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Abstract
DC microgrids are gaining more importance in maritime, aerospace, telecom, and isolated power plants for heightened
reliability, efficiency, and control. Yet, designing a protective system for DC microgrids is challenging due to novelty and
limited literature. Recent interest emphasizes standalone fault detection and classification, especially through data-driven
machine-learning approaches. However, the emphasis remains on progressing state-of-the-art tools for fault diagnosis in DC
microgrids. Therefore, this work emphasizes fault detection and classification in a low-voltage standalone DC microgrid
using a data-driven machine learning hybrid approach: bagged ensemble learner and cosine k-nearest neighbour (C-kNN)
algorithms. The proposed fault detection and classification scheme makes the use of local voltage and current measurements
which enhances the admissibility of the proposed scheme. The bagged ensemble learner accurately identifies the faults in the
line, whereas the cosine k-nearest neighbor classifies the fault as pole to ground or pole to pole for further corrective actions. A
diverse set of test scenarios encompassing faulty and normal conditions has been analyzed and validated by randomizing data
inputs. The test model comprising PV, battery source, and loads have been constructed in MATLAB/Simulink environment.
The proposed scheme promises accurate fault identification and classification in normal and noisy environments. To establish
the robustness of the proposed approach, the outcomes of the fault detection and classification scheme have been compared
with the methods reported in the literature. The results indicate that the proposed method outperformed in comparison to
existing methods.
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1 Introduction

The penetration of renewable energy sources, DC electrical
loads, and energy storage systems has sparked a growing
interest in DC MGs, placing them as a competitive alterna-
tive to conventional AC MGs [1]. The integration of modern
power electronics and sophisticated control algorithms has
empowered the efficient deployment and reliable operation of
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DCMGs [2, 3]. When compared to AC systems, DC systems
have several benefits, such as higher dependability, better
power quality, increased transmission capacity, and simpli-
fied control methods [4]. Despite this, protecting DC systems
ismore difficult than usual because of the peculiarities ofDC.
Quick and fast protective measures are required because of
the swift transients and the lack of zero-crossings [5].

Predominantly, the most frequently encountered faults in
DC MGs can be categorized as PP, PG, and 2PG faults. PP
faults are less frequent, but they have the potential to pro-
duce extremely high currents that could harm equipment.
HIFs, on the other hand, are difficult to identify since they
tend to cause very little current variation, which makes them
immune to standard preventative measures [6]. HIFs, if left
unaddressed, can lead to circumstances that push the system
to more severe faults like PP, PG, or 2PG faults. Classical
fault detection techniques are not appropriate to be imple-
mented in an MG that supports DG simply because they
rely on predefined thresholds to identify faults. The prime
reasons are but are not limited to: (i) the variability of DG
output, which can cause voltage and current fluctuations,
posing challenges in setting fixed thresholds for fault detec-
tion, (ii) the dynamic behavior of islanded Microgrids may
cause a delay or imprecision in fault detection; (iii) Prede-
fined thresholds may not be able to accurately represent the
nonlinear behaviour of the system,which reduces the efficacy
of threshold-based fault detection techniques [7].Differential
protection is another conventional distribution systemprotec-
tion method that has been proven applicable in an MG [8];
however, it is not suitable due to the difficulty of determining
a multi-terminal protection zone with several inputs [9, 10].
Overcurrent protection, the fundamental form of protection,
can fail to recognize a fault in an MG environment, whether
it is island-based or grid-connected, due to tripping falsely or
failing to trip due to a fault current level change. Moreover,
the need for a communication link to provide selectivity, the
dependency of the current derivative on line loading, cable
length, and noise generated due to high sampling rates are
some limitations of an overcurrent-based protection strategy
[11]. Since the current derivative magnitude during faults is
significant in DC, it simplifies the detection of faults in a DC
MG [12]. Nonetheless, the protective measure may not work
if the analytical model is incorrect.

DC systems are categorized as high, medium, and low
voltage (HVDC, MVDC, and LVDC) depending on the
power levels at which they operate. Since signal system-
based protection techniques could potentially be used to
safeguard DC MG systems in smart grid environments, they
are regarded as cutting-edge techniques and are becoming
more and more popular. These techniques include FFT, WT,
S-transforms (ST), and Hilbert-Huang transforms (HHT)
which offer more detailed observation than STFT when it
comes to extracting the characteristics of faulty segments in

terms of signal features [14]. The primary limitation of the
FFT is the insufficient time domain data. The frequency res-
olution of STFT is significantly influenced by the size of
the window. Given that the STFT window size is constant,
low frequencies will be poorly depicted by a small window
and short disturbances will be difficult for a long window
to detect. By utilizing WT with variable frequency resolu-
tion and ST with the time and frequency-dependent window
function, this issue is resolved.WT can identify transient sig-
nals and abrupt changes in current wave patterns in the event
of a short circuit [6, 15]. The main drawback of this strat-
egy is that high sampling rate data acquisition components
are required. HHT is appropriate for analyzing both non-
stationary and nonlinear signals since it employs an adaptive
basis function. However, when intermittent waves occur at a
lower-frequency signal, mode mixing in the Empirical Mode
Decomposition (EMD) section of HHT fosters a challenge
[16]. In summary, the following are the main drawbacks of
a fault detection and classification method based on signal
processing: Wide-area protection necessitates the use of a
global positioning system (GPS) and a high sampling rate
data acquisition system [17].

In recent years, intelligent classifiers have emerged as an
effective tool for fault detection.As classifiers, decision trees,
support vector machines, naive Bayes, and artificial neural
networks (ANN) are commonly used. AI is extensively used
in the design of various protection schemes and power sys-
tem controls in an MG environment because of its ability
to reduce errors, learn from experience, and make decisions
more quickly [18]. Instances of the direct utilization of intel-
ligent classifiers for fault detection have been documented
in the literature. The inputs of an artificial neural network
(ANN) consist of voltage and current time signals, and the
outputs are binary variables that indicate the direction and
detection status of the fault. Typically, the time signal is first
transformed through field transform-based techniques, after
which features are extracted and supplied to the intelligent
classifier. An improved approach based onwavelet transform
(WT) and multiresolution analysis (MRA) for better charac-
terization of the fault and input signal to the ANN has been
suggested [19, 20]. AI and ML have generally improved the
performance of fault diagnosis for all types of networks. A
few ML- and AI-related pieces of literature on fault detec-
tion have been discussed as follows: For fault identification
and classification, a support vector machine (SVM)-based
machine learning technique has been presented in [21]. The
technique trains the SVM classifier for both islanded and
grid-connected types ofMGoperation usingWTof the three-
phase current as well as voltage signals. A similar work has
been presented in [22], where discrete wavelet transforms
(DWT) have been used in conjunction with support vec-
tor machines (SVM) for MG fault detection. To detect MG
system faults (DWT) furnish features to Bayes classifiers
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and KNN, decision tree (DT)/random forest (RF) [23, 24].
In contrast to other transients, the classifiers demonstrated
the ability to identify HIFs. A discrete WT and Taguchi-
ANN-based protection strategy for the fault analysis has been
reported in [25], which has also been verified on the Opal RT
platform. An alternative approach for locating and detect-
ing faults in multi-terminal DC MGs that makes use of local
voltage attributes has been explained in [26]. Short-circuit
fault diagnosis using ANN in an LVDC ring-type test sys-
tem has been reported in [27], which has been simulated in a
PSCAD/EMTDCenvironment. A similar study on the LVDC
network has been reported in [28, 29] usingANNandwavelet
transform techniques. The main obstacles limiting the ANN-
based method to the online application in a DC network are
longer training times and the requirement to redesign the
entire procedure by altering every system. Another study
explains how a particular ML tool based on DT and WKNN
for fault identification and classification operates. New tran-
sient scenarios have subsequently been used to test trained
classification models to confirm their accuracy in fault detec-
tion [13]. In summary, machine learning approaches are well
suited for fault diagnosis in microgrids due to their capacity
to handle the complexity, variability, and dynamicity found in
microgrid data as well as their adaptability, feature extraction
skills, and scalability.

To prove the robustness of the methods proposed in litera-
ture against noisy signals few case studies have been included
in this paper. A PG fault is created at 0.5 s considering a
fault resistance of 2� in a PV & battery sourced 30 kW,
350 V DC MG [30]. The proposed centralized protection
scheme to differentiate between internal and external faults
has been proven to be immune to noisy signals. Another
study [13] has been reported here. In the presence of the
white Gaussian noise, a fault current distortion spectrum at
the natural frequency of a 380 V DC MG network has been
observed. It has been shown that the current measured at the
fault occurrence instances did not have any impact of noise,
i.e., immune to noise in the system. Furthermore, to evalu-
ate the robustness of the analysed model, a fault diagnostic
model immune to noise has been built in [31, 32] by adding
a specific amount of specified noise to the data samples. The
outcomes demonstrate how effectively the suggested fault
detection and classification method can identify MG vulner-
abilities. Moreover, [33, 34] also pinpoints the efficient use
of ML techniques in identifying and classifying faults. From
the literature survey, it is observed that various techniques for
fault detection and classification have been discussed by the
researchers. However, the following limitations and draw-
backs have been observed:

1. The accuracy and reliability of the existing methods
are significantly impacted by variations in fault conditions,
topologies, and diverse DG units.

2. The sporadic and unpredictable characteristics of DGs
impede the effectiveness of relaying schemes, potentially
leading to delayed responses and unwanted tripping [45].
3. The existing overcurrent schemes encounter challenges
when dealing with low fault currents in scenarios of high-
resistance faults and during the islanding mode of operation.
In such instances, the relay may either fail to operate or
exhibit an increased response time.
4. The fault magnitude in microgrids experiences consid-
erable variation depending on the types of faults and the
operating conditions of the microgrid. Therefore, the pro-
tection system needs to rapidly detect and pinpoint faults
under diverse scenarios.
5. Additionally, many of these approaches comewith consid-
erable initial costs and operational intricacies. Furthermore,
some of these methods exhibit low accuracy, diminishing the
overall efficiency of the scheme.

Given the above facts, the prime contributions of this
research work are.

1. To develop a voltage&current-assistedMLapproach com-
prised of the BEL technique and the cosine KNN algorithm
for the detection and classification of both PG and PP faults
under a wide range of operating conditions, in both normal
and noisy environments. Due to adaptability, resilience, and
capacity to lessen overfitting, BEL has been used to enhance
the accuracy of fault detection and classification [37–39].
One of the most basic, straightforward, and efficient ML
techniques for data classification is the KNN algorithm [40].
Recent studies have demonstrated, the effectiveness of the
KNN algorithm in identifying & classifying DC microgrid
faults [13, 40–42]. Further, BEL has been used as a pri-
mary layer and cosine-KNN, a non-parametric algorithm that
adapts to changes in data over time, has been employed as the
second layer for fault detection and classification. The novel
aspect of the suggested bi-layered method for fault identi-
fication and classification is that it makes use of BEL and
Cosine kNNmodels, which have been tailored for fault iden-
tification and classification in DC microgrids. The proposed
strategy is appropriate for DCmicrogrid systems where fault
patterns may alter or new fault categories may appear.
2. Fault detection and classification have been addressed
using only local voltage and current measurements, eliminat-
ing the requirement for additional communication channels.
3. A comparative studywith existingMLapproaches for fault
detection & classification has also been incorporated in this
work.

The research paper is structured as follows: in Sect. 2,
the methodology of the proposed fault detection and classi-
fication strategy has been explained. Section 3 explains the
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architecture of the standalone DC microgrid system encom-
passing the collection and discussion of simulated results.
The conclusions and implications made from the proposed
study are finally presented in Sect. 4.

2 Methodology

This section outlines the procedure for the proposed detec-
tion and classification of faults in standalone DCmicrogrids.
The MATLAB/SIMULINK platform is utilized to simulate
the test system, and local voltage and current samples are
gathered from the workspace in datasets. Subsequently, each
of these datasets is trained independently using the primary
layer, BEL classifier for fault detection, and the secondary
layer, Cosine KNN classifier for fault classification. These
datasets are then individually trained using the BEL classifier
for fault detection (primary layer) and the Cosine KNN clas-
sifier for fault classification (secondary layer). In the event
of a fault being detected by the primary layer, the secondary
layer of the proposed technique categorizes it as either a PP or
PG fault. Randomvoltage and current data samples have been
employed for testing to assess the efficacy of the suggested
bi-layered system. Noisy data samples have also been con-
sidered for testing to ensure the robustness of the proposed
approach. The sampling rate of 1 kHz has been considered
here.

BEL [46] & cosine-KNN [50, 51] have been used as two
layers of the proposed data-driven ML hybrid approach for
fault identification & categorization scheme for the stan-
dalone 380 V LV DC MG testbed.

Theflowchart for the proposeddata-drivenMLfault detec-
tion and classification has been shown in Fig. 1 and is
explained below:

Step 1 Simulate the proposed 380 V LV DC MG testbed
and generate the local voltage and current data samples from
the network with and without noise inclusion.

Step 2 Obtain the provided data samples from the
workspace and utilize them to train theBEL and cosine-KNN
separately. Note that the classifiers have been trained using
0 dB, 30 dB, 60 dB, and 90 dB, respectively [52, 53]. The
selected classifier models have been illustrated as follows:

2.1 Ensemble classifier

The primary fault detection layer in the presented data-driven
ML hybrid approach is a BEL. One of the three primary
ensemble learning techniques, bagging, is particularly useful
for high-dimensional data because it can effectively handle
problems like missing values and prevent generalization to
new datasets [46]. Bootstrap aggregation, or bagging, is an
ensemble learning method introduced by Leo Breiman in

1996 [47]. It creates diverse ensemble members by resam-
pling the training data and generating multiple subsets with
replacements. Every subset trains a different model, and the
average or voting mechanism among the individual forecasts
is frequently used to arrive at the final prediction. Bagging’s
main advantages are the elimination of all variation and the
decrease in model overfitting since it produces a large num-
ber of classifiers with fixed bias and averages their outputs.
When working with sparse data, the objective of employ-
ing an ensemble model in fault classification techniques is to
improve accuracy. The basic steps of bagging are:

Bootstrapping This method allows for the repetition of
instances, enhancing diversity within subsets and improving
the robustness of the ensemble learning model.

Parallel trainingWeak or basic learners are used to sepa-
rately and concurrently train these bootstrapped data.

AggregationDepending on the task (regression or classifi-
cation), predictions are averaged for regression (soft voting),
or the majority class is accepted for classification (hard vot-
ing/majority voting). This process yields a more accurate
estimate by combining the individual classifiers’ outputs.

Consider a datasetAwithN samples, andwewant to create
an ensemble of bagged decision trees [48, 49]. The process
of Bagging is summarised below:

Bootstrap sampling Generate B bootstrap samples from
the original dataset: A1, A2, . . . ., AB

Train decision treesTrain a decision tree on each bootstrap
sample independently: T1, T2, . . . ., TB .

Consider,
Ab is the b-th bootstrap sample,, b � 1, 2, 3, . . . ., B.
Tb is the decision tree trained on Ab.
Aggregation Now, combining predictions of individual

trees to make the final ensemble prediction, we get-

ŷ � 1

B

B∑

i�1

ŷTi

where, ŷ indicates the ensemble prediction, & ŷTi indicates
the prediction of the i-th tree.

Final Prediction The ensemble prediction, ŷ, is the output
of the bagged tree ensemble model.

2.2 Cosine KNN classifier

In the initial scenario of DC MG fault identification, the
cosine KNN technique has been employed to classify faulty
conditions in the MG. The approach involves training the
classifier using a diverse range of fault instances including
PP & PG faults to enable.

accurate fault classification. Before delving into the fault
classifyingprocess the basic principles are explained.Among
the classifiers discussed in the existing literature, KNN is
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Fig. 1 Flowchart of the proposed
fault detection and classification
strategy

a commonly used and straightforward tool [50, 51]. KNN
can be applied to various classification tasks where prior
knowledge of the data distribution is unavailable. Cosine-
KNN is a similarity-based algorithm used for classification
or recommendation tasks. It calculates the cosine of the angle
across feature vectors to determine the degree of resemblance
between data points. It uses the cosine distance metric for

evaluation. The process of cosine KNN for classifying a new
observation can be succinctly summarized in these standard
steps [54]:

(i) Cosine Similarity The ratio of the dot product of
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Fig. 2 Constructed standalone 380 V LV DC microgrid testbed

the vectors and the product of their magnitudes yields
the cosine similarity between vectors, A and B:
Cosine Similarity (A, B) � A·B

‖A·B‖ .
(ii) CosineDistance:The cosine distance is complementary

to the cosine similarity and is defined as 1 − Cosine
Similarity.

Cosine Distance � 1 − Cosine Similarity(A, B)

When the cosine similarity coefficient between two vec-
tors is higher, it indicates a strong similarity between them.

Step 3 Obtain random current and voltage data samples
from the network considering 30 dB, 60 dB, 90 dB SNR and
test the accuracy of the bi-layered trained classifiers.

The approach proposed in this paper can be utilized in
different DCMG configurations as well owing to its depend-
ability on only local voltage and current data samples.

The steps demonstrating the application of the suggested
method in real grids are as follows:

1. Data acquisition Throughout the grid infrastructure, mul-
tiple sensors, meters, and monitoring devices can be used for
this purpose. This will gather the local voltage and current
information from the respective areas.
2. Preprocessing of data To handle missing data, elim-
inate data distortions, and normalize the features, data
pre-processing will be carried out.
3.Classifier model trainingUsing historical information, the
BEL and Cosine-KNN models will be trained to identify

patterns linked to different circumstances, faulty/ non-faulty,
PP/PG faults.
4.Model validation The validation strategies will be applied
to assess how well the trained models work. Models’ per-
formance in detecting and classifying problems will be
evaluated using metrics including accuracy, receiver oper-
ating characteristic (ROC) curves, and parallel coordination
plots (PCP).
5.Model implementationThedevelopedmodelwill be imple-
mented through Supervisory Control and Data Acquisition
(SCADA), Advanced Metering Infrastructure (AMI), and
Distributed energy resources management system (DERMS)
for real-time grid monitoring, enabling automatic fault iden-
tification, classification, and response.
6. Continuous monitoring and upgrading The performance
of the bi-layered scheme needs to be tracked continuously,
gather feedback from the grid, and utilize it to regularly revise
and retrain themodels to increase the accuracy and reliability
of fault detection and classification strategy.
7. Integration with grid management The proposed fault
detection and classification technique will be integrated with
grid operations and decision-making processes to provide
alerts, notifications, and recommendations to enable prompt
reaction and corrective measures if faults are found.
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Table 1 Specifications and ratings for the analyzed LV DC microgrid
configuration

Equipment Specifications

PV Panel (1 Soltech 1
STH-215-P)

Vmp � 29 V, ISC � 7.84A,
Wmax � 213.5W

Battery (Li-ion) Nominal voltage � 96 V,
Rated Capacity (Ah) � 92.2,
SOCinitial � 60%

DC–DC converter 380 V

Passive loads 14 kilowatts, 380 V

DC motor 6 kilowatts, 240 V

Constant power loads 6 kilowatts, 240 V

Computer loads 4 kilowatts, 240 V

EV Charger 48 V, Rated capacity (Ah) �
26.7, SOCinitial � 60%

Line impedance(pi-section) 33 + j310 m�

3 Test system, simulations, results,
and discussions

3.1 The constructed standalone LV DCmicrogrid
framework

The LV DC MG test bed shown in Fig. 2 is used to evalu-
ate the proposed machine learning-driven fault detection and
classification approach. A 380 V standalone LV DC MG is
comprised of two auxiliary batteries, five solar PV systems
& various loads, such as motor, passive loads, EV charger,
constant power load, and constant current load. Every com-
ponent of the test bed is linked to a single DC bus through
DC-DC converters. The MPPT controller is used for moni-
toring and extracting the maximum power from solar PVs.
During the power deficit, the state of charge-controlled aux-
iliary batteries supplies the power to the loads. The rating of
each component of the test bed is given in Table 1. MAT-
LAB/Simulink software has been utilized for developing the
model depicted in Fig. 2. To train the BEL, the standalone
LVDCMG has been simulated to produce a variety of faulty
and normal conditions, and the resulting voltage and cur-
rent values have been recorded. It is crucial for ML-based
algorithms that the developed scheme undergoes verification
across diverse environments and scenarios to ensure high
reliability and robustness.

Therefore, in this work data with and without noise has
been used to train and test the proposed algorithm. 2102 data
samples of fault & non-fault situations have been utilized for
training of the BEL and hold-out validation (25%held-out) is
carried out to examine the predictive accuracy of the model.
1402 data samples of PG and PP faults have been utilised
to train the cosine KNN where cross-validation has been
used to get a good estimate of the predictive accuracy of the

Fig. 3 Scattered data plot of current vs voltage with noise inclusion in
the system

final model trained with all the data. Moreover, 901 random
data samples of local voltage & current measurements have
been used to test the individual classifiers’ performances.
To ensure the robustness of the suggested method, a white
Gaussian noise of 30 dB, 60 dB, and 90 dB has been allowed
to infiltrate the network response of the constructed testbed.
The suggested approach has demonstrated resilience even
in the presence of signal noise. This resilience is attributed
to the immunity of the magnitudes of the measured signals,
utilized for training the data-driven ML algorithms, to the
introduced noise. Figure 3 shows the data scatter obtained
from the proposed model including noise in the test system
which is then trained using data-driven ML algorithms for
fault identification and categorisation scheme. The plot is
useful in visualizing the relationship between current and
voltage variables in the dataset. In the later section, it has
been proven that the current & voltage measurement at the
fault occurring time instants have a negligible impact on the
noise, and the measured signals with the noisy signals can
also be considered as the inputs of the proposed data-driven
ML hybrid technique.

3.2 Assessment of classifiers’performance
during training

For the proposed work only two common input parameters
i.e., voltage and current are required [13]. The primary and
secondary layer of the proposed fault identification and cat-
egorisation scheme gives 100% training accuracy with BEL
and Cosine KNN. The ratio of accurately predicted occur-
rences to actual occurrences in the training set determines
the accuracy of the training. In this work, both the classi-
fiers’ performance has been verified with confusion matrix
(CM), receiver operation characteristics (ROC) curve, and
parallel coordinates plot (PCP).
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Fig. 4 CM for trained BEL scheme

Fig. 5 ROC for trained BEL fault detection strategy

3.2.1 Training results of bagged ensemble learner
without noise

The decision tree learner type has been implemented with
30 base/weak learners for the Bagged tree ensemble learner.
Figures 4, 5 and 6 show the CM, ROC, and PCP characteris-
tics, respectively, for the training of theBagged tree ensemble
learner. From the training results, it has been shown that the
proposed ensemble model offers 100% detection accuracy
and takes 0.256 s for training. From Fig. 4 it can be seen
that the mislabelled boxes (off-diagonal) in CM are empty
which depicts the full accuracy. The numerical expression

Fig. 6 PCP for trained BEL fault detection strategy

for calculating training accuracy is:

Total number of instances in the training dataset

Number of correctly classified instances
× 100%

The ROC curve shown in Fig. 5 confirms the highest accu-
racy of the classifier model as the Area Under the Curve
(AUC) shows 1. A two- dimensional representation of a
multifaceted dataset can be shown with the help of Fig. 6’s
Parallel Coordinates Plot (PCP). The two variables in this
instance are represented by the vertical lines: voltage and
current. There are no lines indicating incorrect predictions.

3.2.2 Training results of bagged ensemble learner
with noise

To ensure the robustness of the data-driven ML identifica-
tion and categorization scheme, themodels have been trained
with the noisy data, and the white Gaussian noise of different
signal-to-noise ratios (SNR) has been added to train the clas-
sifiers. SNRs of 30 dB 60 dB 90 dB have been included and
simulated for the constructed LV DCmicrogrid. Figures 7, 8
and 9 show the performances of the ensemble classifier with
SNRs of 30 dB 60 dB and 90 dB, respectively. The figures
have shown that the performance of the BEL-trained classi-
fier model does not get much affected even with noisy data.
Furthermore, the results given in Table 2 show that the devi-
ation in the training accuracy after introducing noise is also
minimal.

3.2.3 Training results of cosine KNNwith and without noise

For the PP or PG fault classification, the cosine KNN classi-
fier has been trained which provides 100% accuracy in fault
classification within a training time of 1.507 s. Cosine dis-
tance metric function with equal distance weights has been
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Fig. 7 CM of the trained BEL classification learner using a 30 dB
b 60 dB c 90 dB

Fig. 8 ROCfor the fault detection strategywith trainedBELconsidering
noise

considered. In this scenario number of nearest neighbors
equals 10. The average training accuracy of the second layer
of the fault detection and classification scheme, i.e., clas-
sifying the fault as PP or PG fault using a Cosine KNN
classifier without noise inclusion is found to be 100%. Fur-
ther, Figs. 10, 11 and 12 show the CM, ROC & PCP of
the trained-cross validated classifier. Five folds of cross-
validation have been implemented here to prevent data
overfitting. Figure 13 presents the performance of the trained
classifier considering SNR of 30 dB 60 dB 90 dB, respec-
tively.

From Fig. 13, it is clear that miss-classification is minimal
in all the cases. Table 2 summarises the training accuracies
of the proposed data-driven ML fault detection and classifi-
cation classifiers with 0 dB, 30 dB, 60 dB, and 90 dB noise
inclusion. From the training results, it has been seen that the
training accuracies of both the proposed models lie between
99.6 and 100%.

3.3 Assessment of classifiers’performance
during testing

To test the performance of the trained classifier 901 random
and shuffled data samples of current and voltage have been
recorded as test data. Test results indicate that the proposed
fault detection scheme has 100% accuracy in identifying
“normal/no-fault” & “fault” conditions and further catego-
rizing it as PP & PG fault. In addition, to complement the
robustness and resilience of the proposed scheme further, the
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Fig. 9 PCP of the trained BEL classification learner using a 30 dB
b 60 dB c 90 dB

Table 2 Performance of the data-driven ML fault detection and classi-
fication technique with and without noise inclusion in training

SNR Training accuracy (%)

Bagged tree ensemble learner Cosine KNN

Noise-free 100 100

30 dB 99.6 99.9

60 dB 99.6 99.9

90 dB 99.8 99.8

Fig. 10 CM for trained cosine KNN fault classification scheme

Fig. 11 ROC for trained cosine KNN fault classification scheme
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Fig. 12 PCP for trained cosine KNN fault classification scheme

proposed classifiers have been tested with random contami-
nated data sets and have been shown in Table 3.

From Table 3, it is observed that the testing accuracy
without noise for both classifiers is 100%. However, in a
noisy environment, with different SNRs, the performance
of the BEL reduces minimally whereas the testing accuracy
of cosine-KNN remains 100%. It established that the pro-
posed fault detection and classification scheme is robust and
resilient.

3.4 Comparative study of proposed data-drivenML
fault detection and classification schemes
withmethods reported in the literature

To establish the superiority of the proposed classifiers, the
results obtained from BEL and cosine-KNN have been
compared with the other ML-based techniques considering
objectives, communication channel requirements, complex-
ity involved, and detection/classification capacity. Compara-
tive results are shown inTable 4. It can be summarized that the
proposed fault detection and classification approaches out-
performed the existing fault identification in the following
ways:

1. Existing methods considered small test cases and samples
to validate the same. Further, few works did not confirm the
testing of the suggested approaches. The proposed scheme
has been tested using 901 random data samples of local volt-
age and current.
2. In reported works, lower training and detection accuracy
have been achieved. The proposed work provides 99–100%
accuracy for both training and testing.
3. The majority of the reported work did not consider a noisy
environment. Hence, the robustness of the proposed tech-
niques is in question. In the proposed work, the noise of Fig. 13 CM of the trained cosine KNN classification learner using

a 30 dB b 60 dB c 90 dB
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Table 3 Performance of the bagged tree ensemble learner and cosine-
KNN techniques for fault detection and classification with and without
noise in testing

SNR Testing accuracy (%)

Bagged tree ensemble learner Cosine KNN

Noise-free 100 100

30 dB 99.74 100

60 dB 99.103 100

90 dB 99.134 100

different SNRs has been included in training and testing. The
results established the robustness of the proposed method.
4. In comparison to the existing methods, the proposed
method has lesser computational time and complexities
which makes it superior to implement in complex networks.

4 Conclusion

LVDCmicrogrid has gained substantial significance for tap-
ping renewable energy sources. However, the protection of
LVDCmicrogrid is amajor concern. Therefore, in this work,
the prime focus is to introduce a strategic methodology for
accurately detecting and classifying the faulty and non-faulty
scenarios in a standalone DCMG to facilitate the isolation of
the faulty section by the circuit breaker. The bagged ensemble
learner effectively pinpointed faults, while the cosine-based
KNN categorizes them as PP or PG faults, assisting opera-
tors in taking immediate corrective measures. To ensure the
robustness of the proposed fault detection and classification
scheme, the classifiers are trained with noisy data samples.
The technique undergoes comprehensive training, validation,
and testing, accounting for no noise and systemnoise.Results
indicate that the proposed scheme seamlessly identifies and
categorizes the faults. Thus, it is suitable to integrate with the
relaying components of DCCBs or hybrid circuit breakers
(HCBs) for quick fault detection and interruption. Compar-
ative results with existing machine-learning techniques for
microgrid fault detection established the superiority of the

Table 4 Comparative Analysis of the proposed Bagged tree ensemble learner and cosine-KNN approaches with other ML Schemes reported in the
literature

Classifiers used Objective Accuracy (%) Communication
channel

Complexities

ANN [29], 2016 Detection and localization of
faults in a DC MG system
with a ring configuration

100 Required The protection scheme has
two ANNs, which adds
complexity and training time

DWT based SVM [24], 2017 Fault detection & and
classification of 34.5 kV DC
microgrid

95–98 Not required This technique requires a high
sample frequency

ANN [35], 2019 Fault detection & classification 96.1 Not required To execute practically it fails
to fulfil the stringent time
constraints for DC fault
interruption

Wavelet Transform based
ANN, [31] 2019

Detection and localization of
faults in a DC MG system
with a grid-type configuration

97–99 Not required Massive data processing is an
issue

Wavelet energy- fuzzy neural
network-based technique
[36], 2020

Fault detection 98–99 Not required It is difficult to choose a
threshold for a high number
of fuzzy rules

Recurrent Neural Networks
(RNN), [43], 2021

Fault detection 99.99 Not required Selecting features for RNNs to
avoid overfitting is complex

DT & KNN [44], 2022 k-nearest neighbors is utilized
for fault categorization, while
decision trees are used for
fault detection

99 Not required Calculation of the differential
current increases the
computational time

Bagged tree Ensemble learning
with Cosine KNN (Proposed
method)

Ensemble learning has been
used for fault detection &
Cosine k-nearest neighbors
have been used for fault
classification

100 Not required There is no complexity as the
proposed methodology is
robust and efficient
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proposed schemes. In future work, (i) a novel algorithm will
be developed to estimate the location of faults (ii) multiple
faults on the network will also be analysed in the future.
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