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Abstract
In this article, a long short-term memory based protection scheme for power transmission lines is presented. A fault detection
framework is developed that uses voltage and current signals’ RMS values as input. The proposed work is established for
various shunt faults, both low-impedance and high-impedance faults which are tested on a standard IEEE 14 bus system and
an existing real transmission network. Results confirm the detection and classification of faults with accuracy and precision
higher than 99%. The impact of non-faulty events such as load switching, capacitor switching, noisy data, and load variation
conditions is also studied to analyze themodel’s performance. The efficacy of the proposedmethod is confirmed by comparing
it with different methods in the literature. Results indicate the aptness of the proposed scheme for the protection of power
transmission lines.

Keywords LSTM · Shunt fault · High-impedance fault · Evolving fault · Fault detection · Fault classification · Power
transmission lines

Abbreviations

LLLG Three lines to ground fault
LLL Three lines fault
LLG Double line to ground
LG Line to ground
LL Line-to-line
HIF High-impedance faults
LIF Low-impedance faults
AI Artificial intelligence
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FFT Fast Fourier transforms
WT Wavelet transforms
ST S-transforms
ANN Artificial neural network
SVM Support vector machines
k-NN K-Nearest neighbors
CNNs Convolution neural networks
KL Kullback–Leibler divergence
DT Decision tree
RF Random forest
IED Intelligent electronic device
PMU Phasor measurement unit
DFRs Digital fault recorders
LSTM Long short-term memory
RNN Recurrent neural network
RMS Root mean square
FD Fault detection
FC Fault classification
BN Batch normalization
TP True positives
FP False positives
TN True negatives
FN False negatives
CM Confusion matrix
SNR Signal–noise ratio
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PSB Power swing blocking
DCTL Dual-circuit transmission lines
TCTL Triple circuit transmission line

1 Introduction

Modern power system network has experienced a rapid
increase in size and complexitywith the integration of renew-
able energy resources [1]. As the system is exposed to
different atmospheric conditions, the chances of faults are
greater. A fault is a condition in which abnormal electric
current flows through the system. The protection system’s
main functions are to detect the fault, and classify them into
different types (LG, LL, LLLG, LLL, and LLLG) and to
identify the faulty phase(s). There are however frequent and
unavoidable faults due to a variety of random reasons, which
severely affect the performance of the power system, inter-
rupt the supply of energy, and compromise the efficiency and
reliability of the system [2]. To meet the increasing energy
demand and ensure continuous delivery, the impact of faults
must be minimized. It is therefore crucial to detect these
faults early to eradicate them as quickly as possible. Main-
taining the faulted component allows for faster recovery of
the main system function and makes components more reli-
able by restoring their reliability in a matter of minutes. To
mitigate these faults and restore proper system operation, we
need effective protection and maintenance schemes. There
are several types of short-circuit faults thatmay produce short
circuits in generation, transmission, and distribution sys-
tems, including generators, transformers, insulation, HVDC
converters, feeder buses, and transmission lines. Electric
short circuits adversely affect power system performance
and threaten the key function of the system. Many of the
faults occur on transmission and distribution lines, as men-
tioned in [3]. A short-circuit fault occurs commonly and is
the most hazardous type of fault, posing high risks for the
line, including reduced component life expectancy, increased
power loss and heat, and damaged insulators. The short
circuits encountered can be divided into symmetrical and
asymmetrical faults. Symmetrical or balanced fault keeps
the system balanced. It consists of three lines to ground
(LLLG) and three lines (LLL) faults. They are relatively
rare, but they cause the major harm to the system equip-
ment because of the higher fault current magnitude involved.
Double line-to-ground (LLG), line-to-ground (LG), and line-
to-line (LL) faults are asymmetrical and unbalanced faults.
The occurrence probability of single-line ground faults is
0.80, although less severe than balanced faults. Another type
of fault showcasing a large impedance thereby leading to
very small fault currents is known as high-impedance fault

(HIF). In addition to endangering power system equipment,
HIFs can also endanger human safety. Designing a proper
protection scheme for HIFs is not just a matter of ensur-
ing detection of this hazardous fault but also to avoid any
fatal accident which may happen due to fact that it involves
current carrying conductor lying on ground with some high-
impedance surfaces which can cause fatal damage to human
beings. Further it also involves addressing the fact that HIF
features depend on many aspects such as surface humidity,
soil type, and weather condition [4]. HIF current and voltage
waveforms possess random, asymmetric, nonlinear features,
making it imperative to develop a robust detection scheme
using effective signal processing methods.

The type, location, and duration of a fault affect the
system’s performance. By detecting, identifying, and local-
izing faults faster, system protection and upkeep strategies
are improved and power systems are maintained with high
quality and quantity. Researchers and practitioners study
fault detection and classification extensively. Currently, most
methods rely on digital sampling of voltage and/or current
signals. Detection and classification tasks are then performed
on the sampled data. As part of the processing phase, fea-
tures are extracted and applied to classify and detect faults
[2]. A data-driven approach to fault detection and classifica-
tionwill replace rule-based algorithmswithmachine learning
and other artificial intelligence (AI) tools soon. Compared to
rule-based algorithms, data-drivenmodels are more effective
and can help develop generic solutions. With state-of-the-art
AI techniques, features are not required to be extracted using
the proposed scheme.

Detecting and classifying LIFs usually involve two steps:
(a) identifying features from input signals, and (b) calcu-
lating results based on features with the help of various
AI tools. Several techniques are used in conjunction with
these two parts. These include fast Fourier transforms (FFT)
[5], wavelet transforms (WT) [6], S-Transforms (ST) [7],
and other statistical methods. A feature extraction process
requires repeated efforts and is usually specific to system
configurations. For example, multiresolution wavelet analy-
sis and statistical features-based techniques in conjugation
with an artificial neural network (ANN) have been utilized
[8]. This method is remarkably accurate but is susceptible to
higher fault impedances and has not been tested for noise.
In feature extraction, WT or DWT is commonly used algo-
rithms [6]. Their applications, nevertheless, do not separate
the feature extraction fromworking algorithms. STcan reveal
joint time–frequency characteristics; some researchers have
used it instead of WT [7]. ST generally has a better ability to
reveal harmonics than DWT and is less susceptible to noise
than DWT. However, the criteria for selecting features are
alike, typically established on the standard deviation or sig-
nal energy. The method of feature extraction may be limited
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by the lack of generalization, as well as the need to investi-
gate constraints not directly recommended in the literature.
For instance, using WT or DWT encompasses the choice of
appropriate mother wavelet levels and decomposition lev-
els which is not only computationally affluent but can affect
algorithm performance as well [6]. Next, the features must
be processed to detect and classify faults. To accomplish this,
numerous researchers have used a variety of methods. Due to
the capability to learn from patterns, neural networks (NNs)
have attracted a lot of attention [9]. Data-driven tools like
decision trees (DT) [10] and k-nearest neighbors (k-NN) [11]
are also useful for fault analysis and decision making. Lit-
erature also reports on contemporary deep learning methods
such as convolution neural networks (CNNs) [2]. However,
these techniques are quite inefficient, because they rely on
two distinct parts to extract features and work the algorithm.
Feature extraction should be eliminated, and operational data
should be worked on directly. There is no generalized set
of rules for the process of feature extraction. Owing to this
unpredictability, the process of feature extraction could be
time-consuming and can disturb the system’s performance.

HIF detection and classification can also be achieved by
different signal processing techniques as discussed in [4, 12].
The HIF detection schemes can be categorized according to
the domain for feature extraction, such as the time domain or
the frequency/time–frequency domain. Using time-domain
methods,HIF is typically detected bymeasuring voltages and
currents and analyzing their unique properties. Mathemati-
calmorphology technology [13], fractal geometry techniques
[14], and Kullback–Leibler (KL) divergence [15] are some
of the time-domain-based feature extraction techniques avail-
able for HIF detection. HIF voltage and current signals are
analyzed by frequency-domain methods. FFT technology
detects HIF in [16] by calculating distance changes between
the harmonic components of fault currents.

The consideration of low-impedance faults alongwithHIF
(high-impedance faults) is indeed a crucial aspect that mer-
its attention in this paper. As the system may be subjected
to both kinds of faults, a protection scheme must be able
to detect the presence of both kinds of faults then only the
protection scheme is said to be reliable and robust. Thus,
the proposed scheme which is designed to cater both kinds
of faults provides reliability and robustness against both LIF
andHIF.While HIFs are extensively studied for their damag-
ing effects, the inclusion of low-impedance faults is equally
important for a comprehensive understanding of the overall
fault landscape. Low-impedance faults, often characterized
by reduced resistance, can pose distinct challenges and have
different implications compared to their high-impedance
counterparts. Theymay trigger different protective responses
in the system and exhibit unique fault signatures. By incorpo-
rating an analysis of both LIF and HIF, the paper provides a

more holistic view of fault scenarios, leading to a more effec-
tive and versatile protective framework. Addressing LIF and
HIF in this paper also contributes to a more practical and
applicable model, ensuring that the fault detection system
is well equipped to handle a wide range of potential issues
in real-world electrical systems. Data sources for the mod-
ern power grid include intelligent electronic devices (IEDs),
phasor measurement units (PMUs), digital fault recorders
(DFRs), alongwithmanyother devices [17].According to the
literature review, there is a requirement to develop automated
fault detection and classification methods whose parameters
are flexible in terms of working conditions and data sources.
With the help of long short-termmemory (LSTM) units [18],
this paper presents an innovative technique for automating
feature extraction that avoids the need for distinct feature
extraction tasks and merges it with the working technique.
Learning process parts such as feature extraction and work-
ing algorithms are unified, which makes deployment more
feasible. The major rewards offered by the method are that it
does not need communication links, requires low sampling
frequency, is easy to implement, does not get affected by sys-
tem noise, unavoidable transients, or operating conditions,
and is overall robust and reliable for operation. The paper is
organized as follows—Sect. 2 describes the LSTM methods
used, Sect. 3 contains the proposed method, Sects. 4,5, and
6 cover the results, Sect. 8 contains a comparison with other
schemes and is followed by the conclusion of the work in
Sect. 9.

2 Long short-termmemorymethod

As a type of artificial neural network, LSTM [18] is a compo-
nent of artificial intelligence anddeep learning.AnLSTMhas
feedback connections, unlike a feed-forward neural network.
In addition to processing single data points, this type of recur-
rent neural network (RNN) can also processwhole sequences
of data. LSTM has both long-term and short-term memories,
like a standard RNN. In the network, weights and biases are
altered in each iteration, just as synaptic strength changes
physiologically to accumulate long-term memories; activa-
tion patterns in the network alter once per time step, similarly
to how short-term memories are stored in the brain through
moment-to-moment electrical firing patterns. By providing
long short-term memory to RNNs, the LSTM architecture
offers long short-term memory lasting thousands of time
steps. Three gates control the flow of information into and
out of a common LSTM cell unit. These gates are a forget
gate, an input gate, and an output gate [18]. With three gates
controlling information flow, the cell can remember values
for arbitrary periods. A time series may have significant lags
between significant events in the series, so LSTM networks
are appropriate to classify, process, and prediction of events.
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Fig. 1 LSTM Architecture

Fig. 2 LSTM architecture for the
proposed scheme
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To overcome the problem of vanishing gradients encountered
in training conventional RNNs, LSTMs were developed. In
various applications, LSTMs are advantageous over RNNs
and other sequence learning approaches. This is because they
are relatively insensitive to gap length. The basic block dia-
gram of a conventional LSTM unit is illustrated in Fig. 1.

LSTM begins by deciding how much information about
the cell state (Ct ) it is willing to discard. Sigmoid layers
knownas “forget gate layers”make these decisions. It decides
by looking at ht−1 (previous time step hidden state vec-
tor) and xt (input vector to LSTM unit) and returns a value
between 0 and 1 for each number in the cell state Ct−1. In
general, “1” indicates that the information should be kept per-
manently, while “0” indicates that it should be thrown away

completely. This step is shown mathematically in Eq. (1).

ft = σ
(
W f

[
ht−1, xt

] + b f
)

(1)

Here ft is the activation vector of the forget gate,W f is the
corresponding weight matrix, and b f is the bias function. σ
represents the sigmoid activation function. Choosing the new
data to store in the cell state is the next step. It consists of two
parts. As a first step, a sigmoid layer known as the “input gate
layer” decides which values to appraise. Afterward, a tanh
layer creates a vector of new candidate values,C

′
t (cell input

activation vector), which could be added to the state. In the
next step, these two are combined to create an update to the
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Fig. 3 Single line diagram of
IEEE 14 bus system
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Fig. 4 a Phase A current. b RMS
current. c RMS current of two
cycles post-fault

state [24].

it = σ
(
Wi

[
ht−1, xt

] + bi
)

(2)

C ′
t = tanh

(
WC

[
ht−1, xt

] + bc
)

(3)

Here it is the activation vector of the input gate,Wi andWC

are the corresponding weight matrix, and b f and bc are the
bias functions. Next the old cell state (Ct−1) is updated to cell
state (Ct ). In the previous steps what information needs to
be added was decided upon. This step involves the execution
of the same. The old state is multiplied by ft which leads to

forgetting the new and maxima of the signal the information
that was not needed. Then, itC ′

t is added to it. The new
candidate value is scaled before updating every state value.
Mathematically this step is represented by Eq. (4)

Ct = (
ftCt−1 + itC

′
t

)
(4)

The last stage is the output stage. The output depends on
the filtered cell state. Firstly, the information passes through
the sigmoid layer that decides what parts of the cell state will
be output. Afterward, the cell state passes through a layer to
produce outputs between − 1 and 1. It later gets multiplied
with sigmoid layers output so that only the outputs decided
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Fig. 5 a Phase A voltage. b RMS
voltage. c RMS voltage of two
cycles post-fault

Table 1 Fault cases used for validation of the proposed method

Parameter variation Train/Test dataset No. of
cases

HIF Fault Type (LG, LLG,
LLLG)

AG, BG, CG, ABG, ACG,
BCG, ABCG

7

HIF Fault Resistance Fault resistance varied
between 150 � and
500 �

10

LIF Fault Type (LG, LLG,
LLLG, LL)

AG, BG, CG, ABG, ACG,
BCG, ABCG, AB, BC,
AC, ABC

11

LIF Fault Resistance Fault resistance varied
randomly between 0 �

and 50 �

10

Fault inception angle Angles between 0
◦
and

90
◦
with steps of 15

◦
6

Fault location Between 5–60 km with
steps of 5 km

12

upon earlier are obtained. The mathematical representation
of the last stage is given by Eqs. (5) and (6).

Ot = σ
(
WO

[
ht−1, xt

] + bO
)

(5)

ht = (ot tanh(Ct ) (6)

Here Ot is the output state activation vector and WO and
bO represent the corresponding weight and bias matrix.

The LSTM network used in the approach proposed in this
paper classifies various types of symmetrical and asymmet-
rical faults as well as detects their presence. The data are
transferred from the input nodes to the LSTM hidden layer,

Table 2 Non-fault cases used for validation of the proposed method

Parameter variation Train/Test dataset No. of
cases

Capacitor switching (CS)
(In, Out)

Capacitor bank rating:
5,10,15,20 MVAR

8

Generator tripping
(Out-In)

Bus 1, 2, 3, 6, and 8 10

Load change (All 11
loads)

± (10, 20, 30, 40, 50, 60)%
change in original
loading

12

Voltage sag Bus 1, 2, 3, and 8 4

Nonlinear load (NLL)
switching

10–100 kW with steps of
10 kW

10

Motor load switching
(MLS)

200–600 kW with steps of
100 kW

4

Distorted grid (CS, MLS,
NLLS)

3rd and 5th harmonics up
to 4.5%

5

Miscellaneous cases Evolving fault, LIF, HIF,
simultaneous faults

10

Load switch in capacitor
out

At bus 8 1

Load Tripping at 11 buses 11

which is composed of several LSTMunits. A fully connected
dense layer receives the LSTM layer output. As the output
of this layer provides the probability of class labels, the fully
connected layer is responsible for the high-level reasoning
required for classification. Furthermore, a fully connected
layer optimizes the objective by learning nonlinear amalga-
mations present among designated features. In contrast to
pooling layers, fully connected layers contain weights and
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Fig. 6 Flowchart of the proposed method

Table 3 LSTM parameters used for different modules

Module Sub modules Values of parameters

Fault Detection – Epochs: 140, Batch Size:
150, Dropout: 0.2,
Optimizer: Adam,
Learning Rate: 0.001

Fault Classification LIF Epochs: 200, Batch Size:
90, Dropout: 0.2,
Optimizer: Adam,
Learning Rate: 0.001

HIF Epochs: 100, Batch Size:
40, Dropout: 0.1,
Optimizer: Adam,
Learning Rate: 0.001

intercepts that multiply trainable weights by the input fea-
tures. In addition, they contain an additional bias that can be
selectively applied. Finally, a multiclass classifier employs
a softmax activation function in the last dense layer. A sig-
moid activates this layer during binary classification. CNNs
are considered one of the most favored deep learning prac-
tices, but they suffer from overfitting and vanishing gradient
problems and training large-scale networks requires a lot of
processing power. LSTM uses additive gradient structures to
solve vanishing gradient problems. The network can activate

the forget gate directly and update the gate frequently at every
time step, thereby achieving the desired performance from
error gradients. With LSTMs, patterns can be remembered
over long periods, giving them an advantage over other deep
learningmethods [18]. In LSTMs, information flows through
cell states, allowing some information to be retained while
some information is forgotten. An LSTM only adjusts by
multiplying and adding, unlike other methods. In addition,
LSTM networks preserve constant backward propagation
error rates. Even if the time steps are large, the network can
learn dependencies.

3 Proposedmethodology

The relaying scheme proposed for fault detection and classi-
fication in the transmission system consists of three parts:
input preparation, fault detection, and fault classification.
The detailed architecture of the proposed methodology is
shown in Fig. 2. The various steps incorporated in the relay-
ing scheme design are discussed below.

1. Simulation of power system module: The IEEE 14 bus
system has been simulated in MATLAB/Simulink envi-
ronment [19]. All the simulations are executed on a
system having an Intel CORE i5 processor, 3.4 GHz
CPU speed, and 8 GB RAM. Various fault and no-fault
cases byvaryingdifferent systemparameters such as fault
location and impedances have been simulated to test the
efficacy of the proposed scheme.

2. Input preparation: The two-cycle post-fault three-phase
voltage and current signals are collected from buses 1, 2,
and 3. The root mean square (RMS) value of these sig-
nals is calculated using a one-cycle-longmovingwindow.
The recursive RMS voltage and current obtained are then
utilized as input for the fault detection and classification
modules.

3. TrainingModules: Twomodules have been created, each
for fault detection (FD) and fault type classification (FC)
with the help of input RMS voltage and current values
and their corresponding targets. The modules are trained
using suitable LSTM parameters.

4. Testing Modules: 20% of the entire dataset has been
reserved for testing both modules. The testing set was
randomly selected. The testing data determines the effi-
cacy of the trainedmodule in terms of various parameters
such as accuracy.
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Fig. 7 FD model (a) accuracy curve, (b) loss curve, (c) confusion matrix for the test dataset

Table 4 Class-wise result of the
proposed model for FD Class Accuracy Precision Recall Specificity F1-score

No-fault 1.00 0.99 1.00 0.99 1.00

Fault 0.99 1 0.99 1 1.00

3.1 Power systemmodel under study

In this paper, an IEEE 14 bus transmission system [20] as
shown in Fig. 3 has been utilized for fault detection and clas-
sification purposes. It consists of a 220/132 kV, 60Hz system,
five synchronous generators located on buses 1, 2, 3, 6, and
8, fourteen buses, twenty transmission lines, eleven loads,
and various transformers. Out of the five synchronous gen-
erators, three are synchronous condensers located on buses
3, 6, and 8. The 11 loads combined have a total power of
259 MW and 81.3 MVar. All the necessary system parame-
ters such as line lengths are discussed in detail in [20]. The

dataset has been generated by simulating the different types
of symmetrical and unsymmetrical faults along with some
no-fault cases such as load variation and switching events.
The fault simulations are done between lines connecting bus
1 and 2, bus 2 and 3, and bus 1 and 5, and data from buses
1.2 and 3 are recorded.

3.2 Preprocessing and data collection

Theproposed schemeuses processed three-phase voltage and
current signals collected from different buses. The sampling
frequency used for data collection is 1.2 kHz. Therefore,
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Fig. 8 (a) and (b) Phase B and C
current and voltage signals
obtained at bus 3 for BC fault of
5 ohms resistance (c) Output of
FD module

Table 5 FD time for different fault resistance values

Line section Type of fault Resistance value
(ohm)

FD time
(ms)

1–2 AG 0.01 19.4

ABG 10 20

2–3 CG 15 20.8

BC 20 22

1–5 BG 100 33

ACG 250 49.5

the total number of samples in each cycle is ( 120060 =
20samples). These signals are further processed by an RMS
filter with a moving window of one cycle. The data from
two cycles post-fault are then utilized for further processing.
Figures 4 and 5 show how pre-processing is performed. The
process is shown in detail for an AB-type fault occurring
between lines 1 and 5 at 20 km simulated at t = 1 s. Bus 1

voltage and current signals are obtained, and RMS is calcu-
lated. Finally, the RMS voltage and current signals of two
cycles post-fault are used as input for the fault detection and
classification modules.

To train and check the versatility of the proposed model, a
variety of fault and no-fault cases are simulated. To achieve
this, themodeled system is configured, and its parameters are
adjusted. Tables 1 and 2 depict the possible configurations for
fault and non-fault cases. All possible fault resistance config-
urations and fault inception angles are evaluated at different
lines (1–2, 2–3, and 1–5) and locations of the system to test
all different types of faults. Both LIF and HIF have been
simulated.

Also, there are different characteristics of faults occurring
at angles from 0

◦
to 90

◦
. A first approach is demonstrated in

this paper where fault and non-fault events are assessed on a
pure sine voltage main grid and a distorted main grid, where
individual harmonics vary from 1 to 4.5%. Power quality
standards recommend a maximum of 5% harmonic distor-
tion.
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Table 6 FD time for different fault locations

Line section Type of fault Fault location (km) FD time
(ms)

1–2 AG 5 16.7

AC 10 19.4

2–3 CG 15 20

ABC 20 20.8

1–5 BC 30 25

ACG 40 33

BG 45 50

BCG 60 55

Themain signal is somewhat distorted because of harmon-
ics, even though it is presumed to be of a pure sine nature.
It is typically significant in fault detection. Or it may lead
to fault detection failure in distorted grid cases. The litera-
ture references [21] consider capacitor and load switching
as examples of no-fault events. In addition to these events,

Table 7 FD time for different fault inception angles

Line section Type of fault Fault inception angle
(in °)

FD time
(ms)

1–2 BG 0 20.04

AB 15 19.4

2–3 AC 30 20

BCG 45 20.8

1–5 ABG 60 33

ABC 75 50

this paper covers motor switches, nonlinear loads, and a brief
generator shutdown. Several capacitances and local load val-
ues are considered when simulating the events of capacitor,
motor, and nonlinear load switching. Table 2 describes each
case in detail. Each event is applied 1 s after the simulation
starts, and the total simulation time is 2 s.

Fig. 9 a FD output and RMS
current at different locations for
an AG fault simulated at t = 1 s
between bus 1 and 2 having a
fault resistance of 5 ohms. b FD
output and RMS voltage for
different types of faults simulated
between bus 2 and 3 having a
fault resistance of 10 ohms

(a)

(b)
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Fig. 10 a FD output for variation
in load followed by a CG fault
incepted between bus 1 and 5
having a fault resistance of
15 ohms. b FD output for an
evolving fault (BG to BCG)
incepted between bus 1 and 2,
having a fault resistance of
5 ohms. c FD output for a
simultaneous fault ABG with
0.01 � and ABG with 50 ohms
incepted between bus 1 and 2 and
bus 2 and 3, respectively
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3.3 Design of the fault detectionmodule

An LSTM-based approach has been used in the proposed
work for detecting faults in the transmission network. The
use of both V and I signals in the presented approach holds
significant promise for practical applications, in particular
to differentiate between the LIF and HIF faults. During the
LIF, the current magnitude increases considerably whereas

there is simultaneous decrease in the magnitude of volt-
age signal as well. On the other hand, during HIF fault,
the current magnitude is increased by small magnitude and
there is no change in the voltage magnitude. Thus, consid-
ering both V and I signal provides a benefit of detecting
both LIF and HIF faults using the proposed methodology.
The selection of the suitable FD module for LIF and HIF
has been determined through threshold analysis. The RMS
current and voltage, acquired from the relaying point, are
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Table 8 Data description for no-fault and fault data generation

Parameter variation Train/Test dataset No. of
cases

Capacitor switching in (CS) Capacitor bank rating:
5,10,15,20 MVAR

4

Generator tripping (Out-In) Bus 1 and 8 4

Load change (All 11 loads) ± (10, 20, 30)% change
in original loading

6

Voltage sag Bus 1 and 3 2

Nonlinear load (NLL)
switching

10 and 20 kW 2

Motor load switching (MLS) 200 kW 1

Load tripping Load at B1 and B2 2

Fault type: AG, BG CG,
ABCG

B1, B2, and B3 3

compared with a predefined threshold settings. In the case of
LIF detection, the current and voltage thresholds are set at
Ith1 = 1.5INominal and Vth1 = 0.9Vrms , respectively. Sim-
ilarly, for HIF detection, the current and voltage thresholds
are set at Ith2 = 1.16INominal and Vth2 ≈ Vrms , respectively.
Figure 6 provides a detailed depiction of the process involved
in the proposed method.

The LSTMmodule works in two stages, the training stage
where it learns from the input dataset. The testing stage is
in which the model’s efficiency for testing unknown data is
evaluated. All the fault (LIF and HIF) and no-fault current
and voltage RMS signals obtained from the three-relay bus
are used as input to the FD unit. The input matrix X for the
proposed scheme consists of 18 indices. The X matrix is of
18 × m dimensions where m represents the total number of
fault cases and 18 is the three-phase RMS voltage and current
signals obtained from three buses. The inputmatrixX is given
in Eq. (7). The FD module distinguishes between fault and
no-fault conditions. Therefore, a single output is selected at
a time, i.e., 0 in case of no-fault and 1 in case of fault. The
output matrix for the FD unit is given in Eq. (8).

The LSTM model has been implemented with Keras
library with Tensorflow at the backend in Python. A vari-
ety of LSTM parameters are applied to design LSTM-FD
modules based on inputs and targets. The LSTM network
structure used in this experiment consisted of 128 memory
units in the LSTM layer with tanh as an activation function.
This layer is configured with a dropout. To prevent overfit-
ting in deep learning, dropout is utilized as a regularization
technique [22]. If a model is overfitted, it only works on a
single dataset and cannot be applied to other datasets. For the
construction of these units, a variety of gates are used. These
are the forget gate, input gate, and output gate. By removing
unnecessary information from the LSTM network, the forget
gate increases its efficiency. A tanh function is utilized by the

input gate to add data. In contrast, a sigmoid function is uti-
lized by the regulatory filter to multiply information and add
it to the cell’s state. Analyzing meaningful data is the output
gate’s responsibility. After the LSTM layer, a batch normal-
ization (BN) layer is applied. With BN, gradient saturation
is reduced throughout the covariate shift, and nonlinearity
is added to the convolution output to speed up the learning
process. After the LSTM layer, three fully connected, dense
hidden layers are added, each with 64, 32 ad 1 memory unit
each. Instead of using ReLU, which retains both positive and
negative values between 1 and − 1, the tanh activation func-
tion is implemented in the model for the intended task. The
last layer employs a sigmoid activation function because of
the binary classification task. Binary cross entropy is used
for loss function evaluation. The model is evaluated for 140
epochs for a batch size of 90. Table 3 gives details of model
parameters.

X = 〈

RMSVa11

RMSVb11

RMSVc11

RMSIa11

RMSIb11

RMSIc11

..

..

..

RMSVa31

RMSVb31

RMSVc31

RMSIa31

RMSIb31

..

| . . . . . . . . . . . . |

RMSVa1n

RMSVb1n

RMSVc1n

RMSIa1n

RMSIb1n

RMSIc1n

..

..

..

..

RMSVa3n

RMSVb3n

RMSVc3n

RMSIa3n

RMSIb3n

..

〉 (7)

Y1 = 〈0or1〉 (8)

3.4 Design of fault classificationmodule

After the detection of faults, the next task is fault classifi-
cation. There are ten fault events in the case of LIF and six
fault scenarios in HIF cases. Two fault classification mod-
ules, for LIF and HIF, were created. For fault classification
models as well one LSTM layer with 128 memory units and
three dense layers with 64, 32, and 10 or 6 memory units
have been designed. The first layer is coupled with a dropout
layer. BN is performed after every hidden layer. The activa-
tion function used at the output dense layer is softmax, and
categorical cross entropy is evaluated for obtaining the loss
function. Table 3 describes the modules in detail.
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Fig. 11 During capacitor
switching and CG fault event at
bus 8 with fault resistance of
5 ohms occurring consequently
(a) Phase C current, (b) Phase C
voltage signals, (c) output of FD
module

4 Performance evaluation parameters

The post-fault two-cycle RMS voltage and current signals
are obtained from buses 1, 2, and 3 and used for further
processing. The proposed LSTM-based fault detection and
classification have been evaluated under a wide variety of
faulty and non-faulty cases. The testing dataset was obtained
by splitting the training dataset into different ratios. It has
been observed that a train–test split of 80%-20% yields the
most desirable results. The module’s performance has been
verified using accuracy, recall, specificity, precision, and F1-
score.Machine learningmodel accuracy indicates howmany
times it was correct overall. Precision refers to how well the
model predicts a specific class. Recall is the number of times
the model has identified an explicit category. Precision and
recall yield an F1-score. A higher F1-score indicates greater
precision and recall. F1-scores range from 0 to 1. A model is
better if it is closer to 1. An algorithm or model’s specificity
is its capability to anticipate true negatives. These matrices
are obtained using a confusion matrix (CM). A CM is a table

consisting of actual and predicted labels. Furthermore, this
table maps the true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) of the class labels.
The fault detection time is calculated with the help of Eq. (9).
The time to detect fault is obtained by taking the difference
between the time taken to identify the fault and the time of
inception of the fault.

FDT ime = Tidentification time − Tfault inception time (9)

4.1 Fault detection results

The role of the fault detection module is to process the RMS
values of both voltage and current signals of two cycles,
post-fault data obtained from different buses, and determine
whether a fault is present or not present in the system. The
performance parameters evaluated for this module have been
discussed in the previous section. The performance of the FD
model is characterized by various types of symmetrical and
unsymmetrical HIF and LIF faults and non-fault cases such

123



Electrical Engineering

(a) (b)

(c) (d)

Fig. 12 Case 1—During generator tripping event followed by a CG fault: (a) Phase C current (b) voltage, Case 2—During capacitor switching
event followed by a CG fault: (c) Phase C current and (d) voltage (e) output of FD module in two cases

Fig. 13 Accuracy curve of model for fault detection for different noise
levels

as changes in load conditions, capacitor and load switching,
and generator switching amongmany other non-faulty condi-
tions as discussed below. Figure 7a demonstrates the model’s
accuracy curve for both training and testing datasets. It can
be observed that themodel has a 99.99%accuracy rate during
training and testing. Figure 7b shows the loss curve obtained
for themodel. It can be observed that at the end of 140 epochs,
a loss of about 5.1927e-04 is achieved by both training and
testing data thereby showing the model’s efficiency. The nor-
malized CM obtained for both no-fault and fault classes is
shown in Fig. 7c. The output of CM is shown in Table 4.
The accuracy for the no-fault class is 100% and that for fault
detection is 99%.
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Table 9 FD time for different types of faults

Fault type Line section SNR (Db) FD time (ms)

AG 1–2 35 25.04

BCG 2–3 45 19.4

ABCG 2–5 65 20

AB 2–3 75 20.8

4.2 Output of FD for faulty events

The efficiency of the proposed scheme has also been tested
for fault detection. A line-to-line BC type fault of resistance
5 ohms has been applied near bus 3 at t = 1 s, and the cor-
responding current and voltage signals obtained at bus 3 are
shown in Fig. 8a, b, respectively. The FD unit issues a trip
signal at t = 1.02505 s as depicted in Fig. 8c. Hence it can
be seen that the FD module can identify faults in 25.05 ms.

4.2.1 Effect of fault resistance on FD

Often the fault resistance varies with the occurrence of fault
in the system. Therefore, irrespective of the fault resistance
value the relaying method proposed should work correctly.
A wide range of fault resistances as discussed previously has
been tested for the proposed LSTM-FD module. The results
of the time taken for the detection of faults for different resis-
tance values occurring on different line sections are given in
Table 5. Table 5 reflects that the time taken for detection of
faults is between 1.5–2.5 cycles in most of the cases.

4.2.2 Effect of fault location on FD

The distance of fault location from the relaying point plays
a crucial role in determining the time taken for fault detec-
tion. The faults have been simulated at various locations as
mentioned in Table 1. The results for the time taken for the
detection of faults simulated at various locations on different
line lengths are shown in Table 6. The faulty resistance for
all the cases demonstrated is kept constant at 5 ohms. Vari-
ous fault locations have been analyzed, but only a few results
are summarized in Table 6 for demonstration purposes. The
detection time is considered very small based on the fault
locations. In Fig. 9a for an AG fault occurring between bus
15 at various locations, the FD model output has been dis-
played. Similarly, as the location of the fault increases from
the relaying bus, the time to detect the fault also increases.

4.2.3 Effect of type of fault on FD

The type of symmetrical and asymmetrical fault also deter-
mines how long it may take to develop these types of faults.

The result for the detection of different types of faults is
shown in Fig. 9b. The RMS voltage and the output are shown
for simulated faults between lines 2 and 3. This is for a fault
resistance value of 10 ohms at a location of 15 km distance.
It is observed that the model can identify all types of faults
easily.

4.2.4 Effect of variation of fault inception angle on FD

Transmission line faults cannot be predicted exactly in time
or at a specific angle. It is therefore imperative that any fault
occurrence can be identified by the protection systemwithout
fail. The detection scheme should be able to determine faults
occurring at different instances of their inception. The results
for varying fault inception angles are shown in Table 7. The
results suggest the model is capable of determining faults
effectively.

4.2.5 Effect of variation of system load on FD

The transmission system is susceptible to load changes due
to various reasons. Therefore, the system has been tested
for various load increase and decrease cases and its effect on
fault determination has been evaluated. Figure 10a showcases
the occurrence of a CG type with varying loading on the
system. The fault is applied between buses 1 and 5 for a fault
resistance of 5 ohms at 20 km. It can be observed that even
with an increase or decrease in the loads the fault has been
easily detected.

4.2.6 Evolving fault

Line faults can start as one type but eventually change to
another type. For example, an LG fault may convert to an
LLG fault later. Various such cases have been studied in this
research work, and the output of FD for one such case is
shown in Fig. 10b. In the presented case, a BG type fault
occurring near bus 1 at 1 s later evolves into a BCG type
fault at 1.03 s. The fault has been effectively determined in
more than a cycle time as seen from the results obtained.

4.2.7 Simultaneous fault

These types of faults occur simultaneously on two or more
lines at the same time. To check if the system is robust to
any such types of faults, an ABG type of fault is simulated
between buses 1 and 2 and also between buses 2 and 3 at
1 s. The fault occurring between buses 1 and 2 has a fault
resistance of 0.01� and is located at a distance of 5 km from
the relaying bus. Similarly, the other LLG fault is simulated
at a distance of 10 km from the relaying bus with a fault
resistance of 50 ohms. The RMS current of Phase A along
with the FD model output is shown in Fig. 10c. Hence it can
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Fig. 14 a Emanuel model for HIF simulation. b Case 1: HIF at 1.0 s
occurring on concrete surface of 10 cm thickness current signals for
Phase A. c Voltage signals for Phase A (d) Case 2: current signals for

Phase A with HIF occurring on a concrete and soil surface of 10 cm
thickness (e) voltage signals for Phase A (f) FD output for Case 1 and
2
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Table 10 Simulation parameters for HIF for different surfaces

Type of surface Rp (�) Rn (�) Vp (V) Vn (V) Resistance variations

Concrete surface with 10 cm thickness 150–500 150–500 4500–5500 7500–8500 In steps of 20 ohms every half-cycle

Soil and concrete surface with 10 cm
thickness

150–500 150–500 3500–4500 3500–4500 In steps of 5 ohms every half-cycle

Table 11 FD time for HIF for different surfaces

HIF surface Type of fault FD time (ms)

Concrete surface AG 50

BG 58.35

BCG 66

Soil and concrete surface AG 58.35

ACG 83.3

ABCG 116.6

be seen that these types of faults are also rapidly detected by
the model.

4.3 Fault detection in case of a non-fault event
followed by a faulty event

The robustness of the system’s FD capability is studied in
typical situations. For example, a non-fault event is preceded
by a fault event. In the case of capacitor switching followed
by a fault in the line to ground, for example, Table 8 dis-
cusses all the non-faulty and faulty case studies simulated.
To exemplify such a situation, a case of capacitor switching
in of 15MVAR rating at bus 9 followed by a CG fault occur-
ring near the same bus has been studied. The voltage and
current signals for Phase C captured at bus 8 for capacitor
switching in at t = 0.8 s and a CG fault appearing at t =
1 s are illustrated. Figure 11a, b shows that upon switching
a capacitor at t = 0.8 s a momentary distortion in the signals
occurs. Current and voltage signals increase and decrease in
magnitude, respectively, after the fault happens at t = 1 s.
Figure 11c corresponds to the FD unit trip signal. It remains
low even while capacitor switching occurs and only goes up
in case of a fault. Hence this proves the competence of the
scheme in such complex scenarios as well.

Figure 12 shows a few more cases considering non-faulty
events followed by faulty events. Figure 12a, b demonstrates
Phase C current and voltage signals for a generator tripping
at bus 1 at t = 0.8 s and a CG fault of resistance 10 ohms at
t = 1 s occurring in line between bus 1 and 5. Figure 12c, d
corresponds to a CG fault of 20-� fault resistance preceded
by a 20MVAR capacitor switching event at t = 0.8 s on
buses 1 and 2 and bus 9, respectively. All fault events are
simulated at t = 1 s. The output in Fig. 11e justifies the

LSTM-FD’s ability to distinguish between faulty and non-
faulty situations.

4.4 Influence of noise

Power system signals are corrupted by noise. This distorts the
signals. To replicate the same white Gaussian noise has been
added to the signals to check the model’s efficiency in the
detection of faults. Noisy signals ranging between 15–85 dB
signal–noise ratio (SNR) with a step size of 5 dB have been
added to the voltage and current signals. In Fig. 13, we see
the average accuracy of the proposed model for FD at dif-
ferent levels of SNR. For noise levels greater than 50 dB,
the presented model attains greater than 95% fault detection
accuracy. Further, the FD time for different types of fault
with varying noise levels is shown in Table 9. In this inves-
tigational study, the projected model of fault detection was
validated to be robust to noise levels between 40–60 decibels.

4.5 High-impedance fault detection

The HIF occurs when a highly resistive surface such as
ground, wet sand, concrete surface, asphalt surface, or
grass makes contact with an open live conductor. The
HIF exhibits conglomerates consisting of nonlinearity, ran-
domness, asymmetry, shouldering, buildup, and intermittent
behavior [21]. These types of faults are highly dangerous
because they usually remain undetected by conventional
relays because of low fault current values. Additionally,
faulted surfaces and humidity conditions play a major role
in HIF current characteristics. Consequently, conventional
protection mechanisms, such as an overcurrent relay, cannot
detect most HIFs. Fires can be caused or personnel safety
may be jeopardized by undetected HIFs. Based on antipar-
allel diodes, DC sources, and nonlinear resistance for each
phase, a realistic HIF model, also known as the Emanuel
model, utilized by many researchers is modeled to simulate
a realistic HIF model. This is shown in Fig. 14a. To make the
study more relatable to actual conditions, two different types
of HIFs occurring on a concrete surface of 10 cm thickness
and a soil and concrete surface of 10 cm thickness have been
replicated with the help of the HIF model. Table 10 shows
the values of Rp, Rn , Vp, Vn that are changed for every half-
cycle to replicate the HIFs of different contact surfaces. The
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Fig. 15 LIF classification model (a) accuracy curve, (b) loss curve, (c) class-wise confusion matrix

Table 12 Class-wise result of the
proposed model for fault
classification of LIF

Class Accuracy Precision Recall Specificity F1-score

0 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00 1.00

5 1.00 1.00 0.99 0.99 0.99

6 0.99 0.99 1.00 1.00 1.00

7 1.00 1.00 1.00 1.00 1.00

8 1.00 1.00 1.00 1.00 1.00

9 1.00 1.00 1.00 1.00 1.00

10 1.00 1.00 1.00 1.00 1.00
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Fig. 16 HIF classification model (a) accuracy curve, (b) loss curve, (c) class-wise Confusion Matrix

Table 13 Class-wise result of the
proposed model for fault
classification of HIF

Class Accuracy Precision Recall Specificity F1-score

0 1.00 0.98 1.00 0.99 0.99

1 0.98 1.00 0.98 1.00 0.99

2 0.99 0.99 0.99 0.99 0.99

3 0.98 0.99 0.98 0.98 0.98

4 1.00 1.00 1.00 1.00 1.00

5 0.98 0.97 0.98 0.97 0.98

6 0.99 0.99 0.99 0.98 0.99

current and voltage waveforms of an HIF occurring on a con-
crete surface of 10 cm thickness as well as a soil and concrete
surface of 10 cm thickness are shown in Fig. 14b–e. The FD
model output for both cases is shown in Fig. 14f.

All HIF cases are simulated at different distances between
bus 2 and bus 3. The dataset is generated by simulating vari-
ous types of LG, LLG, and LLLG faults. There is a mixture
of faults occurring on both types of surfaces in the detection

dataset. Table 11 shows the fault detection time for vari-
ous types of faults occurring on different surfaces. It can be
observed that HIF detection time is between 3–7 cycles.
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Fig. 17 Output of FD during a
power swing situation

Fig. 18 a Phase A current and
voltage waveforms during power
swing followed by a three-phase
fault. b Output of FD during a
power swing situation

Table 14 FD time for LIF occurring during power swing

Type of fault Fault impedance (�) FD time (s)

ABCG 1 19.4

ABG 15 20

BCG 20 20.04

BG 25 20.8

CG 45 25

AB 50 25

5 Result fault classification

5.1 Low-impedance fault (LIF)

LIFs are the most commonly occurring types of faults in the
power system network. These faults can occur for a vari-
ety of reasons, such as the fall of trees on the transmission
lines. These types of faults cause maximum damage to the

system if not cleared on time. This is because they offer a
low-impedance pathway to the current which results in high
current magnitude. This can damage the attached power sys-
tem devices. The effect of symmetrical and unsymmetrical
faults on varying fault resistances, inception angles, and loca-
tions has been evaluated for the generation of a dataset. The
accuracy curve of the model for training and testing dataset
split into 80%-20%, respectively, is illustrated in Fig. 15a.
From the figure, it can be observed that at the end of 200
epochs, the model’s accuracy curves for both train and test
data converge and achieve 100% accuracy. As shown in
Fig. 15b, the obtained loss curve for the specifiedmodel. Both
the train and test curves converge near 200 epochs, showing
no sign of overfitting and under-fitting. Figure 15c demon-
strates the normalized overall class-wise CMobtained for the
LIF model. The model correctly classifies all types of faults
except for the BC type of fault where classification accu-
racy is 99.9%. This shows that the proposed model performs
fault classification correctly in a multibus system. Table 12
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Fig. 19 Chhattisgarh state 400 kV power transmission network diagram

Table 15 LIF FD time for different fault resistance and location values

Type of
fault

Resistance value
(ohm)

Location
(km)

FD time
(ms)

CG 0.01 10 24

BCG 10 25 25

AG 15 50 26.1

AB 50 75 32.15

BC 100 100 36

ABCG 250 150 40

discusses the model’s performance based on various param-
eters. Based on the results obtained it can be concluded that
overall, the fault classification system performs accurately in
all fault scenarios.

5.2 High-impedance fault (HIF)

Various HIF cases corresponding to LG, LLG, and LLLG
types have been used for the generation of training datasets.
The train-to-test split ratio is 80%-20%, respectively. The
accuracy and loss curve for the obtained fault classification

model for HIF are shown in Fig. 16a, b, respectively. The
average accuracy achieved in this case is 99%. The training
is done for 100 epochs. The achieved accuracy is fairly high
considering this is a HIF classification. This type of fault is
difficult to detect and yet the proposed model has attained
an excellent accuracy score with minimal loss. The CM of
the HIF model is shown in Fig. 16c shows that labels 0 and
4 for AG and BCG types have been classified with maxi-
mum efficiency. Table 13 discusses the model’s performance
based on various parameters. Based on the results obtained, it
can be concluded that overall, the fault classification system
performs optimally for all HIF fault scenarios.

6 Power swing

In power systems, power swing is a phenomenon of large
fluctuations in power flow from twozones tomore, frequently
triggered by unpredictable synchronous generators. Power
swings can occur as a result of system maintenance, such as
replacing a line switch or disconnecting a generator. In the
presence of these disturbances, the generator’s rotor angle
will oscillate, resulting in voltage and current oscillations.
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Fig. 20 Phase A voltage, current,
and FD output for an AB fault at
0.30 s with fault resistance of
50 ohms occurring at 75 km
distance from bus 4

When voltage and current are changing simultaneously, it
will cause the relay’s measured apparent impedance to be
too small, resulting in undesired operation of the relay. To
prevent unwanted distance relay operations during power
swings, modern distance relays are fortified with power
swing-blocking (PSB) schemes. By blocking operation dur-
ing power swings and unblocking operation when a genuine
fault occurs, the power swing protection scheme aims to pre-
vent blocking. Several data surveys and studies have been
conducted on power swing-blocking schemes in recent years.
The surveys show that these ideas have progressed from early
concepts to research in wide-area protection systems.

The proposed method detects power swings, and faults
can be detected during them. The test system is set to sim-
ulate a power swing by executing a three-phase-to-ground
fault at lines 1–2 at t = 0.25 s with an impedance of 1�. It
clears after 0.5 s. The voltage and current waveform and the
corresponding output of the FD unit are shown in Fig. 16.
Figure 17 shows that the scheme’s proficiency in treating
power swing as a fault condition. In addition to simulating
power swing, three-phase faults can also be examined during
power swing. This is accomplished by configuring a three-
phase fault with impedance 1 � at lines 2–3 at t = 1 s during
power swing. During a three-phase fault and a power swing,
Fig. 18a shows the voltage and current waveforms. The out-
put of the FD unit is shown in Fig. 18b. Several cases have
been simulated to verify the model’s competence by vary-
ing the fault impedance, the results of which are presented
in Table 14. The scheme has shown its capability to detect
faults even during power swing conditions.

7 Evaluation of scheme on an Indian power
system network of Chhattisgarh State

To validate the efficacy of the scheme for an existing real
transmission network, an analysis has been done in this
section. In Fig. 19, an Indian transmission network of 400 kV,
50 Hz is exemplified for Chhattisgarh state. This is based
on the power system network data provided in [23]. In this

transmission network, there are eight power generation units,
KORBA WEST-I with 2X210MW, KORBA WEST-II with
1 × 500 MW at bus 1, KSTPS-I with 4 × 500 MW and
KSTPS-II with 3 × 210 MW at bus 4, MARWA with 2
× 500 MW at bus 14, BSP with 2 × 250 MW at bus 6,
JPL with 3 × 250 MW at bus 10, and GMR with 2 ×
685MWat bus 13. The transmission network also consists of
four dual-circuit transmission lines (DCTL) (to Vindyachal,
Raipur/PGCIL-B, Birsinghpur, Bhilai/Khedamara, 198 km)
and three single-circuit transmission lines (to Korba-West,
100 km, andSipat, 60 km). The bus 3 (Bhilai/Khedamara) has
a triple circuit transmission line (TCTL) linkingRaipur/Raita
65.68 km to Bhilai 220 kV substation, three feeders con-
nected by stepdown transformer to Bhilai substation, one
DCTL (198 km from KSTPS/NTPC), and seven SCTLs
(212 km between Korba-West and Bhatpara, 90 km toward
Raipur/PGCIL-A, 20 kmbetween Seoni andKoradi, 250 km,
Koradi, 272, Bhadrawati, 322 km and Marwa a distance
between them). We consider the DCTL connecting buses 4
and 3 (i.e., between KSTPS/NTPC and Bhilai/Khedamara)
in this study. At bus 4 (KSTPS/NTPC), we have used the
proposed scheme.

7.1 LIF and HIF detection

Different high and low-impedance fault cases have been sim-
ulated between buses 3 and 4. Various fault scenarios are
simulated at various fault locations and resistances. The out-
put of different case studies for LIF is shown in Table 15.
The fault in all these cases is applied at t = 0.3 s. It can be
observed that as fault resistance and location increase, the
time to detect the fault increases as well. Figure 20 demon-
strates the results for an AB type of fault occurring 75 km
from the relaying point and having a fault resistance of 50
ohms. It takes approximately 32 ms to detect the fault.

Similarly, different HIF cases have also been simulated.
The results are shown in Table 16. The time taken to detect a
fault is between 5 and 8 cycles. Figure 21 demonstrates the
test results for CG HIF faults occurring at a 10 km distance
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Table 16 HIF FD time for different fault resistance and location values

HIF surface Type of
fault

Location
(km)

FD time
(ms)

Concrete surface CG 10 85

ABG 25 100

BCG 50 124

Soil and concrete
surface

CG 75 126.6

ABCG 100 150

ACG 150 166.6

on the concrete surface and 75 km at the soil and concrete
surface.

8 Comparison with other schemes

In this section, a brief comparison between the proposed
LSTM-based fault detection and classification scheme and
existing state-of-the-art models is presented. An assessment
is made of the accuracy, input, feature extraction, and stur-
diness of the model concerning operating conditions, etc.,
with several machine learning techniques. Table 17 reports
the corresponding findings. For instance, the authors in [25]
do not demonstrate the efficacy of their LSTM schemes for
a range of situations such as evolving fault situations, or
effects associated with no-fault situations such as capacitor
switching, generator tripping, and load tripping. Moreover,
the analysis was performed on a simple 2 machine transmis-
sion system. Although the effect of high impedances on fault
detection has been demonstrated a detailed study given in
this work such as the effect of different fault surfaces has
not been shown. The work conducted by authors in [24, 24],
and [2] has only presented either a classification or detection
task. Also, a detailed analysis regarding the impact of HIF
and evolving faults has not been discussed. The presented
technique is flexible enough to be used in a wide range of

operating conditions and momentary conditions while main-
taining acceptable precision. It is also possible to implement
the suggested method in real time since the proposed method
does not entail feature extraction. The main strengths of the
proposed scheme can be summarized as follows:

• Versatility in fault detection for both LIF and HIF faults.
• Fault classification of both LIF and HIF faults.
• Performing well even in noisy environments.
• Robustness to non-faulty events
• A data-driven approach that automatically learns relevant
patterns from the data.

• Proposed scheme has been tested on IEEE 14 bus system
and real Indian electrical transmission network.

TheLSTM-based approachhas scaledwell to larger power
systems with multiple transmission lines without significant
degradation in performance. This scalability advantage is
vital for applications in complex and extensive power grids.

9 Conclusion

For fault detection and classification tasks in electrical power
distribution networks, an end-to-end learning method is
presented in this paper that utilizesLSTMs.Byutilizing oper-
ational data obtained frommeasurement nodes, the proposed
method avoids a multifaceted feature extraction procedure.
LSTM exploits temporal dependencies to process sequential
data. Faults, fault types, and no faults are distinguished by
temporal insights. Backpropagation is used to train LSTM
models on categorized datasets. Current and voltage sig-
nals have been used in the designed models. The windowing
approach to obtaining RMS voltage and current lowers the
computational burden by reconfiguring operational data. The
IEEE 14 bus system is extensively tested for fault detection
and classification. Performance is robust in various fault set-
tings. This includes fault impedance, line loading conditions,
distance from the measurement node, system parameters,

Fig. 21 Output for a CG-type
fault occurring on both concrete
surface and soil and concrete
surface
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Table 17 Comparison with other schemes

Technique
used

Signals
recorded

Protective relaying functions
provided

HIF Evolving
faults

Simultaneous
faults

Impact of
noise

Feature
extraction

Accuracy
(%)

Detection Classification

FCN [17] V and I No Yes No No No Yes No 99.57

ANN [24] I Yes Yes No No No Yes DWT 99.33

CNN [2] V and I No Yes No No No Yes No 99.52

LSTM [25] V and I Yes Yes Yes No No Yes No 99.45

Proposed
Scheme

V and I Yes Yes Yes Yes Yes Yes No 99.99

fault inception angles, and measurement device availabil-
ity. Power swing, evolving faults, simultaneous faults, and
high-impedance fault conditions can similarly be detected
and worked under by the intended model as well. To further
advocate the effectiveness of the method, a real Indian elec-
trical transmission network has also been tested. The scheme
has proved efficient for fault detection in this network as well
as HIF and LIF. It also illustrates the potential of using end-
to-end learning formodern power system actions that include
a variety of conservative and non-conventional data sources.
However, the schemeposes certain limitations such as it is not
suitable for the detection of faults corrupted with noise lower
than 30 dB and may not work with a very limited amount of
data. In the future authors will work on overcoming these
limitations.
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