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Abstract
Bearing failures in electrical machines pose significant challenges, attracting attention in diagnostic research. The widespread
adoption of variable-speed drives across various motor applications has increased the effects of bearing currents, necessitating
thorough exploration in both academic and industrial contexts. The paper contributes valuable insights into identifying and
addressing bearing-related issues in electricalmachines. It comprehensively investigates thematter, investigating damage types
and diagnostic techniques specific to bearing currents in induction machines. Moreover, it provides insights from experiments
conducted in controlled laboratory settings to replicate bearing current faults. As the industry integrates advanced technologies
into manufacturing processes and gains traction, preventive maintenance is increasingly emphasized. Consequently, the paper
expands its investigation into signal pre-processing to enhance fault prediction accuracy by optimizingmachine signals. Given
the dynamic nature of industrial standards and the growing demand for predictivemaintenance strategies, this research presents
a predictive method for early fault detection. Aiming for heightened efficiency, reduced downtime, and enhanced reliability,
the perspectives outlined in this paper make a meaningful contribution to the evolving field of predictive maintenance.

Keywords Induction motors · Ball bearings · Condition monitoring ·Machine learning · Predictive maintenance

1 Introduction

Nowadays, electrical machines and drive systems play a piv-
otal role in various domestic and industrial sectors. Their
widespread use has brought maintenance concerns to the
forefront. Among these machines, three-phase induction
motors are particularly prominent due to their ability to
meet various industrial needs, such as low maintenance,
cost-effectiveness, compact design, and variable control
capabilities. Using frequency converters for control is the
most cost-effectivemethod and ensures optimal performance
[1]. However, this approach can lead to the generation of
induced shaft currents. Numerous cases in the literature are
related to power electronics and bearing currents. Authors in
[2] discuss a reduction in common mode voltage and bear-
ing currents in the DC-link inverters. In Plazenet et al. [3],
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the influence of parameters on discharge bearing currents
in inverter-fed induction motors is introduced. Authors in
[4] present mitigation techniques and modeling for high-
frequency bearing currents in inverter-fed AC drives. In Xu
et al. [5], the authors discuss the experimental assessment
of high-frequency bearing currents in the induction motor
driven by a silicon carbide inverter.

Identifying surface damage resulting from shaft currents
on bearings is typically challenging, especially visually.
Shaft currents don’t consistently pass through the bearing.
However,when they do, faults often appear in areaswhere the
lubricant coating is thinnest due to heightened stress. Shaft
currents pose a significant challenge in various industries [6].
Case studies and their solutions can be found inwind turbines
[7], marine applications [8], assembly lines [9], and food pro-
duction [10]. Each energy system is complex, and ensuring
device reliability requires monitoring numerous parame-
ters, which demands substantial computational resources
and modern technologies. Given the vast amount of data,
employing advanced diagnosticmethodologies rooted in arti-
ficial intelligence becomes logical [11]. These intelligent
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algorithms not only detect defects but also forecast poten-
tial faults in the future. Among various methods available,
machine learning-based algorithms are the most prevalent
tools for diagnosing rotating machines. They create a com-
plexweighted combination based on training data, which can
later be used to deduce results for incoming data [12]. When
it comes to diagnosing bearing issues in electrical machines,
commonly employed machine learning techniques include
decision trees [13], support vector machines [14], princi-
pal component analysis [15], and genetic algorithms [16].
Additionally, various neural network variations are utilized,
such as convolutional neural networks [17], generative neu-
ral networks [18], and deep learning approaches [19]. This
research has prioritized neural network-based approaches for
their ability to learn quickly and effectively.

This study makes significant contributions to the field of
predictive maintenance by addressing the critical challenge
of acquiring training datasets for implementing artificial
intelligence algorithms. This systematic approach enriches
the available datasets and provides valuable insights into the
early detection anddiagnosis of bearing faults. Consequently,
it advances the development and implementation of predic-
tive maintenance strategies.

The paper thoroughly investigates bearing currents in
induction machines, covering damage types and diagnos-
tic techniques, particularly emphasizing preventive mainte-
nance strategies. Various faults were deliberately induced in
laboratory settings to overcome the challenge of acquiring
training datasets for artificial intelligence algorithms in pre-
dictive maintenance. The study underscores the significance
of vibration signals in the early detection of bearing faults,
mathematically describing them in four natural frequen-
cies. Datasets encompass data from current, voltage, torque,
speed, and vibration collected under different control settings
and loads. Additionally, the paper explores machine learning
approaches for fault detection andprediction, enriching avail-
able datasets and offering insights into early fault detection
and diagnosis, thus advancing the development and imple-
mentation of predictive maintenance strategies in industrial
settings.

This manuscript is organized as follows. Chapter 2 intro-
duces the nature of bearing currents. Chapter 3 presents
the possibility of detecting bearing currents in the machine.
Chapter 4 describes the most typical damages inflicted by
bearing currents. In Chapter 5, the bearing faults caused
by bearing currents are performed in the lab environment.
Chapter 6 presents a pre-processing of the datasets to get
predictions in Chapter 7.

2 Bearing currents

At present, themost cost-effective and straightforwardmeans
of ensuring optimal performance of electrical machines
involves the application of frequency converter control. This
strategy is widely embraced globally, resulting in a height-
ened adoption of power electronics. However, these solutions
often give rise to shaft currents induced by the frequency con-
verter, presenting an escalating challenge inmodern industry.

Despite the longstanding acknowledgment of bearing cur-
rents in electrical machines, which has persisted for nearly
a century, it remains a prominent area of investigation
[20]. Failures arising from bearing currents inflict significant
mechanical damage on electrical machines. In contemporary
drive systems, deploying converters contributes to a phe-
nomenonwherein current traverses the circuit, encompassing
the bearings, frame, and machine shaft [21]. Although miti-
gation measures are increasingly employed to tackle bearing
currents, it is noteworthy that they may inadvertently engen-
der reliability concerns and necessitate additional mainte-
nance [22].

In general, bearing currents can be classified into two pri-
mary types: classical bearing currents and inverter-induced
bearing currents.

2.1 Classical bearing currents

In 1927, it was observed that the presence of theoretical and
practical indications of bearing current could be eliminated
if an ideally balanced and symmetrical motor design was
achievable [23]. Typically, these issues stem from structural
irregularities within themachine, including static or dynamic
eccentricity, design inconsistencies, unbalanced power sup-
ply, laminations with broken connections, and faults in the
rotor [24]. This phenomenon was demonstrated in [25]
through simulations, wherein broken rotor bars produced
eddy currents in the shaft, leading to bearing damage. The
asymmetry of the magnetic field induces a current in the
motor shaft, resulting in a measurable potential difference
between both ends of the shaft. According to standards, a
shaft voltage exceeding 300 mV is considered detrimental
to bearings, although lower levels may also cause damage
if persisting for prolonged periods. Despite enhancements in
design tolerances and the quality of production materials, the
monitoring of bearing currents remains essential due to their
potential risk to ball bearings. This concern becomes partic-
ularly critical for motors starting from 100 kW. Additionally,
classical bearing currents can be readily detected in motors
from 7.5 kW [26]. Furthermore, it is advisable to implement
preventive measures against bearing currents, such as insu-
lated bearings or shafts, in motors starting from 18.5 kW
[27].
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2.2 Inverter-induced bearing currents

Inverter-induced bearing currents encompass several cat-
egories: electrical discharge machining bearing currents,
capacitive bearing currents, bearing currents caused by rotor
ground currents, and high-frequency circulating bearing cur-
rents. The classification of these currents is illustrated in
Fig. 1. The primary source of these currents is the com-
mon mode voltage generated by the inverter and the rapid
voltage fluctuations (high du/dt) at the motor terminals [28].
This phenomenon is the root cause of various types of
bearing currents capable of causing damage to bearings in
motors operating with variable-speed drives. As a result of
coupling, the bearing capacitance and other parasitic capac-
itances become charged, leading to a voltage buildup on
the motor shaft. If this accumulated voltage surpasses the
breakdown voltage of the lubrication film, capacitive energy
discharges occur through the bearings, resulting in electrical
discharge machining current flow. The path of current trav-
els from the shaft to the frame, passing through the rings and
rolling elements of the bearing. Shaft voltages ranging from
3 to 30 V are significant enough to induce discharges in the
bearings [29], with voltage levels typically between 3 and
10% of the electrical machine’s nominal voltage [30].

The rapidfluctuations in the commonmodevoltage trigger
high-frequency common mode currents to traverse various
components of themotor, including thewindings, stator lami-
nations, air gap, rotor, shaft, andbearings [29]. These currents
emerge from transistor switching during each switching
event. At higher speeds, a thin dielectric layer forms between
the bearing races and rolling elements, establishing a capac-
itive connection between the machine frame and the shaft.
Typically, these currents range from 5 to 10 mA and are gen-
erally considered non-detrimental to the bearings and motor
[31].

Bearing currents arising as rotor ground currents stem
from inadequate grounding of the motor frame [32]. This
situation often arises when the rotor is grounded through the
driven load, resulting in a more robust grounding than the
stator. This current traverses through the motor bearings to
the shaft, the load, and the controlling converter.

Regarding high-frequency circulating bearing currents,
the process involves the rapid du/dt of the voltage at the
machine terminals, generating additional high-frequency
common mode currents and parasitic capacitances between
the motor winding and stator laminations. With frequencies
reaching several megahertz, these currents ingress the rotat-
ingmachine through the windings and exit through the frame
and laminations, creating a high-frequency circular magnetic
flux around the motor shaft. This flux induces a shaft voltage
that, if adequate, discharges through the bearings, generating
a circulating current in the bearings, shaft, and motor frame,
potentially surpassing the lubricant’s breakdown voltage.

3 Diagnostic and reduction possibilities
of bearing currents

Several techniques exist for detecting bearing currents in
electrical machines, such as the Rogowski coil [33], current
transformer [34], and a conventional multimeter. However,
given that bearing faults predominantly affect vibration rather
than the current spectrum, vibration analysis emerges as a
viable option [35]. Diagnostic approaches for bearing cur-
rents generally fall into direct and indirect methods [36].

3.1 Direct methods

Direct diagnostic methods are favored for promptly detect-
ing shaft currents. Detecting bearing currents in the motor
enables timely intervention to prevent faults, ultimately safe-
guarding the bearings of the electrical machine [37]. While
this approach identifies bearing currents, it provides only an
indirect indication. A multimeter can indicate if bearings are
prone to sparking, but precise measurement of shaft voltage
requires a multimeter with high input impedance for optimal
accuracy.

A universal and practical measuring device is recom-
mended for a comprehensive assessment of various motor
currents, shapes, and parameters. Oscilloscopes with a band-
width exceeding 100 MHz are preferred for this purpose.
Considering and recording ambient magnetic field levels are
crucial, as oscilloscopes are more susceptible to noise and
interference thanmultimeters.When focusing onmotor bear-
ings, measuring only shaft voltage and current is typically
sufficient.

Whenmeasuring shaft currents, the oscilloscope’s settings
depend on factors such as motor size, speed, bearing type,
and temperature. Time scale reduction could start at approxi-
mately 500microseconds,while voltage increase could begin
at around 5 V. Shaft voltage usually mirrors phase voltage
unless spark discharges occur in the bearings, leading to volt-
age fluctuations of ± 20…80 V every 10 microseconds.

Alternatively, shaft currents can be measured using a
current transformer and a high-frequency non-inductive
(coaxial) shunt, preferably alongside an oscilloscope. Non-
inductive shunts, comprising two conductive tubes, mitigate
shunt saturation compared to current transformers but may
face challenges with transient currents and self-inductance.
Due to the temperature coefficient of the shunt material resis-
tance, adjustment of measurement results or adherence to
specified temperature ranges may be necessary.

Using a Rogowski coil is a common, straightforward, and
safe method for measuring phase and motor shaft currents.
During phase current measurements, the coil should encircle
power cables (excluding the neutral cable), while for shaft
current measurements, it should encircle the motor shaft. If
multiple power cables are present, the coil should encompass
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Fig. 1 Categorization of bearing
currents

all cables. A Rogowski measuring device connected to a log-
ger or oscilloscope, preferably with a bandwidth exceeding
100 MHz, facilitates shaft current measurements. However,
the Rogowski coil requires additional electronics and power
supply and is susceptible to noise, necessitating attention to
electromagnetic compatibility.

3.2 Indirect methods

Indirect diagnostic methods for detecting bearing currents
in electrical machines are used only after the bearing sur-
faces have suffered damage, prompting the rolling bodies to
produce vibration and noise.Moreover, identifying shaft cur-
rents indirectly demands expertise and thorough training due
to the diverse bearing damage types.

Vibration analysis stands as a commonly utilized tool
in electrical machine diagnostics. While vibration analysis
effectively pinpoints bearing faults, discerning faults aris-
ing from bearing and shaft currents amid other mechanical
defects in the bearings can pose a challenge. Thus, when
such current-induced failure modes are suspected, vibration
analysis must complement other direct or indirect diagnostic
techniques to validate findings and ensure diagnostic accu-
racy.

Ultrasonic detectors are also suitable tools for indirectly
detecting bearing currents. Similar to vibration analysis,
the ultrasonic spectrum exhibits sound peaks resulting from
passing shaft currents. Beyond data analysis, ultrasonic
detectors allow for listening to bearing defects like a stetho-
scope. While theoretically capable of detecting spark dis-
charges generated by shaft currents in bearings, the low
level of spark discharges within the ultrasonic range (with

a maximum power of about 200 MHz) renders this method
challenging to implement in practice.

3.3 Limitation possibilities

In the case of motors with a power of more than 100 kW,
there are some solutions to decrease bearing currents. Table
1 summarizes themain options for reducing bearing currents.

The effectiveness of these methods primarily depends on
motor parameters and the surrounding environment. How-
ever, shaft current leakage remains a risk.

4 Damages of bearing currents

During the initial phases, detecting damages caused by elec-
trical currents in the bearings often necessitates dismantling
the electrical machine, which isn’t practical. Instead, sub-
tle deviations from standard specifications on the bearing
races may be observed at a microscopic level. Visually, faults
resulting from bearing currents stand out from other mechan-
ical defects [46]. It is crucial to visually inspect replaced
bearings, especially if changes occur during maintenance
and there are concerns about shaft currents. The impact of
these currents on the bearing is influenced by factors such
as lubricant type, rotational speed, applied current, operating
duration, and material condition.

Typically, damages induced by electrical currents become
apparent only in later stages when the bearing surface has
already been compromised. Faults resulting from these cur-
rents often manifest in areas with the thinnest lubrication
layer, experiencing heightened stress. One common mani-
festation is "fluting," as depicted in Fig. 2a, where multiple
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Table 1 Possibilities to decrease bearing currents

Method Effect Comment

One insulated
bearing [38]

Ineffective Circulating
currents within
the motor may be
mitigated, but an
uninsulated
bearing’s
lifespan is prone
to shortening

Conductive
grease [39]

Effective if bearing
currents are low

This is advised as a
temporary
measure solely
for smaller
motors. As
bearing currents
escalate, changes
in the lubricant’s
composition
significantly
reduce the
bearing’s
lifespan

One insulated
bearing and
grounding
contact [40]

Effective The ground brush
or ring should be
positioned on the
non-insulated
bearing side. For
further
mitigation, a
common mode
filter can be
employed

Two insulated
bearings and
grounding
contact

Very effective An exceptionally
effective solution
is the utilization
of a common
mode filter

Common mode
filter (passive)
[41]

Relatively effective The most
economical and
effective among
filters, it
diminishes
high-frequency
currents.
However, for
large motors,
supplementary
measures are
necessary

Hybrid or ceramic
bearings [42]

No spark solutions Highly effective, it
is arguably the
optimal solution
for small motors

Table 1 (continued)

Method Effect Comment

One grounding
contact or ring
[43]

Effective Regular
maintenance is
required for the
grounding brush.
The solution is
suitable for
smaller motors.
A common mode
filter can be used

Two grounding
contacts or rings

Very effective The grounding
brush must be
regularly
maintained. This
solution is
well-suited for
smaller motors
and can be
complemented
with a common
mode filter

dU/dt filter
(active) [44]

It decreases a bit in the
case of larger motors

This will be
utilized for the
highest output
voltage, reaching
up to 690 VAC

Sine wave filter
[45]

Decreases The extent of
reduction varies
depending on the
filter, but it
primarily targets
the circulating
shaft currents.
This filter type is
the costliest
among options
and entails
considerable heat
losses that need
to be considered

Correct ground
and cabling

Longer cables can
reduce currents

Proper grounding
and cabling are
fundamental
prerequisites for
addressing the
issue. This
approach
effectively
reduces the main
circulating
leakage currents,
thereby lowering
the risk of motor
insulation
failures and
disturbances

123



Electrical Engineering

Fig. 2 Common fault caused by bearing currents (fluting)

Fig. 3 Lubricant darkening due to discharges

lines form across the bearing raceways. Fluting is frequently
associated with constant rotational speeds and low voltage.
Additionally, frosting and pitting can occur due to bearing
currents. However, the focus of this paper is primarily on the
fluting fault.

Changes in the lubricant’s condition can also serve as indi-
cators of motor issues, with darkening often attributed to
bearing currents. Sparking can result in lubricant oxidation
and darkening due to electrical discharges, as observed in
experiments depicted in Fig. 3.

5 Implementation of bearing current fault
in the laboratory environment

To mitigate severe consequences and economic losses in
production, it is advisable to implement strategies related
to predictive maintenance. The system can be trained to
predict potential failures using artificial intelligence algo-
rithms in this context. However, acquiring the necessary
training datasets is a significant challenge in implementing
such approaches. To achieve accurate forecasting, gathering
a large quantity of high-quality datasets is crucial. Hence,
various faults were intentionally induced on the bearings in
laboratory settings.

Fig. 4 Experimental test bench for implementation of bearing current
faults: (1) non-drive end bearing, (2) drive end bearing, (3) belt, (4)
servo drive, (5) power supply

Faults were induced in healthy bearings to obtain faulty
bearings for experimentation. An experimental test bench
for fault implementation was meticulously constructed to
facilitate this investigation. As previously mentioned, fluting
typically occurs under conditions of low voltage and constant
rotational speed, frosting manifests when the motor operates
at variable speeds, and pitting is commonly observed in situ-
ations involving low speed and a high-voltage power source.
The radial load was applied to the bearings through the belt’s
tension.An experimental test benchwas constructed to inves-
tigate and analyze these different scenarios, as illustrated in
Fig. 4.

Faults were intentionally induced under controlled con-
ditions to mimic real-world scenarios. A diverse range of
failures induced by bearing currents were successfully repli-
cated through rigorous experimentation. Table 2 presents an
analysis of all studied cases with shaft current faults.

In this paper, there were studied the fluting failure that
appeared in case of 500 r/min and 10 A. In this scenario, the
lubricant exhibited a slight darkening. With an increase in
rotational speed, a clear case of fluting was observed on the
inner raceway and a darkening on the outer raceway in the
case of the DE-bearing, as illustrated in Fig. 5. Meanwhile,
the NDE bearing displayed darkened inner and outer race-
ways with subtle fluting trails. Additionally, both bearings
showed darkening of the rolling elements.
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Table 2 Bearing current faults
under different conditions Conditions Results

Speed,
r/min

Current, A Inner ring Outer ring Balls

Drive end bearing

100 10 Darkened race Darkened race No changes

100 20 Slight fluting Darkened race Darkened balls

500 10 Fluting Darkened race Darkened balls

800 10 Fluting Darkened race/slight
fluting

Darkened balls

800 20 Fluting/pitting Slight fluting Darkened
balls/pitting

Non-drive end bearing

100 10 Darkened race Darkened race Slightly
darkened
balls

100 20 Slightly darkened race Darkened race Darkened balls

500 10 Darkened race Darkened race/slight
fluting

Darkened balls

800 10 Slightly darkened race Darkened race/slight
fluting

Darkened balls

800 20 Frosting Frosting Darkened
balls/frosting

Fig. 5 DE bearing at 500 r/min and 10 A

Fig. 6 Experimental test bench

6 Data analysis

Induction machines are the most spread among other motor
types in production due to their easy maintenance, low
cost, and high efficiency [47]. These machines are typically
employed in variable-speed drives, which utilize power elec-
tronics for motor control, often using a frequency converter.
Consequently, there is a rising incidence of inverter-induced
shaft andbearing currents. This study focusedon testingbear-
ing faults in induction machines, and the experimental test
bench is illustrated in Fig. 6. The setup comprises a test-
ing machine, a loading machine, an accelerometer, and an
acquisition system.
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Fig. 7 Placement of triaxial accelerometer over the shaft

Dewetron DEWE2-M18 was used as an acquisition sys-
tem for data gathering and processing. The parameters of the
testing and loading motors are as follows:

Parameter on induction motor Value

Voltage, V Y 690 D 400 D 460

Frequency, Hz 50 50 60

Speed, r/min 1460 1460 1760

Power, kW 7.5 7.5 7.5

Current, A 8.8 15.3 12.9

Power factor 0.79 0.79 0.81

Regarding bearing faults, their primary impact is on vibra-
tion rather than the current spectrum. The vibration spectrum
is essential in this analysis of damaged bearings. In the
experiments, a triaxial accelerometer K-Shear ± 100 g with
a sensitivity of 50 mV/g placed over the shaft was used
for vibration measurements. The rated values are related
to acceleration and measured in g. The placement of the
accelerometer is presented in Fig. 7.

This study’s datasets encompassed information extracted
from various parameters, including current, voltage, torque,
speed, and vibration. Data collection occurred under diverse
control settings (grid-fed, scalar, DTC) and various loads
(0–100%). To streamline the process and optimize resource
usage, it was unnecessary to analyze the entire signal. Focus-
ing on one or two specific regions where the fault’s influence
is most pronounced sufficed. The primary objective involved
identifying these crucial signal segments for training and
extracting significant patterns.

As a result, numerous datasets contain precise information
about healthy and faulty conditions. Vibration signals can

detect faults at a very early stage. For this reason, prioritiz-
ing vibration signals is common practice in cases of defective
bearings [48]. Identifying the frequency components associ-
ated with faults is crucial to detect early-stage damage. One
effective method for pinpointing faults is employing the fast
Fourier transform (FFT), which unveils the presence of these
faulty frequencies. Figure 8 illustrates the vibration spectra of
healthy and faulty bearings affected by fluting. Notably, the
amplitude of the faulty bearing significantly surpasses that of
the healthy one. This discrepancy arises because the damaged
bearing encounters difficulties in the rotation due to surface
damage. The fault exerts its most notable influence on the
spectrumwithin the 0–500 Hz range, affecting even harmon-
ics, especially at 100 and 300 Hz. In the 500–1000 Hz range,
there are no prominent harmonics except for the 700 Hz fre-
quency, which warrants examination for potential patterns
during training. Frequencies beyond 1000 Hz do not signifi-
cantly impact the analysis.

When conducting training, it is crucial to consider the
control environment’s characteristics. The amplitude and fea-
tures of fundamental harmonics differ based on the type of
control mode, especially when dealing with a faulty bearing.
DTC exhibits a noticeable alteration in harmonics. In such
cases, the fault’s most pronounced impact on the spectrum
is typically observed within the 0–500 Hz range, particu-
larly affecting even harmonics. Conversely, the 500–1000Hz
range usually lacks prominent harmonics, except for the even
harmonic at 700 Hz.

Furthermore, the load factor plays a significant role in
shaping the fault’s characteristics, as presented inFig. 9.Load
variations result in frequency shifts. Higher loads also have a
greater influence on side harmonics. Like previous instances,
the fault demonstrates its greatest impactwithin the 0–500Hz
frequency range.

These distinctive patterns offer valuable insights for effec-
tively training the system. To improve prediction accuracy,
it is advisable to consider various parameters of motor oper-
ation.

7 Fault prediction

In the case of predictions, the fluting case was studied. The
data collected from the test bench are based on the impact
of fluting on different areas of bearings, including inner and
outer raceways. The same data were then utilized for train-
ing machine learning models to detect and predict fluting
faults on different bearing parts. This research employs two
distinct approaches in machine learning for fault detection
and prediction of fluting faults. The initial approach involves
training diverse machine learning models to detect damages
on inner and outer raceways due to the fluting. The second
approach centers on fault prediction, employing a machine
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Fig. 8 Vibration spectrum of healthy bearing and bearing with fluting

Fig. 9 Vibration spectrum of bearing with fluting under different loads

learning method based on signal spectra to train data and
evaluate the likelihood of specific faults occurring. The tech-
nique implemented in this study is described in Fig. 10.

Machine learning models were employed to pinpoint
faults upon collecting data samples from the electrical
machine, encompassing instances of bearing faults and
healthy states. Before training, the collected data under-
went preprocessing, including denoising and normalization
[49]. Denoising involved the use of low-pass filters and
median filtering. The denoised signal was then segmented
into datasets and divided into training and testing sets, with
20% of the data reserved for model validation. The electri-
cal machine’s sampling frequency was set at 20 kHz. The
training dataset comprises 23 million data points with a

sampling frequency of 20 kHz, covering various manifes-
tations of healthy and faulty signals, including inner and
outer faults. For this study, eight distinct machine learning
models were selected to compare result accuracies. Table
3 thoroughly compares the validation accuracies of these
models for bearing fault detection, covering all three sce-
narios of healthy states, inner faults, and outer faults. It is
essential to highlight that these results have the potential
for further improvement by incorporating higher-quality data
and continuous endeavors to optimize the training ofmachine
learning models. The results show that the Coarse Gaussian
SVM demonstrates the highest validation accuracy among
the trainedmodels, closely followed by the FineKNNmodel,
which achieves equivalent accuracy.
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Fig. 10 Flowchart of the implemented method

Table 3 Bearing current faults accuracy comparison

Machine learning model Accuracy (%)

Coarse tree 83.30

Coarse Gaussian SVM 91.70

Fine Gaussian SVM 84.70

Fine KNN 91.50

Narrow neural network 85.40

Medium neural network 85.40

Bilayered neural network 85.40

Trilayered neural network 85.90

The configurations for each model were set to be general
and were not extensively optimized for improved results in
this specific study. Careful consideration was given to the
settings for each model to prevent overfitting on the train-
ing datasets. These same settings were considered when
approaching the second part of the methodology to ensure
a fair comparison between the trained models. Further
enhancements can be explored by optimizing parameters for
each machine learning model. In the case of neural network
models, consideration was given to models with up to 16
hidden layers featuring a variable number of neurons, reach-
ing up to 1000 per layer. Figure 11 illustrates the validation
accuracy achieved by some of these trained models. It also
displays the validation results for three of the trained models.
In this study, eight different machine learning models were
utilized for training and validating the model.

Although the neural network-trained models exhibit a
slight lag in performance, there is optimism that with the
inclusion of higher-quality data, it may be possible to refine
and enhance the accuracy of these machine learning mod-
els. In the realm of fault prediction, the same models will
be scrutinized. Still, the data will be prepared using a sig-
nal spectrum-based approach to assess whether the models
can maintain high accuracy for predictions or if any notable
changes occur.

The denoised data are now utilized to identify unique fre-
quency components within inner and outer bearing faults,
aiding in identifying fault occurrences within the incoming
signal. This strategic use of denoised data holds promise for
improving the precision of fault predictions. The gathered
data are employed to identify frequency components crucial
for training the machine learning algorithm for predictive
purposes. This process is carried out independently for each
case, with the frequency components identified based on
disparities in their amplitudes between healthy and faulty
scenarios. The chosen components are subsequently utilized
in the algorithm training. An illustrative example of these
components, along with their normalized amplitudes rang-
ing from 0 to 1, is depicted in Fig. 12.

Throughmeticulous analysis of multiple samples, distinc-
tive frequency components are identified for each occurrence
of faults. These frequency components play a crucial role in
delineating the range for the transition state, which repre-
sents the point at which a motor transitions from a healthy
state to a faulty one. This information is vital in preparing
data for training machine learning models to predict bearing
faults. Every possible combination of frequency component
values during the transition state is utilized in data prepara-
tion. Subsequently, the faults are categorized into five labels,
with specific details outlined in Table 4.

The trained models underwent blind validation; a subset
of the accuracy validation results is depicted in Fig. 13.

Table 5 compares the same models and their validation
accuracies in the context of the fault prediction model. The
accuracy of the models varies based on the complexity of
each model. Nevertheless, the second approach proves valu-
able in predicting fault occurrences in themachine by issuing
a warning in advance, signaling the likelihood of a specific
fault. This early warning capability holds significant poten-
tial for mitigating economic losses. The accuracy of fault
prediction hovers around 90%, a commendable result as it
reliably identifies two faults with heightened accuracy.While
these tests and models were evaluated using real-time data
acquired from electrical machines, it is noteworthy that spe-
cific models claim up to 95% accuracy for fault detection
based on analytical equations or simulations. However, such
high-accuracy claims might not necessarily hold in real-time
scenarios, as evident from Table 5; when the training data
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Fig. 11 Machine learning results a coarse tree, b trilayered neural network, c coarse Gaussian SVM

Fig. 12 Frequency spectrum with normalized amplitude of identified frequency components (0–1)

Table 4 Assigned classification

State of data Assigned label

Healthy State 1

Chance for inner bearing fault to occur 2

Chance for outer bearing fault to occur 3

Inner bearing faulty state 4

Outer bearing faulty state 5

becomemore complex,models trained using neural networks
demonstrate superior results compared to other methods.

The accuracy of these neural network models has notably
increased compared to other models. Further improvements

in accuracy can be achieved by training with higher-quality
data and by combining multiple models trained in a singu-
lar fault detection model. The coarse tree stands out as the
best performing model for fault detection, while its accuracy
in fault prediction is comparatively lower. However, neural
network models maintain a commendable level of accuracy,
with the bilayered neural network yielding the best results
in fault prediction. This underscores the potential for neural
network models to achieve even better results with increased
complexity and utilizing superior quality data samples.
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Fig. 13 Machine learning results a coarse tree, b coarse Gaussian SVM, c bilayered neural network

Table 5 Bearing current faults accuracy comparison

Machine learning model Accuracy (%)

Coarse tree 68.50

Coarse Gaussian SVM 82.20

Fine Gaussian SVM 81.70

Fine KNN 53.80

Narrow neural network 90.00

Medium neural network 88.90

Bilayered neural network 90.20

Trilayered neural network 89.60

8 Discussion and conclusion

Induction motors play a critical role in various industrial
applications, and failures in electrical machines, particularly
in bearings, can have severe consequences. Monitoring the
health of induction motors and their components has become
standard practice in today’s industry, thanks to the advent of
the Internet of Things (IoT). As the industry shifts toward
predictive maintenance, timely fault diagnosis has become
paramount to prevent catastrophic failures. Consequently,
academic research increasingly focuses on predictive main-
tenance for electrical machines, including induction motors.

This paper analyzes the causes of bearing faults, diag-
nostic possibilities, and a technique for predicting such

faults. The results indicate that the method used for pre-
fault detection in bearings achieves a high level of accuracy,
approximately 90%, when employing neural networks. Fre-
quency components were carefully chosen to pinpoint faults,
aiding in model training. Subsequently, amplitudes of these
selected frequency components were assessed for both faulty
and healthy scenarios. Various combinations were then gen-
erated to detect faults in the electrical machine. These
combinations were utilized to train additional models to
determine the probability of fault occurrence within the
machine.

Therefore, this technique effectively monitors and diag-
noses faults in induction motors. However, validating the
algorithm across various use cases and a broader range
of faults is advisable. The algorithms trained using this
approach can be deployed for real-time monitoring and
detecting bearing faults in induction motors. Additionally,
there is potential for further improvement by considering all
potential faults exhibiting current fluctuations. In the future,
it will be considered to train the algorithm for different fault
types based on different spectra.
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