic
(blue) and deterministic (red) (color figure online)

complex plane indicates eigenvalues with a damping ratio
exceeding 10%. Both probabilistic and deterministic con-
trollers were analyzed for each scenario. Figure10 correlates
with the results in Table 5, revealing a complex eigenvalue
with a damping ratio below the safe threshold of 10% (specif-
ically, 7.8497%) when employing deterministic controllers.

4.5 Probabilistic validation of the results

The obtained results using the deterministic and the prob-
abilistic approaches were previously validated from the
deterministic point of view. This validation shows that the
probabilistic approach was able to provide a secure opera-
tion for scenarios that have not been considered in the design

Fig. 11 Closed-loop eigenvalues for the third scenario: probabilistic
(blue) and deterministic (red) (color figure online)

stage. To assess the controller’s robustness in an uncertain
environment, the probabilistic small-signal analysis will be
carried out using the unscented transformation (flowchart in
Fig. 4 in Sect. 2.4). For this purpose, the following strategy
is presented:

1 the three scenarios from Table 3 are considered;
2 themeanvalues of loads andwind generations are set equal
to the updated powers in the item (1);

3 the standard deviations are established at 2.5%, 5% and
10% of these mean values;

4 it should be emphasized that only case 01 (base case)
was considered in the design stage. In addition, for the
probabilistic design, only one uncertainty level (standard
deviation of 5%) was employed in the design stage.

The following points summarize the observations in the
probabilistic validation:

• the controller’s parameters designed by both design
approaches (probabilistic and deterministic) allowed a
stable operation no matter the operation condition and
uncertainty level of input variables (loads and wind
generation). It can be seen in Tables 6, 7, and 8 that
the probability of stability (Pr {σmax < 0}) achieved the
maximum value (100%);

• regarding the probability of security (Pr {ξmin ≥ ξd}), as
one can see in Table 9, the proposed approach (prob-
abilistic design), provided probabilities of 100% in the
base case (scenario 01) for uncertainties levels of 2.5%
and 5%. It is important to note that the likelihood of
achieving the desired minimum damping ratio of 10%
diminishes to 84.9013% when the uncertainty level is
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Table 6 Impact of uncertainty
on spectral abscissa (Scenario
01: base case)

Probabilistic design Deterministic design
μσmax σσmax Pr {σmax < 0} μσmax σσmax Pr {σmax < 0}

2.5% −0.2035 1.8883e−05 100% −0.2023 9.0868e−06 100%

5.0% −0.2035 3.8046e−05 100% −0.2023 1.8199e−05 100%

10.0% −0.2035 7.8491e−05 100% −0.2014 6.0701e−03 100%

Table 7 Impact of uncertainty
on spectral abscissa (Scenario
02: load and wind generation
reduction)

Probabilistic design Deterministic design

μσmax σσmax Pr {σmax < 0} μσmax σσmax Pr {σmax < 0}
2.5% −0.2036 1.2388e−05 100% −0.2023 6.7419e−06 100%

5.0% −0.2036 2.4793e−05 100% −0.2020 0.0031 100%

10.0% −0.2030 0.0047 100% −0.1999 0.0119 100%

Table 8 Impact of uncertainty
on spectral abscissa (Scenario
03: load increase)

Probabilistic design Deterministic design

μσmax σσmax Pr {σmax < 0} μσmax σσmax Pr {σmax < 0}
2.5% −0.2030 4.191e−05 100% −0.2022 1.1437e−05 100%

5.0% −0.2030 8.4175e−05 100% −0.2022 2.3343e−05 100%

10.0% −0.2030 1.8053e−04 100% −0.2022 5.1059e−05 100%

heightened. Figure12 provides a comparative view of
the (probability density functions) PDFs at varying lev-
els of uncertainty when the parameters provided by the
probabilistic approach are considered. However, for the
deterministic design, the security probabilities are lower
than those obtained in the probabilistic design, empha-
sizing the importance of the proposed approach in this
paper;

• from Table 10, it is possible to see that under load
and wind power generation reduction, the probability
of security is nearly zero when the parameters provided
by the deterministic approach are employed. Although
the probability Pr {ξmin ≥ ξd} is also reduced when the
parameters from the proposed probabilistic approach are

used, a safe level is obtained. Finally, as given in Table 11,
under load increase, the PSSs adjusted by using a prob-
abilistic approach also provide greater levels of security.

4.6 Validation considering theMonte Carlo
Simulation

As detailed in Sect. 2.4, the total number of uncertain vari-
ables is n = 2nb+ nren = 2× 39+ 1 = 79. In this context,
the unscented transformation utilizes a set of 2n + 1 = 159
sigma points, which are deterministically calculated sam-
ples. Consequently, 159 deterministic modal analyses are
performed for each probabilistic small-signal analysis. This

Table 9 Impact of uncertainty
on damping ratio (Scenario 01:
base case)

Probabilistic design Deterministic design

μξmin σξmin Pr {ξmin ≥ ξd } μξmin σξmin Pr {ξmin ≥ ξd }
2.5% 10.445% 0.011% 100.00% 10.333% 0.214% 94.04%

5.0% 10.447% 0.023% 100.00% 10.227% 0.438% 69.81%

10.0% 10.393% 0.381% 84.90% 10.00% 0.931% 50.10%

Table 10 Impact of uncertainty
on damping ratio (Scenario 02:
load and wind generation
reduction)

Probabilistic design Deterministic design

μξmin σξmin Pr {ξmin ≥ ξd } μξmin σξmin Pr {ξmin ≥ ξd }
2.5% 10.495% 0.092% 100% 7.848% 0.260% 0

5.0% 10.427% 0.277% 93.84% 7.843% 0.521% 0.0018%

10.0% 10.241% 0.720% 63.10% 7.803% 0.993% 1.35%
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Table 11 Impact of uncertainty
on damping ratio (Scenario 03:
load increase)

Probabilistic design Deterministic design

μξmin σξmin Pr {ξmin ≥ ξd } μξmin σξmin Pr {ξmin ≥ ξd }
2.5% 10.777% 0.089% 100% 10.259% 0.073% 99.98%

5.0% 10.717% 0.188% 99.99% 10.222% 0.141% 94.29%

10.0% 10.58% 0.442% 90.53% 10.119% 0.359% 62.97%

Fig. 12 Comparison of PDF of minimum damping ratio for different
levels of uncertainty (scenario 01 using the PSS’s parameters provided
by the proposed approach)

number is significantly lower than that typically used in
Monte Carlo simulation, which ranges from 103 to 104.
This reduction is notable, especially considering the number
of individuals and generations in the particle swarm opti-
mization (PSO) process, which involves 25 particles across
20 iterations (25 × 20 = 500). Thus, the total number of
deterministic modal analyses in the proposed approach is
159 × 500.

Considering the base case (scenario 01) and the PSS
parameters given in Table 15, the mean and standard devi-
ation of the damping ratio and spectral abscissa obtained
from the unscented transformation are compared with those
from the Monte Carlo simulation (MCS) in Tables 12 and
13. Despite its substantial computational demand, MCS is a
benchmarkmethod. Two distinctMCSswere conducted, one
with 103 samples and another with 104 samples. The findings
demonstrate that the proposed methodology, which relies on
the unscented transformation using only 159 samples, yields
results consistent with those from MCS. The effectiveness
of the unscented transformation (UT) is further evidenced in
Fig. 13, which displays a close match between the probabil-
ity density functions of UT and MCS. The same conclusion
can be drawn from Table 13 that brings the spectral abscissa.

Fig. 13 Comparison of PDF of minimum damping ratio

Table 12 Probabilistic analysis of damping ratio (scenario 01—base
case)

μξmin σξmin Pr {ξmin ≥ ξd }
UT 10.4466 0.0228 100.0000%

MCS (103) 10.4457 0.0224 100.0000%

MCS (104) 10.4467 0.0224 100.0000%

Table 13 Probabilistic analysis of spectral abscissa (scenario 01—base
case)

μσmax σσmax Pr {σmax < 0}
UT −0.2035 0.0000 100.0000%

MCS (103) −0.2035 0.0000 100.0000%

MCS (104) −0.2035 0.0000 100.0000%

4.7 Nonlinear time-domain simulation considering
the base case

This paper addresses the issue of small-signal stability.
However, in agreement with the findings reported in the lit-
erature [7], it is also essential to perform a transient stability
analysis. Typically, transient stability analysis is executed
using nonlinear time-domain simulations. In this section, a
simulation of a three-phase fault is performed, considering
the base case and optimized controllers (see Tables 15 and
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Fig. 14 Terminal speed—generator 32

16). A short circuit is applied on bus 11 for 50 ms, and it
is cleared by opening the transmission line 10–11 after the
same duration, followed by a reclosure after another 50 ms.

Figure14 illustrates the behavior of the terminal speed for
generator 32, in the base case, since it is close to the faulted
line. It is calculated with respect to generator 39 (�ω32−39).
It is possible to see that the probabilistic tuning provided a
slightly better solution (damped oscillation).

5 Conclusion

The proposed approach for the probabilistic design of
conventional power system stabilizers, combining particle
swarm optimization and unscented transformation, yielded
promising results. First, it was observed that the unscented
transformation requires fewer samples to evaluate proba-
bilistic small-signal stability compared to the Monte Carlo
simulation. This efficiency highlights the UT’s effective-
ness. Second, when comparing the results of UT and MCS,
including mean values, standard deviation, probabilities of
satisfying security (minimum damping ratio) and stabil-
ity (spectral abscissa) requirements, and probability density
functions, a good agreement was found between both meth-
ods. This indicates the reliability of UT in probabilistic
assessments. In addition, the probabilistic proposed approach
provided better robustness than the deterministic approach,
mainly for operating conditions not considered in the design
stage. Since the probability of meeting the security require-
ment might be less than 100% for uncertainty levels not
considered in the design, future works will be focused on
considering a multi-scenario probabilistic approach. Lastly,
nonlinear time-domain simulations confirmed the feasibility
of the results in terms of angular transient stability, validating
the practical applicability of the proposed approach.

Appendix A

This appendix presents the generator model employed in this
paper. It is a third-ordermodel comprisingEqs. (31)–(33) (for
a given generator k). Equation (34) describes the first-order
model of the automatic voltage regulator in Fig. 1 [7].

�̇δk = ωs · �ωk (31)

�ω̇k = �Pmk

2Hk
− �Pgk

2Hk
− Dk

2Hk
· �ωk (32)

�Ė ′
qk = −�E ′

qk

T ′
d0k

−
(
Xdk − X ′

dk

)
T ′
d0k

· �Idk + �EFDk

T ′
d0k

(33)

�ĖFDk =−�EFDk

TAk
+ KAk

TAk
·(�VREFk − �Vk+�VPSSk)

(34)

where

• Dk is the damping constant (pu);
• �EFDk is the field voltage (exciter output) (pu);
• �E ′

qk is the internal voltage (pu);
• Hk is the inertia constant (s);
• �Idk is the d-axis stator current (pu);
• �Pmk is the mechanical power (pu);
• �Pgk is the electrical power (pu);
• T ′

d0k is the d-axis open-circuit time constant (s);
• X ′

dk is the d-axis transient reactance (pu);
• Xqk is the q-axis synchronous reactance (pu);
• �VREFk is the reference voltage (pu);
• �Vk is the terminal voltage (pu);
• �VPSSk is the PSS voltage (pu);
• ωs is the synchronous speed (rad/s);
• �ωk is the rotor speed deviation (pu).

Appendix B

The deterministic approach for the design of power system
stabilizers is presented in (35)-(40). It aims to allocate the
dominant eigenvalue (associatedwith theminimumdamping
ratio) in a region where ξmin is close to ξd , ensuring a level
of security and stability, as given in (36)-(37).

min f (x) = | ξmin − ξd | (35)

ξmin ≥ ξd (36)

σmax < 0 (37)

Kmin
p ≤ Kp ≤ Kmax

p (38)

αmin
p ≤ αp ≤ αmax

p (39)

ωmin
p ≤ ωp ≤ ωmax

p (40)
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The solution of (35)-(40) is carried out using PSO, where
(38)-(40) are treated by the optimization method. Each indi-
vidual is evaluated by employing the deterministic analysis of
small-signal stability discussed in Sect. 2.1, where Eqs. (36)–
(37) are integrated as penalties within the objective function
of (35) in case of violations.

Appendix C

This appendix presents the limits of the optimization vari-
ables in Table 14. The parameters adjusted by the probabilis-
tic and deterministic approaches are presented in Tables 15
and 16.

Table 14 Limits of PSS parameters

Kp αp ωp

Lower 0.01 0.10 1.25

Upper 40 10 30

Table 15 PSS parameters—probabilistic design

Kp αp ωp

30 40.0000 10.0000 7.5926

31 16.8832 10.0000 13.5350

32 30.4979 7.8315 10.6940

33 36.9414 10.0000 19.1145

34 24.8381 9.9401 23.8874

35 33.1318 9.0207 20.7493

36 22.4296 5.0425 16.0664

37 11.9922 9.0746 7.9857

38 21.6856 3.9891 30.0000

Table 16 PSS parameters—deterministic design

Kp αp ωp

30 31.4354 10.0000 3.4672

31 28.7777 6.8904 14.5810

32 40.0000 8.9793 14.1224

33 13.1306 10.0000 11.1220

34 16.2801 4.4570 24.2646

35 30.5641 5.2943 13.3238

36 22.8738 5.9281 19.6086

37 18.6969 6.1518 12.3841

38 18.6135 3.6758 30.0000

Appendix D

To elucidate the probabilistic small-signal stability analysis
process, detailed in Sect. 2.3 (Fig. 3), Fig. 15 is presented.
This analysis considers a scenario in which two generators
are equipped with a single power system stabilizer (PSS), as
outlined in Step 1. The primary goal is to compute the mean
and standard deviations of σmax and ξmin . Accordingly, a
sample is generated in Step 2, followed by the calculations
for σmax and ξmin in Steps 3 to 6. Given theMonte Carlo sim-
ulation (MCS) framework, Steps 3 to 6 are repeated across
multiple samples. The process culminates in the computation
of the mean and standard deviations.
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Fig. 15 Calculation of σmax and
ξmin in MCS environment
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