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Abstract
This research paper focuses on an intelligent energy management system (EMS) designed and deployed for small-scale
microgrid systems. Due to the scarcity of fossil fuels and the occurrence of economic crises, this system is the predominant
solution for remote communities. Such systems tend to employ renewable energy sources, particularly in hybrid models, to
minimize fuel costs and promote environmental sustainability. However, in small-scale microgrids, a significant challenge
lies in maximizing power utilization amidst rapid variations in ecological conditions in renewable energy resources, ensuring
energy balance during peak demand, and preventing wastage during low demand condition. To address these issues, this
research focuses on two main areas. Firstly, the implementation of the GWO-tuned feed-forward neural network MPPT
algorithm in both solar and wind energy conversion systems. This control algorithm demonstrates superior performance
compared to existing controllers by efficiently tracking the maximum power point (MPP) value and rapidly utilizing the
available power. Secondly, IoT-based energy monitoring system is implemented in small-scale microgrid systems to track the
real time of data from sources like wind, solar, and batteries. Furthermore, intelligent rule-based strategies are employed to
enhance the control function of EMS and ensure stability within the microgrid. This system effectively manages microgrid
demandandprevents powerwastage. In this specificEMSsetup, the battery storageunit is a key component, but challenges arise
when there are sudden load and power generation fluctuations, leading to disruptions in control mechanisms. To address this, a
GWO-tuned ANN controller is integrated into the voltage control loop of the battery controller unit, effectively correcting DC
bus voltage fluctuations and maintaining stability. The entire work has been designed, and system performances are analyzed
in the MATLAB Simulink environment and compared with existing work. The simulation results have been validated by
means of experimental setup.
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1 Introduction

The rapid expansion of industries in modern civilization and
excessive use of non-conventional energy sources lead to
the energy crisis that suspiciously affects rural communities
and also impacts the environment [1, 2]. So, the develop-
ing countries are deciding to generate the power through
renewable energy sources, in addition to creating the new
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distribution system for eco-friendly, minimize the operat-
ing cost, reduce the power loss, supply continuous power
in rural areas and reduce the tariff to consumers [3–5]. The
above-mentioned constraints are suitable formicrogrid (MG)
systems. It consists of renewable energy sources like PV and
windwith energy storage systems connected on conventional
grid [6–11] as illustrated in Fig. 1.

The majority of benefits are available in microgrid even
though some of the technical issues present. The maximum
energy utilization in hybrid RES is very difficult because
the energy sources are intermittent in nature and the second
issue is power balance between sources and sudden rais-
ing consumers load [9], due to improper scheduling of the
load for non-availability of hybrid energy resource. Further-
more, ineffective controlmechanism for batterymanagement
system causes cycle aging, temperature sensitivity and an
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Fig. 1 Diagram of general
microgrid system

imbalance in the state of charge (SOC), resulting in an
unstable DC bus voltage [12–15]. To tackle the mentioned
concerns, a proposed intelligent energy management system
aims to enhance the performance of small-scale microgrid
systems. The energy management primary work is to opti-
mize the use of energy from hybrid resources and minimize
energy wastage. [16], second with the absence of hybrid
source the battery energy storage system effectively works
to maintain power balance to make system reliable, third an
islanded mode hybrid power generation-based proper load
scheduling action is taken to regulate the voltage and fre-
quency in standard level, and finally, the entire work is
smartly monitoring and coordinally controlling the micro-
grid system to make it reliable, stable and economic [17–22].
In a small-scale microgrid system, a hybrid power source is
required to ensure sustainability. Such sources necessitate an
efficient controller for optimal utilization of power. In off-
grid mode, it is essential to maintain a balance in energy
supply by utilizing battery backup with the assistance of
advanced controllers for charging and discharging during
rapid variations in load and input power. Furthermore, real-
time monitoring and a smart management system are crucial
for ensuring the reliability and stability of the system. From
the above discussion work, the control measures are found
based on the literature review step by step.

In the domain of hybrid energy systems, the primary
emphasis of researchers is on enhancing energy efficiency
and reducing greenhouse gas emissions, specifically in on-
grid, off-grid and grid integration scenarios [23–27]. Some
scholars delve into the analysis ofmodeling and sizing hybrid
systems [28–30]. One group of authors implemented a hybrid
system to provide battery backup for ensuring power relia-
bility to end-users [31, 32]. Furthermore, authors [33] offer
a detailed review of the design, modeling and optimization
techniques related to hybrid systems. Recent articles indicate
that hybrid systems are well-matched for microgrid applica-
tions due to their improved power supply reliability, efficient
utilization of diverse resources, energy self-sufficiency, and
reduced environmental impact. However, certain limitations
are also noted, including dependency on weather conditions,

technical challenges such as grid integration and maintain-
ing voltage and frequency regulation in off-grid conditions,
as well as the increased complexity in design, control topolo-
gies, and maintenance when more renewable energy sources
are installed. Based on the aforementioned observation, I
deduce that effective control techniques are imperative in
microgrid hybrid solar–wind systems with battery integra-
tion. Furthermore, a detailed examination of the solar energy
conversion system,wind conversion system, and battery stor-
age systemcontrol algorithmswill be conducted sequentially.

Practically, solar and wind energy conversion efficiency is
low such as 17–21% and 20–40%, respectively. The observa-
tionmust bemade that the level of effectiveness in converting
energy is of moderate quality, so to enhance the efficiency of
converting renewable energy, it is crucial to employ a profi-
cient control algorithm. The solar energy conversion system
employs traditional maximum power point tracking (MPPT)
algorithms such as hill climbing (HC) [34], incremental con-
ductance (IC) [36, 37], modified incremental conductance
method (MICM)[38, 39], perturb and observe (P&O) [40]
and finally improved perturb and observemethod (IPSO) [41,
42] within its controller and it facilitates the effective tracing
of the maximum power point, leading to an overall improve-
ment in system performance. These controlled algorithms
are simple, robustness and effectively track MPP in constant
ecological condition, but rapid variation of these controller
tracking abilities is very less and produced the oscillated
reference signal. To overcome this issue, the soft computing-
based MPPT methods are developed in past few years like
particle swarm optimization (PSO) [43–45], genetic algo-
rithms (GA) [46], grey wolf optimization [47], artificial bee
colony (ABC) [48], cuckoo search (CS) [49], ant colony
optimization (ACO) [50], cat swarm optimization (CSO)
[51], Jaya algorithm (JA) [52], firefly algorithm (FA) [53],
bacterial foraging optimization (BFO) [54], flower pollina-
tion algorithm (FPA) [55] and gravitational search algorithm
(GSA) [56]. These methods have high MPP tracking effi-
ciency, less steady-state oscillation and high conversion ratio,
and each algorithm has unique characteristics and used
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only particular application. But these soft computing tech-
niques have some certain drawbacks, the GA, PSO, ABC
and other metaheuristic optimization algorithms are suffered
from computationally expensive, required initial parameter
tuning, convergence speed and lack of robustness. Let’s now
explore intelligent algorithms that are based on human char-
acteristics, like fuzzy logic, and artificial neural networks
(ANN). Then the fuzzy logic algorithms struggled to adapt
to dynamic and rapid variation in environmental condition
and large-scale system to design a fuzzy rules and mem-
bership function is very difficult [57–61]. Finally, artificial
neural network (ANN) control method is an ability to capture
the nonlinear correlation among input and output variables
of PV system. So it tracks the accurate MPP and adapts for
various ecological conditions in PV system without the need
for manual recalibration [62–66]. However, such algorithms
have some drawbacks, such as: i) they require ample and
meaningful training data to accurately understand the asso-
ciation between input variables (temperature and irradiation)
as well as the productivity variable (PV maximum power
point voltage (Vmpp)), ii) ANN parameter tuning (number
of hidden layer, weight), and iii) overfitting, which means
inaccurate training data or missing data to produce the poor
performance in dynamic condition.

Based on my examination of control algorithms for con-
verting solar energy, they can be categorized into three main
groups: 1. traditional approaches (like P&O, ICM and HC),
2. soft computing methods (such as PSO, GA, GWO, ACO,
ABC, FA and others) and 3. intelligent algorithms inspired
by human behavior (like fuzzy and ANN). While these
algorithms are appropriate for specific purposes, the rapid
fluctuations in environmental data and system requirements
may result in limitations, as discussed in the aforementioned
literature. The concise literature review can be condensed
into Table 1 according to its effectiveness.

In the realm ofwind energy conversion systems (WECSs),
there exists a captivating pursuit to enhance the power capa-
bilities of the wind turbine. This quest involves the intricate
task of tracing and operating at the pinnacle of the tur-
bines power curve, otherwise known as the maximum power
point (MPP). In this review section, a detailed overview
of the established method of wind energy conversion sys-
tem (WECS) is introduced. The pitch angle control method
[67], tip speed ratio control method [68, 69] and optimal
torque control [70] are utilized to enhance the mechanical
output power from the wind turbine, known as the indi-
rect control method. On the other hand, methods such as
P&O [71] and ICM [72] are employed to directly maximize
the obtained output power in the wind turbine, referred to
as direct power control. Additionally, as previously men-
tioned, soft computing techniques such as genetic algorithm
(GA) [73], particle swarm optimization (PSO) [74], cuckoo
search (CC) [75] and grey wolf optimization (GWO) [76]

are employed to optimize the generator power. Further-
more, human intelligent-based algorithms such as fuzzy logic
[77] and artificial neural network (ANN) [78] exhibit more
advanced capabilities compared to the aforementionedmeth-
ods for maximizing power utilization from WECS. Various
MPPT methods have been reviewed and scrutinized for their
advantages and disadvantages, and improvements are recom-
mended in Table 2.

In rapid variation load (or) renewable energy resources
absence, the energy storage system is needed for microgrid
system especially for islanded mode. But it is a challeng-
ing task to transfer power in a storage device to load and
RES to storage device; the bidirectional power flow opera-
tion is done in an effective controller. In recent years, many
controllers are created for the battery energy storage system
(BESS) such as PI [79], PID [80], single phase shift [81],
extended phase shift [82], dual phase shift [83], fuzzy logic
[84, 85], sliding mode controller [86] and model predictive
controller [87]. While these controllers are effective in situa-
tions where input parameters experience minor fluctuations,
they are not suitable for rapid variations. The existing con-
troller details are mentioned in Table 3. In addition, certain
important actions are required in BESS. This includes con-
sistently monitoring the battery’s state of charge, current and
voltage to improve its lifespan and decrease stress on the bat-
tery and finally regulating battery charging and holding the
discharging within the boundary condition.

Within a microgrid energy management system, the pri-
mary function is to conduct various tasks such asmonitoring,
analyzing and predicting power generation from renew-
able energy resources, load consumption, energy market
prices, ancillarymarket prices andweather conditions. These
tasks assist the EMS in optimizing the operation of the
microgrid, while ensuring technical constraints like energy
balance, operational and maintenance costs of the energy
storage system, demand response, operational and mainte-
nance costs of traditional generators, reliability, greenhouse
gas emission costs, andmore are met.Many researchers have
explored EMS strategies using different methods to achieve
the best and most effective operation of the microgrid. In
my detailed examination of microgrid energy management
system (EMS), various researchers are employing the fol-
lowing methodologies: linear and nonlinear programming
methods [79, 80], dynamic programming [81, 82], rule-based
methods [83, 84], metaheuristic approaches (such as matrix
real coded genetic algorithm [94], particle swarm optimiza-
tion [95], slime mold algorithm [96, 97], cockroach swarm
algorithm [98], gravitational search algorithm [99]), artifi-
cial intelligent methods (including fuzzy logic [114] and
neural networks [115]) and model predictive control [116].
The aforementioned methodologies enable researchers to
efficiently optimize their individual work objectives. The
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Table 1 SECS MPPT
Comparison MPPT

method
Dynamic
response

Steady
state
oscillation

Control
accuracy

Tracing
speed

Overall
efficiency

Sensed
parameters

Stability

HC [34] Poor Large Low Slow Medium V & I Poor

P&O
[40]

Poor Large Low Slow Medium V & I Poor

IP&O
[41,
42]

Moderate Large Accurate Slow Medium V & I Moderate

INC
[36,
37]

Moderate Large Accurate Slow Medium V & I Moderate

MINC
[38,
39]

Moderate Medium Accurate Moderate Medium V, I, Moderate

PSO
[43–45]

High Medium Accurate Fast Moderate Varies Moderate

GA [46] High Medium Accurate Fast Moderate Varies High

GWO
[47]

High Zero Accurate Fast High Varies High

ABC
[48]

High Small Accurate Fast High Varies High

CS [49] High Zero Accurate Fast High Varies High

ACO
[50]

High Small Accurate Fast High Varies High

CSO
[51]

High Zero Accurate Fast High Varies High

JA [52] High Zero Accurate Fast High Varies High

FA [53] High Zero Accurate Fast Moderate Varies High

BFO
[54]

High Zero Accurate Fast Moderate Varies High

FPA
[55]

High Zero Accurate Fast Moderate Varies High

GSA
[56]

High Zero Accurate Fast High Varies High

FUZZY
[57–61]

Moderate Small Accurate Fast High Varies High

ANN
[62–66]

Medium Small Accurate Fast High Varies High

V- PV voltage, I- PV current, T- temperature, G- irradiation: varies – based on constrains use V, I, T, G

analysis of the benefits and limitations of these methods is
provided in Table 4.

In a microgrid communication system, the continuous
monitoring of real-time data is essential. This is necessary to
ensure grid stability, enhanced energy management, detec-
tion and isolation of faults, data analysis and optimization
through the predominant communication data. Therefore,
it is crucial to continuously monitor real-time data such
as solar, wind, battery and load parameters to manipulate
energy management operations, balance power demand and
minimize wastage. By utilizing communication systems, we
can reduce operational costs and enhance grid reliability.

The communication system can be classified into two cat-
egories: wired and wireless technologies. Wired systems,
including DSL, PLC and fiber optics, provide faster data
transmission and higher reliability, albeit at a greater instal-
lation cost. In contrast, wireless systems such as Zigbee,
GSM and IoT are more economical to implement, making
them the preferred choice for remote locations. In a micro-
grid system, researchers working in rural areas prefer an
IoT-based communication system [100–103]. Furthermore,
some researchers [104–106] are implementing IoT-based
energy management strategies, including demand response
programs, to enhance the performance of microgrids and
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Table 2 Comparison for WECS control method

Method Benefit Drawback

Pitch angle control
[67]

Control power production efficiently when there is a high
wind speed

Due to blade misalignment and mechanical
deterioration in wind-driven vehicles, pitch angle
adjustment can impair power output

Tip speed control
[68, 69]

Regulates power production, balances energy supply and
demand and lowers frequency variations to maximize
power collection, safeguard turbines from over-speeding
and improve grid stability. This makes sure that wind
energy is effectively converted into electrical energy

Tip speed control reduces power production in low
wind conditions, increases blade fatigue and wear
and requires sophisticated algorithms and sensors
for wind speed tracking and pitch angle
adjustments, increasing system costs and
maintenance requirements

Generator optimal torque
control
[70]

For optimum performance in varying wind conditions, it
maximizes power production, improves energy capture
and adapts to wind conditions

It necessitates sophisticated algorithms and sensors,
putting strain on wind turbine parts and raising the
possibility of power imbalances that might impair
grid quality or stability

P & O
[71]

Simple, low-cost implementation that works with several
types of wind turbines

Losses, a delayed reaction to changes in wind speed,
and a sensitivity to erroneous tracking are all results
of oscillations around the power point

ICM
[72]

Enhanced precision in monitoring, management of
environmental situations, mitigation of the impact of
partial shading and attenuation of oscillatory behavior

Number of sensors increased compared to P&O,
complex control algorithms, computational
demands, slow response to wind conditions

GA
[73]

GA-based MPPT algorithms, through global optimization,
can efficiently identify the maximum power point in wind
energy systems without needing a specific mathematical
model, and can adapt to changing conditions and be
implemented in parallel for optimal efficiency

Proper tuning of algorithm parameters is essential for
effective performance, which may necessitate
expertise and extensive experimentation, while
GA-based algorithms might converge slowly due to
needing a large number of iterations, especially in
dynamic or noisy environments, and the
performance of GA-based MPPT algorithms can be
affected by initial population settings and genetic
operators, potentially leading to suboptimal
solutions if not properly initialized or tuned

PSO
[74]

PSO-based MPPT algorithms provide effective global
optimization and can adjust to changing environments

Algorithm might face challenges such as restricted
exploration in intricate terrains, early convergence,
parameter sensitivity and getting stuck in local
optimal solutions

CC
[75]

Cuckoo search-based MPPT algorithms for wind energy
conversion systems are designed to efficiently optimize
globally by imitating the parasitic behavior of cuckoo
birds. They demonstrate rapid convergence rates and can
accurately locate the maximum power point (MPP)
across different wind conditions

They might face challenges in intricate solution
landscapes, potentially resulting in premature
convergence and less than optimal solutions.
Moreover, fine-tuning parameters is essential for
achieving peak performance, as the sensitivity to
parameter configurations could influence the
algorithm’s effectiveness

GWO
[76]

Grey Wolf Optimization (GWO)-based MPPT algorithms
utilize the grey wolves’ hunting behavior to efficiently
locate the maximum power point (MPP) in intricate
solution spaces. These algorithms show quick
convergence and excellent global optimization abilities,
proving to be effective in various wind conditions

GWO algorithms might be sensitive to parameter
configurations, necessitating precise adjustments for
optimal performance. Furthermore, they could
encounter challenges in dealing with solution
landscapes that have multiple modes, which could
potentially result in less than optimal solutions

Fuzzy logic
[77]

Proficient in managing uncertain and imprecise wind
conditions. It integrates linguistic variables and
regulations to capture subjective wind speed, which in
turn facilitates precise monitoring of the highest power
points

Fuzzy logic controller design and tuning is difficult
and time-consuming, requiring accuracy and
knowledge of wind energy systems. Performance
might suffer in unfamiliar wind conditions due to
poor generalization and inadequate representation

ANN
[78]

These algorithms are capable of adjusting to varying wind
conditions and effectively managing nonlinear system
dynamics. ANN algorithms show rapid convergence and
have the ability to understand intricate connections
between input variables and the best power output level

ANN demands substantial computational resources
during training and may encounter overfitting issues
if not trained properly
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Table 3 Comparison of different controller for BESS

Bidirectional converter
controller

Benefit Drawback

PI
[79]

Control algorithm that is widely used and well
understood,
Excellent steady-state and transient responsiveness
It is simple to adjust for diverse system dynamics.
Implementation is rather straightforward

Inability to deal with nonlinear systems and
uncertainty
Manual adjustment may be required for best
performance
Variations in system parameters can have an
impact on performance

PID
[80]

The enhancement of dynamic response and robustness
in controlling battery bidirectional converters results
in improved system performance

PID controllers are characterized by a higher level
of complexity in both design and implementation
when compared to PI controllers, necessitating a
greater allocation of computational resources
and specialized knowledge

Single phase shift
[81]

The design of converters decreases the number of
components required, resulting in cost reduction
This approach improves the efficiency of the system
by reducing switching losses commonly linked to
traditional PWM control

Limited control flexibility, in comparison to more
intricate modulation methods, can result in
decreased performance when faced with
fluctuating load conditions caused by a fixed
phase shift

Extended phase shift
[82]

It allows for a more precise regulation of power
distribution, leading to increased efficiency and
quality of power conversion
This method demonstrates superior operational
capabilities in response to fluctuations in load
compared to employing single phase shift control

The creation and execution of controllers could
result in elevated expenses and demands for
resources
The utilization of extended phase shift control
might bring about extra switching losses and
harmonic distortions, necessitating meticulous
optimization

Dual phase shift
[83]

It enables improved power flow balancing and reduced
ripple in battery bidirectional converters, ultimately
enhancing the overall stability of the system
This approach provides greater flexibility and
precision in control when compared to single phase
shift techniques, particularly in managing uneven
loads

Control can lead to a higher level of intricacy in
the development and execution of controllers,
which could potentially lead to elevated costs
and necessitate specialized knowledge
The requirement for accurate adjustments to the
phase angle may pose difficulties in attaining
optimal performance in fluctuating operational
scenarios

Fuzzy logic
[84, 85]

Capability to deal with nonlinear systems and
uncertainty
Can efficiently capture expert knowledge and
language rules
Provides durability and versatility
Capable of handling complicated control settings

Difficult to tune and optimize the fuzzy rules
Increased computational complexity compared
to other controllers
May require a large rule base to achieve desired
performance
A broad rule base may be required to get the
necessary performance

Sliding Mode Controller
[86]

Robustness to changes in and disturbances to
parameters
Rapid dynamic responsiveness and precise tracking
Simple tweaking and installation procedures
Suitable for highly unpredictable and nonlinear
systems

Electrical noise and high-frequency switching
There may be a chattering phenomenon, which
puts more strain on the system’s parts
Sensitivity to errors in system modeling
In order to balance performance and chattering,
careful tweaking may be necessary

Model predictive control
(MPC)
[87]

It demonstrates enhanced efficacy in monitoring
specified operational settings and managing
limitations in battery bidirectional converters
It allows for adaptability in enhancing various
objectives concurrently, including efficiency, power
quality, and system stability

It can be difficult to acquire in real-world
scenarios. MPC necessitates significant
computational power and immediate fine-tuning,
which could result in increased expenses and
intricacy
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Table 4 Comparison of different control methods for EMS

Methods Benefit Drawback

Linear And Nonlinear
Programming
[88, 89]

The Micrgrid combines power sharing, continuous run
and on/off modes
Minimize operating costs of conventional generators
(CGs), while adhering to droop controlled active and
reactive power dispatch constraints

It is essential to evaluate the impact of depth of
discharge (DOD) on battery efficiency,
greenhouse gas emissions of conventional
generators on the environment, privacy concerns
of customers, integration of demand response
(DR) and the reliability of the system

Dynamic programming
[90, 91]

The objective function includes the operational cost of
CGs and penalty cost on load shedding, with the
Pontryagin maximum principle utilized to reduce
computational time;
Selecting a higher DOD accelerates battery
degradation, while DR is not factored in the
centralized forecasted cash flow minimized by
minimizing energy trading cost with the main grid
and battery aging cost

A significant amount of effort is needed to address
environmental pollution, incorporate demand
response, and address privacy concerns in
optimizing microgrid systems

Rule-based methods
[92, 93]

The power balancing of building integrated microgrids
is maintained along with stabilization of DC bus
voltage
The central EMS overseeing the energy operation of
the entire microgrid and the prosumer EMS handling
power imbalances in the prosumer system

Generation of renewable energy resources, voltage
regulation of MG system, operation cost, energy
transaction cost and DR are all excluded from
consideration

Matrix real coded genetic
algorithm
[94]

Smart EMS model, where distributed energy resources
marginal price bids are utilized to reduce the
operational cost of Microgrid

The emission cost of microturbine and DR are not
being taken into account

Particle Swarm Optimization
[95]

EMS uses a power offering strategy based on PSO to
minimize costs and coordinates DERs to minimize
power fluctuations, aiming to optimize revenue for
Virtual Power Plant

The minimization of power peaks is a recently
established goal, while the maximization of
profit within the energy market is deemed crucial

Slime mold algorithm
[96, 97]

This research delves into optimizing the performance
of an independent microgrid by integrating the
demand response program (DRP) to enhance energy
management efficiency and reduce costs and
emissions
A rapid methodology decreases operating costs and
emissions by utilizing various renewable sources

Challenges arise from fluctuations in
unpredictable renewable energy sources and
varying energy consumption levels

Cockroach swarm algorithm
[98]

A cost-effective microgrid-based energy management
system was created for off-grid and on-grid systems
with solar PV generation and batteries, utilizing an
improved cockroach swarm optimization technique
for daily cost analysis

Conflicting interests of builders and future
residents are reconciled through optimization to
address challenges in the optimal installation of
energy components in residential complexes

Gravitational search algorithm
[99]

The operating expenses of a standalone microgrid are
reduced by taking into account three different
situations: regular operation, peak electricity demand
and the ability to easily connect new components

High depth of discharge (DOD) results in a rapid
decline in battery lifespan. The environmental
impact of carbon generation is not taken into
account

achieve energy and cost savings. Based on the observation,
this system includes energy monitoring to optimize micro-
grid operation, enabling remote management through the
internet and improving energy management. This benefits
both consumers and power companies.

In this section, recent work on a small-scale microgrid is
reviewed to identify research gaps for my proposed work.
In [107] the author suggests a small-scale system using a
traditional MPPT algorithm, but one notable advancement
in the experimental setup is the rapid control prototyping

model for testing various control algorithms in future. In the
same author’swork, a rule-basedEMS is developed, although
a traditional MPPT method is utilized. In [108] the author
incorporates WECS and PVES, proposing the gain sched-
uled proportional integral controller in the paper. In [109]
the author conducts real-time control using rapid control
prototyping to experimentally test and validate the control
algorithms of the microgrid system. Another author [110]
focuses on an energy management strategy that regulates the
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energy flow between the hybrid microgrid system and the
loads connected directly or to the utility grid.

Based on the literature review, it is apparent that small-
scale microgrids necessitate highly efficient control algo-
rithms for fully leveraging the potential power generation
of hybrid systems. Furthermore, a dependable monitoring
and management system is essential for maintaining the per-
formance of the microgrid. Additionally, in hybrid setups,
having a battery backup with a sophisticated charging con-
troller is crucial to maintain power equilibriumwhen dealing
with fluctuating load and generation scenarios.

In this research, ANN-basedMPPT algorithm is proposed
in the solar and wind energy conversion system controllers
and also battery storage system. Furthermore, to improve the
performance of ANN controller the two major key issues
such as significant training data and hyper parameter (hid-
den layer and initial weight) will be resolved in this work.
For example, the real-word data are collected from NASA
Research Center System as depicted in Fig. 2 and trained the
neural network properly to avoid overfitting and the rapid
variation of input variables the accurate output will pro-
duce in controller because of significant data will trained
in ANN. Generally, the neural network initial weigh and bias
of the network are generated by back-propagation algorithm
and number hidden layer value set by user. Such algorithm
is susceptible to getting trapped in local optima, especially
for complex problem with high-dimensional data. This issue
is resolved by grey wolf optimization algorithm which is
applied in ANN to generate optimized value of the initial
weight and number of hidden layer. This optimized ANN
parameter avoids the local optima trapped and produces the
very minimum mean square error value, so it improves the
performance of ANN to predict the optimal output value. In
this work an IoT-based wireless communication system has
been implemented in a small-scale microgrid system to effi-
ciently monitor real-time data including the values of wind,
solar and battery parameters.Additionally, a simple and intel-
ligent battery state of charge rule-based system, along with
an IoT-integrated energy management system, is established
for small-scale microgrid systems. This system is designed
to balance power demand and minimize power generation
wastage and maintain.

1.1 The summarization of this research work
constitutes its primary contribution

• The proposedMPPT techniques aim to optimize the power
output of each generating unit, encompassing both the
wind-driven generator (WDG) and the PV array.

• GWO-tuned ANN controller is implemented for a BESS
converter to retain the DC bus voltage to a constant mag-
nitude during different sudden disturbances in energy
sources and load.

• IoT-based wireless communication system is imple-
mented.

• Microgrid performance will be enhanced through the
deployment of an intelligent energy management system.

This document is organized as follows: In a beautifully
detailed way, Section 2 provides a comprehensive depic-
tion of the complete system design, converter topologies and
control techniques in an elaborate manner. Section 3 covers
the test system, including multiple case studies and Simula-
tion results. Section 4 describes experimental validation and
results, followed by conclusions in Sect. 5.

2 System description

The proposed small-scale microgrid that has been suggested
is made up of a system that preserves solar energy, another
one that preserves wind energy, and a remarkable storage
system for battery energy. Each conversion system contains
conventional converters, and a unique regulated algorithm
has been created. The entire works are synchronized and
monitored by the intelligent energy management system that
has been proposed, as demonstrated in Fig. 3.

2.1 Solar power generation system (SPGS)

Solar power generation system as depicted in Fig. 4 encom-
passed of PV arrays, conventional boost converter [34–42]
and proposed controller. The solar panel arrays convert light
energy in to electrical energy and boost converter to boost
the solar panel voltage for desire load application with help
of controller. A 500 watts solar panel is used for in this work
and utilized the maximum power with help of optimized
ANNcontrollerwhich is implemented for conventional boost
converter. The various ecological conditions the suggested
controller to track the extreme power effectively and gener-
ate the optimum Vref value, then it will compare with actual
PV voltage it generate error signal after that is goes through
PI controller it generate optimized duty cycle for boost con-
verter.

In addition to turn on and off by MPPT controllers based
on battery SOC condition, if the microgrid system is satis-
fied, the load constraints and the hybrid sources generate the
excess power and the battery will charge continuously; if the
battery SOC increases the above boundary condition, it will
affect the battery components, so avoid this circumstance
of the MPPT controller turn on and off by SOC boundary
condition; once the battery SOC reaches the upper limit, the
MPPT controller automatically turns off, for this effective
operation to reduce the battery stress and increase the lifes-
pan of battery as shown in Fig. 4. 500W solar panel P–V and
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Fig. 2 Real word data: a solar irradiation, b Temperature, c wind velocity

I–V characteristics with the effect of irradiance are shown
in Fig. 5. It is apparent from the aforementioned graphical
depictions that the solar panel exhibits a nonlinear behav-
ior with respect to both voltage and current as the irradiance
changes. The properties are displayed for various levels of
irradiance that span from 250 to 1000 W/m2 while retaining
a persistent temperature of 25 °C and various levels of tem-
perature that span from 25 to 40 °Cwhile retaining a constant
1000 W/m2 irradiance level. An output power of 500Wp is
measured at 12 V at a maximum irradiance level of 1000
W/m2.

2.2 Wind power generation system

The power generated from wind is determined by various
factors. Especially, “it is derived using the air density (ρ),
the surface area swept by the rotor blades (A) and the veloc-
ity of the wind (v)” [67]. The power coefficient, denoted as
Cp, is also taken into consideration and is influenced by the
tip speed ratio (TSR) and pitch angle. In this particular sys-
tem, a wind turbine with adjustable speed is utilized and the
attributes of this turbine can be witnessed in Fig. 6, which
exhibits the Cp values for various wind speeds and pitch
angles [67–70].

P � 1

2
∗ ρ ∗ A ∗ v3 ∗ Cp(λ, θ ) (1)

The wind power generation system contains a turbine
coupled generator setup used to generate AC power, and it
depends onwind velocity. After that, the three-phaseAC sup-
ply undergoes conversion into DC through a diode bridge
rectifier and then increases the rectifier voltage level with
support of DC–DC boost converter. To extract the maximum
power in WECS here, the GWO-tuned ANN-MPPT con-
troller implemented to generate the optimum pulse width for
DC–DC boost converter is shown in Fig. 7.

2.3 Battery energy storage andmanagement system

The BESS comprises a lead acid battery, a DC–DC bidirec-
tional converter [79] and a proposed controller, as illustrated
in Fig. 8. The charging process is contingent upon the sur-
plus power produced by renewable energy resources, while
the discharging process hinges on the load and the absence
of RES. In the proposed work the battery reference current
is generated by ANN controller and the controller hyperpa-
rameter is optimized by grey wolf optimization method; the
design and implementation process is mentioned in detail in
flowchart as shown in Fig. 10. After getting the reference cur-
rent, it will compare actual battery current and then the signal
goes to PI controller; it produces optimized pulsewidth of the
bidirectional DC–DC converter. Equations (2) and (3) offer
the explanations for the battery’s state of charge (SOC) and
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Fig. 3 The proposed small-scale microgrid system

Fig. 4 The proposed solar energy
conversion system with
controller

its corresponding limits.

SOC � 100 ∗
(
1 +

∫
Ibatdt

Q

)
(2)

SOCmin ≤ SOC ≤ SOCmax (3)

Furthermore, the performance of BMS is decided by bat-
tery state of charge (SOC) constraints. This research adheres
to several key measures for an effective battery management
system. Firstly, if the battery SOC limit reaches the upper
boundary value, the solar controller algorithm is turned off,
and the determined power is delivered by the battery until the
SOC value decreases to the lower boundary limit. Secondly,

if the battery SOC limit reaches the lower boundary limit, the
battery is only in charging mode, and if the generation also
decreases at the same condition, load scheduling is done by
EMS system.

2.4 Grey wolf optimization algorithm

The GWOmethod takes motivation from the hunting behav-
ior of grey wolves, who operate in a four-level hierarchy to
capture their prey [111]. The alpha (α) leads the group and is
responsible for making all decisions related to the hunt. The
beta (β) supports the alpha in decision-making and holds a
sub-leadership position. The delta (δ), the third tier of the
hierarchy, must obey the alpha and beta but have authority
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Fig. 5 500W PV module P–V and I–V characteristics under different
situations: a and b show variations in values of temperature (T) while

maintaining a constant irradiance (G) of 1000 W/m2; c and d demon-
strate variations in irradiance (G) while keeping the temperature (T)
constant at 25 °C

Fig. 6 The wind turbine
mechanical attributes in relation
to various wind velocities
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Fig. 7 The proposed wind power
generation system

Fig. 8 The proposed battery
energy storage and management
system

over omega (ω), the lowest rank in the pack, which must
submit to all higher-ranking wolves. The GWO algorithm
partitions possible solutions into four distinct categories in
order to replicate the hierarchical structure of leadership. The
highest-rated solution is known as alpha, the second best as
beta, and the third best as delta,while any remaining solutions
are designated as omega. The process of hunting involves
the encirclement of prey by grey wolves, and this particular
stage can be accurately represented through the utilization of
mathematical Eqs. (4)–(7).

−→
H �

∣∣∣−→C −→
X (t) − −→

X (t)
∣∣∣ (4)

−→
X (t + 1) � |−→X p(t) − −→

A
−→
H | (5)

−→
A � 2−→a −→n1 − −→a (6)

−→
C � 2−→n2 (7)

When referring to the current iteration, t, the position vec-
tors of a search agent

−→
X and the optimal solution

−→
X p, also

known as the prey position, are taken into consideration.
Additionally, coefficient vectors

−→
A and

−→
C can be com-

puted using the equations provided. During the iterations, the
components of vector −→a are gradually decreased in a linear

manner from 2 to 0, while vectors −→n1 and −→n2 are randomly
selected from the range of 0 to 1.

During the hunting phase, α, β, and γ are responsible for
conducting the operation due to their superior understanding
of the probable location of the optimal solution. Other search
agents are required to modify their locations by considering
the position of themost optimal search agent. To achieve this,
the location of the search agent can be adjusted as follows in
Eqs. (8)–(12).

−→
Ha �

∣∣∣−→C1
−→
Xα(t) − −→

X
∣∣∣ (8)

−→
Hβ �

∣∣∣−→C1
−→
Xβ (t) − −→

X
∣∣∣ (9)

−→
Hγ �

∣∣∣−→C1
−→
Xγ (t) − −→

X
∣∣∣ (10)

(11)

−→
X1 �

∣∣∣−→X α − −→
A

−→
Hα

∣∣∣ ; −→
X2

�
∣∣∣−→X β − −→

A
−→
Hβ

∣∣∣ ; −→
X3 �

∣∣∣−→X γ − −→
A

−→
Hγ

∣∣∣
−→
X (t + 1) � (

−→
X 1 +

−→
X 2 +

−→
X 3)

3
(12)

The GWO algorithm is able to seamlessly transition from
exploration to exploitation by utilizing adaptive values for
search and attack of prey, represented by −→a and

−→
A . During
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the exploration phase, half of the iterations are dedicated to
exploring and seeking out prey by decreasing

−→
A and ensur-

ing that |A| is greater than 1. Conversely, during exploitation,
the other half of the iterations are focused on attacking prey
by setting |A| to less than 1.

2.5 ANN controller

In common a feed-forward neural network is comprised of
three layers, namely input, hidden and output layer [112],
as illustrated in Fig. 9. The mathematical definition of the
dispersed dispensation system is represented by Eq. (13).

L �
n∑

J�1

WI J X J + bJ (13)

To effectively train a feed-forward artificial neural net-
work (ANN) system, it is crucial to possess several key
elements: the input training node xj, the associated connec-
tion weights wij for input, hidden and layer nodes, the bias
bj for hidden and output layer nodes, and the total number of
input signals, denoted as n [112]. The widely used method
for this training process is the back-propagation (BP) algo-
rithm. This algorithm, a sophisticated gradient technique,
elevates the performance of the ANN by iteratively adjusting
theweights andbias termsof eachnode.This iterative process
continues until the output value at the output layer accurately
predicts the desired outputs, thereby minimizing the training
error. Fundamentally, the mean-squared error (MSE) acts as
the cost function, which can be mathematically represented
by Eq. (14).

MSE � 1

n

n∑
i�1

m∑
j�1

[L j (i) − Tj (i)]
2 (14)

where ‘n’ denotes the quantity of input data, ‘m’ signifies the
number of output signals. ‘Lj(i)’ represents the factual yield
while ‘Tj(i)’ indicates the target output [112, 113]. During
the process of work, there are two control parameters that
enhance the recital of the system, namely the initialweight for
training nodes and the value of the hidden layer. Generally,
the user sets the values of the hidden layer, while the initial
weights are produced by the BP algorithm. But the usage
of back-propagation algorithm for generating initial weight
values in neural networks has certain drawbacks. Inadequate
initialization may impede convergence, resulting in subopti-
mal solutions or local minima. It does not thoroughly explore
weight space, thereby limiting generalization. Furthermore,
the decision of weight values impacts other hyperparameters,
making the tuning process complicated. Symmetric weights
can decelerate learning, while imbalances may result in gra-
dient issues. It necessitates resource-intensive trial-and-error

to determine appropriate values. The transfer to new tasks is
a challenging process, and random initialization lacks con-
trol over weight distribution. Finally, uncertainty estimation
is not provided.

2.6 GWO-ANN algorithm

As early said, the standard approach to initializing neural
networks employs the back-propagation algorithm to gener-
ate initial weights and biases, while the user determines the
number of hidden layers. Despite its susceptibility to local
optima, this algorithm is still useful for handling intricate
issues that involve high-dimensional data. To tackle these
concerns in this research, the grey wolf optimization algo-
rithm is employed in order to ascertain the preliminaryweight
and concealed layer variables of the artificial neural network
(ANN). Thus, we have implemented a proposed control algo-
rithm which has the capability to precisely assess the growth
of neurons in the hidden layer without any prior selection
by the user and locate optimized initial weight values. Our
belief is that this method will greatly elevate the efficiency
and precision of the ANNmodel through the enhancement of
convergence rate and reduction of training error.Our research
has effectively obtained a neural network with one output
and two inputs for the hidden layer while achieving the low-
est training error. Figure 10 illustrates the sequence of tasks
involved in GWO-ANN, as represented by the flowchart.

2.7 Energymanagement system (EMS)

The microgrid solution is a complicated interconnected net-
work that necessitates exact and synchronized management
to guarantee efficient and dependable operation. The energy
management system (EMS) serves as the primary controller,
overseeing and coordinating all control actions. It plays a
crucial role in managing and directing these actions. The
ongoing research focuses on an intelligent EMS responsible
for regulating various converter controllers that operate based
on the EMS control mode. One example of such a controller
is the non-isolated boost converter in the solar energy con-
version system, which can function in either MPPT mode or
off-MPPT mode depending on power generation and battery
SOC limits. Similarly, the battery bidirectional converter can
either charge or discharge and keeps the DC bus voltage con-
stant. The wind energy conversion system’s DC–DC boost
converter operates in boost mode. However, ensuring power
balance in the microgrid under various power generation and
load demand conditions is a major challenge and it is repre-
sented by mathematical Eq. (15).

PSolar + PWind − PBattery − PLoad � 0. (15)
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Fig. 9 General block diagram of
ANN

Fig. 10 Flowchart for
GWO-ANN Method

Any discrepancy between the power produced and the
power utilized will result that there is a dissimilarity in volt-
age and frequency within the microgrid, thereby potentially
causing instability and harm to the constituent elements.
Therefore, it is essential to maintain a balance between the
power generated and consumed to guarantee the dependable
and efficient operation of the proposed system. In energy
management system (EMS), four distinct modes of operation
are utilized. Initially, in grid-connected mode, the EMS pri-
marily monitors the battery state of charge (SoC), while the
load requirements are met by the grid. Secondly, in islanded
mode, the EMS first evaluates power generation, battery
capacity and load demands. If power generation exceeds the
load demand, surplus power is utilized to charge the battery
and transferred to the grid. In the third scenario, when power
generation is insufficient to meet the demand, the EMS prior-
itizesmaintaining the battery SoCwithin limits. If the battery
SoC is above 20%, power generation is initiated to balance
the load demand. If the battery SoC exceeds 80%, the solar
panel maximum power point tracking (MPPT) controller is
disabled, and the load is powered by the battery until the

SoC drops below 80%. Lastly, if the battery SoC falls below
20% and power generation is inadequate, load scheduling
operations are employed to ensure microgrid stability. The
flowchart depicted in Fig. 11 elucidates the various methods
by which the energy management system operates.

2.8 Load side control and conventional grid

Maintaining voltage and frequency is essential in small-scale
microgrid systems, and the inverter serves as the backbone
of the system, playing a vital role in ensuring optimal per-
formance in both operating modes (grid and islanded). In
islanded mode, it is crucial for the inverter to maintain volt-
age and frequency to effectively transfer power through local
distributed networks and maintain system stability. In a grid-
connected setup, the inverter guarantees synchronization of
output voltage and frequency with the grid’s standard rating.
It also manages power flow control among hybrid sources,
storage systems and the primary grid.
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Fig. 11 Flowchart for intelligent energy management system

Fig. 12 Load side converter tie with Microgrid
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Fig. 13 Fitness values of proposed controllers. a PV, bWind, c BMS

Managing power quality is also a significant task in this
regard. To tackle this challenge, a simple yet effective con-
troller has been devised for the inverter, as illustrated in
Fig. 12. The load side control device comprises a variable
load through a single phase grid-connected inverter and an
LCL filter to reduce inverter output voltage and current har-
monic. The inverter controller control parameter direct axis
reference current value is generated by an intelligent energy
management system due to the variation of hybrid generation
and sudden changes in load.

3 Simulation result discussion

In this research, a microgrid framework configuration was
conducted on a small scale and its performance was evalu-
ated through the utilization of the MATLAB software. The
initial phase of this section involved the development and
appraisal of the control strategies for the PV, wind and bat-
tery energy storage systems. An analysis was conducted to
compare the aforementioned strategywith other conventional
methods. Following that, the microgrid’s output was ana-
lyzed in islanded modes, and the study also examined how
the intelligent energy management system functioned under
varying load and ecological conditions. This section provides
a detailed discussion of the aforementioned activities.

3.1 GWO-Tuned ANN algorithm for initializing
weights and hidden layer parameters

To initiate the process, begin by selecting the structure of the
ANN model and then focus on optimizing its initial weight
values. This method can be implemented by a hybrid GWO-
ANN technique which has been developed using specific
parameters for the GWO optimizer, including a population
size of 20 and a maximum iteration count of 50. The val-
ues of weight and hidden layer in this algorithm have a
scale between -0.9 to 0.9 and 10 to 20, respectively. After
running the hybrid algorithm, optimized hyperparameters
are obtained. The algorithm’s search history can be found
and compared with conventional ANN method as shown
in Fig. 13. The optimized values acquired are subsequently
employed to train an artificial neural network (ANN) model
through the utilization of the ‘nntool’ command within the
MATLAB software. The performance of the ANN model is
significantly improved with the optimized training approach
using real data, resulting in enhanced predictions than using
traditional ANN. By reason of the lesser MSE and fewer
epochs obtained by all conversion unit controller, as illus-
trated in Fig. 13, Table 5 provides basic statistical analysis
of the algorithm proposed.
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Table 5 The preliminary
computation of statistics for the
suggested method showcases its
potential efficacy

Controller Training data ANN GWO- ANN

Input 1 Input 2 Output Structure MSE Structure MSE

PV VPV IPV Vref 2 × 18 × 1 0.00978 2 × 18 × 1 0.0040

Wind VWind IWind Vref 2 × 18 × 1 0.0500 2 × 18 × 1 0.0065

Battery storage VDC VDCref Ib_ref 2 × 18 × 1 0.0440 2 × 18 × 1 0.0022

structure: 2 × 18 × 1 it mention 2 input and 18 hidden layer neurons and 1 output
Optimized hidden layer values are shown in bold

3.2 Dynamic performance of PV and wind energy
conversion system

The performance of the PV and wind energy conversion
unit control algorithm is to be analyzed using the MATLAB
Simulink framework. The traditional MPPT algorithm will
be compared with the proposed work.

The PV configuration consists of a PV array, boost con-
verter and load, with the array comprising five PV modules
connected in parallel. Similarly, the wind energy system con-
figuration includes a variable wind turbine, PMSG, diode
bridge rectifier, boost converter and load. The main param-
eters of the PV array and wind energy system, used in the
simulation are provided in Table 6.

During the simulation, the solar irradiance (G) experi-
enced an unexpected drop from 1000 to 700 W/m2 between
1 and 2 s, followed by an increase from 700 to 800 W/m2

between 2 and 3 s, another increase from 800 to 900 W/m2

between3 and4 s, and afinal increase from900 to 1000W/m2

between 4 and 5 s. Throughout this timeframe, the input tem-
perature (T) remained unchanged at 25 °C. According to the
results shown in Fig. 14a, the exceptional predictive capa-
bility of the proposed GWO-tuned artificial neural network
(ANN) method was clearly demonstrated in various atmo-
spheric conditions, thanks to its highly optimized training
strategy. After reaching the MPP, a comparison was made
between the proposed method and the conventional methods
like ANN, ICM, FLC and P&O. The power outputs recorded
were approximately 499.5W, 495W, 492W, 490W and 478
W, respectively, under a solar irradiation of 1000 W/m2. By
examining the magnified section of Fig. 14a, it becomes evi-
dent that the proposedANNmethod exhibits the least amount
of fluctuations around the MPP compared to the other meth-
ods under steady-state conditions.

This ultimately leads to a reduction in consumption time.
Building upon these observations, a comprehensive analysis
was conducted on the conventionalmethods andGWO-tuned
ANN techniques, with a focus on their key characteristics for
PV. This analysis is presented in Table 7 and Fig. 15. Lastly,
the predictive PV power efficiency of the proposed method
was compared to that of the conventional P&O, FLC and
ANN techniques.

Table 6 PV and wind energy conversion system module properties

S. no. Equipment Parameter Rating

1 PV model Nominal power for
single panel

100w

Number of parallel
connected strings

5

Number of series
connected strings

1

Total Power 500 w

VOC 18 v

ISC 8.5

Vmpp 12 V

Impp 8.33 A

2 Boost converter Inductor 0.461 mH

Capacitor 556 µF

Input voltage 12 V

Output voltage 60 V

Switching frequency 10,000 Hz

3 Wind Nominal Power 100 W

Nominal voltage 12 v

Nomina current 8.4 A

4 Boost converter Inductor 2.3 mH

Capacitor 120 µF

Input voltage 12 V

Output voltage 60 V

Switching frequency 10,000 Hz

Similarly, to analyze the performance of the wind energy
systemcontroller, only five distinctwind velocity values have
been utilized in the proposed algorithm. These values were
12 m/s, 9 m/s, 10 m/s, 11 m/s and 12 m/s at the begin-
ning, during the intervals of (0–1)s, (1–2)s, (2–3)s, (3–4)s
and (4–5)s. Based on the findings in Fig. 14b, the proposed
ANN method clearly demonstrated its exceptional predic-
tive capability in various wind velocity conditions due to
its highly optimized training strategy. Furthermore, it was
determined to be remarkably robust in achieving the opti-
mal maximum power point (MPP) under both increasing and
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Fig. 14 a The proposed method for solar energy conversion system performs better traditional methods in different solar irradiance levels. b The
proposed method for wind energy conversion system performs better than the traditional methods in different wind velocity conditions

decreasing levels of wind velocity. Comparing the GWO-
tuned ANN method with the conventional methods ANN,
ICM, FLC and P&O after reaching the MPP, the power out-
puts were approximately 99.78 W, 99 W, 98 W, 97.5 W
and 97.4 W, respectively. The magnified section of Fig. 14b
clearly demonstrates that the proposedANNmethod exhibits
the least amount of fluctuations around the MPP compared
to other methods under steady-state conditions, resulting in
reduced consumption time. Based on the observation, Table

8 presents a comprehensive analysis that was conducted on
the traditional ANN, FLC, ICM, P&O control algorithm and
optimized GWO-tuned ANN techniques, focusing on their
key characteristics for wind. Additionally, Fig. 16 shows the
comparison of the predictive wind power efficiency of the
suggested method to that of conventional P&O, FLC and
ANN techniques.
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Table 7 A comprehensive
analysis was conducted on the
conventional method and
GWO-tuned ANN techniques,
focusing on their key
characteristics for PV

Control
algorithm

PV power (W) Tracking Time
(S)

Oscillation Average
efficiencies

Solar irradiance [G] [W/m2]

1000 900 800 700

P&O 487 438 391 323 0.15 High 93.12

ICM 490 440 398 348 0.13 Medium 95.47

FUZZY
LOGIC

492 442 400 352 0.08 Medium 96.06

ANN 495 454 413 365 0.05 Low 98.51

GWO-ANN 499.5 458 417 372 0.043 Very low 99.66

Fig. 15 The proposed method’s
predictive PV power efficiency
was related to that of
conventional techniques
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Table 8 A comprehensive analysis conducted on the conventional MPPT techniques and optimized ANN-MPPT techniques, focusing on their key
characteristics for wind

Control
algorithm

Wind power (W) Tracking time (s) Oscillation Average efficiencies

Wind velocity [m/s]

12 11 10 9

P&O [71] 97.4 79.55 70.38 61 0.12 High 94.67

ICM [72] 97.5 80.93 73.42 63.37 0.10 Medium 97.02

FUZZY LOGIC [77] 98 82.61 73.78 63.56 0.08 Medium 97.84

ANN [78] 99 82.9 74.01 63.82 0.045 Low 98.35

GWO-ANN (proposed method) 99.78 83.73 74.69 64.73 0.040 Very low 99.36
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Fig. 16 The proposed method’s predictive wind power efficiency was related to that of conventional techniques

123



Electrical Engineering

Fig. 17 The proposed method’s DC link voltage was compared to that of conventional PI, sliding mode and FLC techniques

3.3 Dynamic performance of BESS controller

The primary task in this particular segment entails evaluating
and scrutinizing the efficacy of the controller for the battery
energy storage system (BESS). In order to achieve this, two
different types of testing will be conducted. The first test
involves sudden increases or decreases in power generation
due to varying ecological conditions, while maintaining a
constant load that is simulated over a period of 0 to 3 s. The
second test involves constant power generation with variable
load conditions that is simulated over a period of 3 to 4 s. The
performance of the converter will then be compared with tra-
ditional control strategies. According to Fig. 17, the voltage
of the bus experiences limited fluctuations due to the gradual
changes in power generation.

The implementation of PI control results in a maximum
fluctuation of 
v � 5%. On the other hand, sliding mode
control limits the maximum fluctuation to
v � 4.1%, while
fuzzy logic control further improves the maximum fluctu-
ation to 
v � 2.5%. Ultimately, the proposed controller
ensures that the voltage remains constant at 60 V. Simu-
lation results indicate that the selected control strategy is
capable of upholding the constancy of the DC bus voltage
even in the presence of energy generation as well as load
fluctuations. During fluctuations, the optimized ANN con-
trol method yields the best control effect, resulting in the bus
voltage climbing to the rated value at 60 V. This is followed
by sliding mode fuzzy logic and PI control. From the above
observation, the least effective control strategy is found to be
traditional PI controller.

3.4 Dynamic performance of hybrid renewable
energymicrogrid:

The hybrid renewable energy microgrid underwent three
distinct case scenarios. The initial situation entailed the
preservation of a consistent load state, while simultaneously
altering the solar and wind energy inputs. In the subsequent
situation, the demand for load was altered, while the renew-
able energy sources remained unchanged. The third scenario
encompassed fluctuations in both the demand for energy and
the availability of renewable energy resources. It is impor-
tant to highlight that the simulation results were obtained in
a consistent runtime of 5 s for both of these scenarios.

3.4.1 Varying generating conditions with consistent load

The primary objective of the initial case study is to ensure
a consistent and uninterrupted power supply to the load by
adapting to varying generating conditions. To achieve this,
the level of irradiance was adjusted to 0 W/m2, 400 W/m2,
600W/m2 and 1000W/m2 during the time intervals of 0–1 s,
1–2 s, 2–3 s, and 3–5 s, respectively. Similarly, thewind speed
underwent changes of 12m/s, 10m/s, 8m/s, 9m/s and 11m/s
during the time intervals of 0–0.5 s, 0.5–1 s, 1–2.5 s, 2.5–3.5 s
and 3.5–5 s, respectively, as illustrated in Fig. 18a.

Based on Fig. 18, the intelligent energy management
system utilized in small-scale microgrid operation is work-
ing effectively. The battery management system can keep a
steady load power of 360 watts due to the variable power
generation. During the initial stage, PV power is zero from
0–0.5 s, while wind power is at 100 W as shown in Fig. 18c.
As a result, the battery storage will discharge and produce
260 W to compensate for the load demand. From 0.5 to
1 s, PV power remains at zero, and wind power is reduced

123



Electrical Engineering

Fig. 18 The distribution of power
across various points in the
microgrid remains consistent
despite the fluctuating supply of
renewable energy sources
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to 83 W. The battery produced 273W to maintain the load
demand. From 1–2 s, the PV generates 210 W as shown in
Fig. 18b, andwind power is reduced to 30W. The battery pro-
duced 120 W to maintain the load demand. From 2–3 s, PV
power is at 320W, and wind power is at 40 W. The demand
is satisfied by the hybrid system, and the battery will start
charging mode after 3–5 s. The hybrid system maintains the
load power while simultaneously charging from 0 to 2.5 s,
the battery will discharge, and from 2.5 to 5 s, it will charge,
as shown in Fig. 18d. Finally, the DC bus voltage maintains
at 60 V, as depicted in Fig. 18h. The load voltage and cur-
rent maintain a constant magnitude at different generations
as shown in Fig. 18f.

3.4.2 Varying generating conditions with variable load

In this scenario, as previously mentioned, the ecological
data for PV and WIND are identical, but the load power
varies between 360 and 800W for different durations rang-
ing from 0 to 5 s. The hybrid energy resource and battery
storage system are employed in order to fulfill the fluctuat-
ing load requirements. Throughout the analysis, the battery
discharging mode is activated for 0 to 5 s, ensuring that the
DC bus voltagemaintains at 60V, as illustrated in Fig. 19a–h.
Despite the different power generation levels, the load volt-
age remains consistent.

3.4.3 Real-world generation capabilities in a single day
with a consistent load.

In this particular situation, we make use of 1-day worth of
real-world ecological data for PV and WIND, along with a
constant load that spans from 0 to 23 h. In order to address
the variability in electricity production and fulfill the require-
ments of power consumption, we employ a hybrid energy
resource and battery management system. Throughout the
analysis, the battery discharging mode is turned on between
0 and 6 and 17 and 23 h, with the charging mode turned
on between 6 and 17 h, while upholding a constant DC bus
voltage of 60 V, as illustrated in Fig. 20a–d. Despite varying
power generation levels, the load voltage remains consis-
tently stable.

After conducting the aforementioned simulationwork and
analyzing the results, we have reached the conclusion that the
suggested controller algorithm and intelligent energy man-
agement system function effectively under various ecological
and load conditions, successfully maintaining the energy
balance. The proposed controller algorithm demonstrates
remarkable performance in rapidly changing conditions. In
comparison to traditional controllers, our suggested con-
troller is suitable for real-time environmental applications
(Table 8).

4 Experimental validation and results

The experimental implementation of small-scale prototype
modes for renewable energy based microgrid has been exe-
cuted through the utilization of a DSPIC30F4011 controller
board, as depicted in Fig. 21. The DSPIC30F4011 board
is an adaptable and highly capable solution for low power
microgrid applications, with features including power man-
agement, communication, digital signal processing, real-time
control and energymanagement. This alternative is an excep-
tional pick for guaranteeing the steadiness, dependability and
efficiency of microgrids, which perform an essential part
in current power systems. As microgrids become increas-
ingly important, the DSPIC30F4011 remains a reliable and
versatile tool for effective management and control. The
inclusion of IoT technology to supervise and regulate the
system enhances its potential by enabling remote super-
vision, data-based decision-making and enhanced efficacy.
This comprehensive method signifies a progressive remedy
for generating and distributing sustainable and dependable
energy in microgrid settings.

The DSPIC30F4011 comes preloaded with common con-
trol functions, eliminating the need for custom code com-
pilation. Additionally, the controller can directly compile
programs from C-code using the Simulink Real-TimeWork-
shop library. The DSPIC30F4011 not only provides PWM
and serial peripheral interface functionalities, but it also
expertly manages the encoder interface and A/D modules.
Consequently, the DSPIC30F4011 board proves to be an
exceptional real-time controller that is perfectly suited for
closed loop control applications.

The proposed hardware setup is made up of a PMSG
coupled with a 0.5 HP induction motor, which can achieve
varying wind speeds, while a PV emulator is used to adjust
irradiation and temperature levels of PV input power. To store
energy, a 12 V, 24 Ah lead acid battery is employed, and
the suitable power converters for the PV, wind, battery and
load are chosen. All the necessary components for the task
at hand encompass encoders, line filter inductors, modules
capable of handling variable loads with minimal power con-
sumption, interfaces for seamless connectivity and devices
for measuring voltage and current. Furthermore, NodalMCU
is used forwireless communication to access data and control
from all over the world. Table 9 provides a list of hardware
equipment parameters. The microgrid system utilizes two
DSPIC30F4011 controllers, with one of them functioning as
the master controller and the other as the slave controller,
as illustrated in Fig. 22. The slave controller is responsi-
ble for controlling the PV and wind energy conversion unit,
while the master controller manages the BMS and inverter
for load and grid control. The proposed controller that has
been suggested is accountable for the acquisition of voltage
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Fig. 19 The distribution of power
in various sections of the
microgrid changes depending on
the fluctuating demand and the
varying sources of renewable
energy
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Fig. 20 The distribution of power across various points in the microgrid remains consistent despite the fluctuating supply of renewable energy
sources for one day

and current measurements from the power generation unit,
energy storage unit and load unit.

The aforementioned measurements are subsequently con-
veyed to the intelligent energy management system and
control algorithms for the purpose of determining the power
levels at various points within the microgrid. Additionally,
it evaluates the necessary measures to regulate the energy
equilibrium within the system, producing the requisite pulse
width modulations for the microgrid converters.

The assimilation of IoT technology grants the ability to
remotely oversee and regulate the microgrid system. By
employing sensors and NODEMCU ESP8266 communica-
tion module, the microgrid’s data can be sent to a centralized
control center or cloud-based platform. This remote access
avails real-time performance monitoring, fault detection
and the capability to adjust system parameters from afar.
Moreover, it facilitates data analytics and anticipatory main-
tenance, thereby enhancing the overall effectiveness and
dependability of the microgrid.

4.1 Experimental results

In this particular section of the research, the examination of
empirical findings was carried out employing two distinct
modalities: grid-connected and islanded mode in relation
to the suggested small-scale microgrid system. The grid-
connected operational mode was utilized to validate the
correspondence between the inverter’s voltage and frequency
and those of the grid, as demonstrated in Fig. 23. Then, the
suggested control system for the hybrid renewable energy
based microgrid small-scale system, which combines pho-
tovoltaic (PV) and wind power, along with battery storage,
was proven using the islandedmode.Numerous experimental
scenarios were analyzed, encompassing various parameters
including wind turbine velocity, solar irradiation, fluctuating
load and situations involving low power output. This study
involved examining three scenarios to assess the dependabil-
ity of the system. The first scenario focused on a constant
load with consistent PV and wind power, whereas the sec-
ond scenario placed its focus on the inconsistent nature of
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Fig. 21 Prototyping a small-scale hybrid solar–wind microgrid system

Table 9 Parameters of hardware equipment

Conversion unit Apparatus Type Rating

WECS PMSG Power, voltage, current 150 W, 18 V, 8.3 A

Rated Speed 6000 RPM

Boost converter Inductance, capacitance 1mH, 100µF

Voltage sensor Voltage divider used

Current sensor ACS712, current rating 0–30 A

Wireless sensor NODEMCU ESP8266

SECS PV emulator Nominal Power 500 W, 12 V, 40 A

Boost converter Inductance, capacitance 1 mH, 100 µF

Voltage sensor Voltage divider used

Current sensor ACS712, current rating 0–30 A

Wireless sensor NODEMCU ESP8266

BESS Battery Voltage & Capacity 12 V & 24 Ah

Boost converter Inductance, capacitance 1 mH, 100 µF

Voltage sensor Voltage divider used

Current sensor ACS712, current rating 0–30 A

Wireless sensor NODEMCU ESP8266

DC Bus DC bus voltage reference, VDC 60 V
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Fig. 22 Schematic diagram of controller functions

Fig. 23 Hardware grid and inverter voltage

wind power and solar power, which can be unpredictable,
while concurrently maintaining a constant load.

It is essential for the system to stay stable and guar-
antee a trustworthy energy output in such circumstances.
The third scenario dealt with a constant renewable power
generation and variable load, requiring battery power to
supplement insufficient power generation from renewable
sources. By analyzing these three scenarios, the hybrid power

system’s reliability was established. In the fascinating realm
of islanded mode operation, the rapid fluctuations in output
can be visually observed through the use of a digital storage
oscilloscope (DSO). However, this marvelous device only
displays the instantaneous output. To capture and preserve
the swift variations in output, we rely on the assistance of
storage devices within the DSO. These invaluable storage
devices allow us to store the rapid variation output, which
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can then be conveniently exported to a CSV file. Once in
this digital format, we can further analyze and visualize the
results using the magnificent MATLAB software.

4.1.1 System performance under constant power
generation and constant load

The prime objective of the initial scenario is to ensure a
consistent amount of power to the load under stable power
generation circumstances. In this particular case, a load of
200 watts was subjected to testing in an isolated microgrid
mode. The load was powered by 100 watts from solar energy
and 100 watts from wind energy. To achieve islanded mode,
the inverter voltage was set to 48 V. The entire performance
of both the power generation and load signals was visually
observed using a digital signal oscilloscope, as depicted in
Fig. 24.

4.1.2 The constant load can be balanced with diverse
renewable energy sources.

Themain focus of the second scenario is to guarantee a steady
provision of electricity to the load despite fluctuating cir-
cumstances of power generation. In order to achieve this, the
solar irradiance is adjusted utilizing a PV emulator, while the
wind speed is adjusted through the use of a wind emulator.
The solar irradiance varies at different time intervals, start-
ing from the beginning and continuing at 0–1 min, 1–2 min,
2–3 min, 3–4 min and 4–5 min, with corresponding mea-
surements of 500 W/m2, 450 W/m2, 300 W/m2, 150 W/m2

and 100 W/m2 respectively. Similarly, the wind velocity is
varied at the initial time and at time intervals of 0–0.5 min,
0.5–1.5 min, 1.5–2.5 min, 2.5–3.5 min and 3.5–5 min with
corresponding values of 12 m/s, 11 m/s, 10 m/s and 9 m/s
respectively, as depicted in Fig. 25a. It is essential to men-
tion that these variations are only step variations and do not
precisely represent the ever-changing real-worldmeteorolog-
ical conditions. However, these values have been carefully
selected to encompass the complete range of operation for
the PV and wind energy conversion system, this deliber-
ate selection allows for a comprehensive assessment of the
performance of the system under varying conditions. Fur-
thermore, it is important to note that the load, as depicted in
Fig. 25e, remains constant at 100 W in this specific case. It
should be acknowledged that in real-world scenarios, the load
would not remain consistently fixed. The rationale behind
maintaining a fixed load is to observe the performance of the
renewable energy conversion systems and the battery stor-
age system within a small-scale microgrid system. During
the initial phase, PV power is at 160 W from 0–1 min, while
wind power is at 100 W as illustrated in Fig. 25b, d. Con-
sequently, the battery storage will charge to compensate for
the load demand in the hybrid system. Between 1–2 min,

PV power decreases to 140 W, and wind power decreases to
70 W. This leads to the battery storage charging to meet the
load demand. Moving on to 2–3 min, PV generates 100W as
seen in Fig. 25b, and wind power drops to 60 W. This results
in the battery storage charging to address the load demand.
From 3.5 to 4 min, PV power is 50 W, and wind power is
40 W. Consequently, the battery storage discharges and pro-
duces 10 W to meet the load demand. Between 4–5 min, PV
power is 40 W, and wind power is 70 W. This causes the
battery storage to charge to compensate for the load demand.
The consistent load can be managed by various renewable
energy sources from 0 to 3 min as the battery charges, from
3 to 3.5 min a lag in generation occurs, leading to the battery
balancing the demand and initiating a discharging operation.
The remaining interval sees the battery charging. According
to the research findings, energy wastage is minimized, and
power supply reliability is maintained with the assistance of
EMS. Ultimately, the DC bus voltage remains stable at 60 V,
as shown in Fig. 25h. The load voltage and current maintain
a constant magnitude during different generation stages as
depicted in Fig. 25f, g.

4.1.3 Constant renewable power generation and variable
load

In the alternate scenario, the continuous production of solar
and wind power remains unaltered, with solar power of
100 W in irradiance remaining steadfast at 300W/m2 and
wind power at 55 W in 10 m/s wind velocity, as illustrated
in Fig. 26a. At intervals of 1 min, the energy demand fluctu-
ates, thus subjecting the effectiveness of the microgrid to the
challenge of varying energy requirements. At the outset, the
load requirement is established at 100 W, wherein 100 W of
energy is obtained from renewable sources, and the residual
55 W of energy is accumulated in a battery storage appara-
tus. From 1 to 5 min, the demand escalates rapidly, enabling
the surplus power generated during this period to recharge
the battery. Subsequently, after 1 min, the demand surpasses
the supply, leading to the battery supplying the additional
power required, as depicted in Fig. 26d. Throughout these
fluctuations in load, the microgrid consistently maintains
a steady voltage at the load terminal, as demonstrated in
Fig. 26e. The EMS successfully maintains equilibrium of
powerwhen facedwith varying load demands, encompassing
both lower and higher levels. Meanwhile, the power gener-
ated from sustainable energy sources remains steady. The
battery chargeswhen the load demand decreases, but releases
its stored energy when the load demand increases.

4.1.4 Data monitoring system output (IoT)

The incorporation of NodeMCUESP8266-basedmonitoring
devices in a small-scalemicrogrid systemoffers an affordable
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Fig. 24 Hardware output—constant generation power and constant load

and efficient solution for monitoring different parameters of
solar, wind and battery storage systems. By accessing data
online through the Adafruit platform, users are able to conve-
niently monitor renewable energy systems from any location
around the globe, thus facilitating efficient energy manage-
ment and optimization. The specificmethodologymentioned
plays a substantial part in advancing the acceptance of sus-
tainable energy sources through the improvement of the reach
and feasibility of tracking capabilities. Figure 27 showcases
data that are visually displayed on an onlinewebsite, illustrat-
ing constant power generation and load condition scenarios
in a case study.

5 Conclusion

In this research work, we successfully designed and devel-
oped an intelligent energy management system (EMS)

tailored for a small-scale microgrid, catering to remote
communities. Here, three major tasks such as designing a
GWO-tuned ANN controller for hybrid system, IoT-based
monitoring and intelligent energy management for small-
scale microgrid system are successfully achieved. In the
initial stages of designing an artificial neural network (ANN)
controller, it is imperative to first acquire significant data.
This involves the collection of real data over a period of
210 days, equivalent to 5040 h, through the NASA Research
Center. Theutilization of significant data is crucial in prevent-
ing overfitting and mitigating the rapid fluctuations in input
variables, thereby ensuring the generation of accurate outputs
by the controller through the training on such data. Subse-
quently, the significant parameters of ANN such as initial
weight and hidden layer are optimized by grey wolf opti-
mizer during the computation process. The results revealed
notable improvements in mean-squared error (MSE) values
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Fig. 25 The distribution of power in various sections of the microgrid changes depending on the constant demand and the varying sources of
renewable energy

123



Electrical Engineering

Fig. 26 The distribution of power in various sections of the microgrid changes depending on the fluctuating demand and the constant sources of
renewable energy
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Fig. 27 Proposed system communication data visually displayed on an online website

when compared to the conventional back-propagation tech-
nique. Specifically, the MSE values were 0.00978, 0.0500
and 0.0440 for the solar, wind and battery controllers, respec-
tively, under the conventional method, whereas they were
0.0040, 0.0065 and 0.0022 under the GWO-tuned approach.
Due to minimization of MSE, the tracking ability of the con-
troller is improved and extracted the maximum power as
system output. Simultaneously, the performance the battery
storage system is improved. Even though rapid variation of
demand as well as generation, the DC bus voltage is main-
tained consistently. For simulation process, considering the
proposed system is required tomeet 200watts as loaddemand
in islanded mode. Here, PV produced 100 watts for 300 m/s2

as solar irritation and wind produced 55 watts for 10 m/s as
wind velocity. Hence, total power is produced in this system
is around 155 watts which is insufficient to meet the demand.
In this instant, based on the response of IoT and smart EMS,
instruction has been given to the controller which initiates the
battery storage unit to provide rest of the power (45 watts) to
meet the load demand. Same environment has been applied
for experimental validation of proposed system which has
produced same output as obtained in simulation result. In
future, this system will help to analyze fault identification,
integration of distributed energy resources like biomass,mini
hydropower generation and reduction of GHG emission.
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