
Electrical Engineering (2024) 106:4947–4967
https://doi.org/10.1007/s00202-024-02273-3

ORIG INAL PAPER

Enhanced renewable power and load forecasting using RF-XGBoost
stacked ensemble

Rita Banik1 · Ankur Biswas2

Received: 13 November 2023 / Accepted: 22 January 2024 / Published online: 20 February 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024, corrected publication 2024

Abstract
The fast growth in renewable power generation, crucial for reducing carbon emissions in the traditional energy system,
is constrained by negative environmental and economic repercussions, demanding a smarter integration with conventional
energy sources. However, the seamless integration of renewable energy into grid imposes major challenges due to the inherent
environment dependence of energy production, necessitating proactive forecasts to anticipate fluctuations in efficiency and
dependability that might have an influence on the overall grid status and living style of the users. The objective of the work is
to add a consistent dataset in the machine learning community and a new ensemble to deal with the problems pertaining to the
projection and integration of renewable energy using predictive modeling. The model includes a stacked ensemble of Random
Forest and XGBoost algorithms. The proposed ensemble has been successfully applied to the dataset of Agartala City. In this
model, the Random Forest model is used to forecast the target variable based on input parameters, followed by the use of the
XGBoost model to improve predictions through a combination of Random Forest predictions, with the goal of leveraging the
strengths of multiple models while mitigating their weaknesses. The meta-model, a basic logistic regression, then learns the
best combination of these predictions, allowing for the maximum potential accuracy. The model has been evaluated on R2

and RMSE. The accuracy of 99% reveals its feasibility and superiority both in short-term and long-term predictions.

Keywords Renewable power · Forecasting · Stacked ensemble · Random Forest · XGBoost

1 Introduction

In terms of energy sustainability and safety, the world is
facing many challenges. These can result in political and
economic instability if they are not tackled instantly. The
degradation of the deposits of fossil fuels and the effect of
combustion on the environment has resulted in a growing
interest in the invention of sustainable alternative renewable
energy sources. The energy sector has achieved stronggrowth
in alternate energy sources like solar photovoltaic, wave,
wind, and biomass [1]. Several nations and enterprises aim
to broaden their energy supply through maximizing renew-
able energy proportions. In the traditional system, energy
generation relies on consumers energy demand, and grid
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efficiency is based on the balance of energy requirements
and distribution. When demand for energy exceeds energy
supply, the grid is destabilized and the power reliability in
some areas of the grid decreases and causes blackouts. If
the demand is below supply, electricity is lost due to waste,
which is extremely excessive. It is vital for both efficient grid
operation and greater economic advantages that we produce
the correct amount of energy just at the proper moment [2].
Moreover, due to the detrimental impact of climatic changes,
it is more important than ever to push toward more sustain-
able technologies and practices. The International Energy
Agency (IEA) estimates that the energy sector generates
more than 65% of greenhouse gases (GHG), with CO2 emis-
sions increasing by 6%–36.3 billion tons in 2021, which is
a sign of transformation in the sector [3]. Recent world con-
ferences like COP21 established ambitious goals to mitigate
the troubling effects of climate change, as tackled by strong
regulations. Whereas 66% of GHG emissions are accounted
by the energy sector worldwide, renewable sources of energy
play an emerging role in decarbonization. But, the irregular
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solar and wind energy generation patterns because of meteo-
rological impacts made it difficult to implement extensively,
and therefore, further studies and analyses are important. The
main goal in the electricity grid is to guarantee a supply–de-
mand equilibrium to prevent power outages and ensures that
all users have access to the energy they require. This can
be done with the deployment of energy storage systems
and stand-by production capacities; however, such integra-
tion increases the grid’s expenses. A significant amount of
research has focused on the generation of energy and load
predictions to ensure how much energy is needed to sus-
tain the stability that could reduce the operating cost and
encourage technological penetration with adequate accuracy
[4, 5]. One approach to this issue is to improve the short-term
forecastability and to integrate this information in intelligent
control systems that can maximize power delivery within a
smart grid.

Renewable supplies of energy such as solar and wind are
extremely unpredictable, which can lead to a variation in
the power grid’s electricity production. This is due to the
fact that the overall yield from these plants is dependent on
the surrounding environment including solar irradiance,wind
speed at different levels, cloud coverage, and other variables.
Another significant constraint of renewable energy sources
is their availability at a specific time such as solar radiation is
accessible in daylight hours. Therefore, when resources are
available, power must be generated and stored for future uti-
lizationwhile simultaneously using a proportion of the power
produced. Solar and wind energy storage is costly, and there-
fore, the energy generation needs to be managed carefully.
When renewable resource capacity is inadequate to satisfy
the demand, traditional resources, including gas plants, are
usually utilized tomeet the energy deficit.Moreover, predict-
ing renewable power generation is crucial in designing hybrid
systems that integrate both renewable energy sources with
DG systems effectively [6]. The stated problems have driven
to the need for machine learning models to improve energy
generation and usage planning. Several machine learning
(ML) approaches are used in hybrid grid systems (integrated
with renewable sources) based on the need and features of
the challenge. For a renewable energy power grid with a
substantial share of energy supply, short-term and medium-
term demand must be devised. This might make the energy
policy derivation easier, for instance by aiding to identify
essential variables like the right level of spinning reserves
and storage needs. The generation of renewable energy from
power plants itself is also to be forecast, as the output of the
power plants relies on several variables of the environment
that cannot be regulated. This, in turn, requires forecasting
external factors around the power plant area, such as solar
irradiance, wind speed, and wind direction. The optimum
location, length, height, and specification of renewable power

plants are also crucial which is addressed by machine learn-
ing techniques regarding sustainable energy generation and
integration. In general operations and administration of the
intelligent grid, problems like fault identification, regulation,
etc., is another field of implementation of ML techniques.
The primary focus of this work is to analyze and synthesize
the ML strategies in renewable power generation and the
incorporation of renewable sources into existing power net-
works through an accurate forecasting. To achieve the goal,
a stacked ensemble of Random Forest (RF) and XGBoost
(XGB) ML algorithm is developed and applied on data of a
hilly north-eastern state of India, Tripura, whose capital is
Agartala. The integration of renewable energy in this state
is extremely poor and hence could be a potential area for
such integration. In this model, we first use the RF model
to forecast the target variable based on the input parame-
ters. Then, the XGB model is applied to further improve the
prediction by combining the RF predictions. The purpose is
to blend the strengths of multiple models while minimizing
theirweaknesses.By combining the predictions of theRFand
XGB models, we can acquire additional information about
the data and potentially enhance the all-around precision of
our predictions. The meta-model which is a simple logistic
regression (LR) then learns how to best combine these pre-
dictions to achieve the highest accuracy possible. The base
models RF and XGB are trained independently on the same
training set, with varied sets of hyperparameters and feature
selection methods. Once trained, the models are applied to
forecast the outcome for the test data. These forecasts are then
employed as features to train the LR which is learned on the
same training data, but instead of using the raw features, it
uses the predicted outcomes of the RF and XGB as input.
The goal of the LR is to determine the most effective way to
aggregate the forecasts of the RF and XGB models in order
to produce the most accurate predictions on the test set. Once
the LR is trained, it is used to make predictions on new data
by first passing the data through the RF and XGB to generate
predictions, and then passing those predictions through the
LR to get the final outcome. Overall, the RF and XGBoost
(RF-XGB) ensemble model combines the strengths of both
Random Forest and XGBoost to make more accurate predic-
tions than either algorithm on its own. The accuracies above
99% reveal the potential of the proposed ensemble on limited
datasets.

The arrangement of the paper is as follows: An introduc-
tion to the work was given in the first part of this paper. The
following section summarizes the prior work in this domain
of forecasting. The third section illustrates the methods used
in the course of this study, beginning with the pre-processing
of data neededbefore anyprediction is carried out and follow-
ing the methods to tune and build the predictive models. The
fourth section describes the results and is divided into predic-
tions for electricity consumption, wind power, solar power,
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and evaluation of results. The concluding section presents a
summary of the paper and suggests potential recommenda-
tions for future study.

2 Previous work

Several researches have been conducted to forecast the output
of renewable power and the demand for electricity. Com-
prehensive analyses of electricity demand prediction [7],
photovoltaic power generation, [8] and Wind energy [9]
can be found. The optimization and comparative studies of
renewable energy activities have been reviewed by Banos
et al. [10] and Sfetsos [11]. The wide assumption here is
that the respective statistical approaches are generally out-
performed by artificial intelligence methods [12–14]. Such
fields of operation are listed briefly below.

2.1 Predicting power generation from solar energy

Solar PV uses differ between household level and large solar
photovoltaic power plants of 1 to 100 MW capacities. As
solar PVhas longbeen in use at a small domestic level, a num-
ber of research initiatives in recent years have been conducted
to estimate the efficiency of PVusingmachine learningmeth-
ods. The statistical strategies used for solar radiance are
mostly Artificial Neural Networks (ANN) [15, 16], Support
Vector Regression (SVR), Mixed ANN and SVR [17, 18],
and Vector Autoregression (VAR) [19]. Numerical Weather
Prediction (NWP) [20] is widely used techniques with good
estimation capabilities in frequent solar irradiation and wind
speed forecasts. Two methods are primarily used to fore-
cast solar irradiance: model-based method and data-driven
method. A model-based approach for estimation of solar
irradiance incorporates environmental parameters such as
altitude, temperature, humidity, wind pressure, etc. [21]. The
prediction effects are reliable, but models will lead to lim-
itations on their realistic use [22]. The other variant, i.e.,
data-drivenmethodusingANN, relies only on the availability
of solar data to create a connection between weather param-
eters and the generation of PV power. Research using ANN
found that the PV generation could be successfully predicted
by parameters such as solar radiation, azimuth angles, and
dry-bulb temperatures. ANNmodels for the 24-h power fore-
cast with projected meteorological variables of the next day
[23] are built for multilayer perceptron feed-forward ANN.
A robust one-day solar PV energy forecasting under various
climatic conditions was tested in an enhanced back propaga-
tion (BP) ANN learning model [24]. A short-time forecast
of PV grid has been based on hybridized support vector
machine (SVM). To order to predict solar irradiance, a previ-
ous autoregressive integratedmoving average (ARIMA) time
series model was also implemented [25]. An autoregression

(AR) system is used for the estimation of solar irradiance
from three French locations with a ML model on a 4-h fore-
cast when weather conditions were unpredictable [26]. The
fast implementation of deep learning methods is a common
way of predicting photovoltaic power output with the least
prognostic error [27]. Different architectures such as Boltz-
mann system, Deep Belief Network (DBN), and Recurrent
Neural Network (RNN) are utilized. In order to predict solar
irradiance without including previous performance infor-
mation, an efficient Bayesian neural network model has
been implemented [28]. A long, short-termmemory network
(LSTM), which demonstrated the better performance of the
LSTM network in comparison to traditional networks, has
been applied for the assessment of PV power [29]. Greater
training time is the major downside of the LSTM network.
The Gated Recurrent System (GRU) was implemented to
resolve the constraint of training time while preserving the
same exactness. The GRU network is currently mainly used
for the problem area of classification [30]. Another common
technique for prediction is the Random Forest (RF) algo-
rithm which shows good results [31]. RF has been shown
to be the most reliable model for PV generation prediction
compared to otherML algorithms [32]. It is known, however,
that ML models are not stable since their success depends
on the learning dataset. A short-term prediction model con-
sists of NWP model for weather reports, and based on the
weather anticipated data an Artificial Intelligence (AI)-based
model is applied using k-NN, ANN, ARIMA, and adaptive
neuro-fuzzy inference system (ANFIS) to estimate 1–39 h
PV capacity. Extreme learning machine (ELM), which is
modified by various particle swarm optimization (PSO) pro-
cesses, has been suggested. With the data from the BP-ANN
prediction model [33], the performance of the process was
evaluated. Because of ease, speed, and a strong capacity for
generalization, it has become extremely popular [34]. The
advantages of the individual model were also intended for
hybrid prediction models. The ensemble of sub-models [35]
is yet another effective method, which minimizes to a large
extent the forecast error of a single model. Recently, it is
increasingly popular to use ensemble data to determine solar
irradiance and solar PV energy. To measure the global solar
radiation to Spain in 1 h’ time [36], RF is applied. Gala
et al. [37] used a RF, SVR, and a Gradient Boosting Regres-
sion (GBR) to forecast solar irradiance, which considered the
models to be important and optimistic.

2.2 Predicting power generation fromwind energy

Wind power is a fast-expanding renewable energy source,
and its popularity has grown in recent years as more govern-
ments and businesses strive to minimize their carbon impact.
Predicting power generation fromwind energy entails a thor-
ough examination of many parameters in order to calculate
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the potential generation of power. Wind speed, direction,
temperature, and air pressure are all important meteorolog-
ical elements in this forecast. Wind turbine features like as
capacity, rotor diameter, and hub height are also important
factors. Furthermore, geographical characteristics and the
surrounding environment influence wind flow, which affects
turbine efficiency. A study investigates the chaotic behav-
ior in wind turbine system [38]. To connect wind speed to
power output, mathematical models like as the power curve
model are widely used. However, Wind turbine power out-
put is directly related to wind speed. It has also been noticed
that the threshold speed is only effective after that speed (to
guarantee the security of the turbine); the power output is con-
stant. Certain variables including temperature and humidity
also impact air pressure, which in turn affects the generation
of electricity. Such variables and the actual performance of
a wind farm must, therefore, be predicted. Wind power can
be estimated using,

P � AρV 3Cp/ 2 (1)

where ‘A’ is the area enclosed by the wind turbine, ‘ρ,’ ‘V ,’
and ‘Cp’ are used for air density, wind speed, and efficiency
factor, respectively.

Different types of forecasts are available like physical,
statistical, soft computational methods, etc. Physical sim-
ulations rely on averages and long-term forecasts because
different factors including temperature, the length of the sun-
shine precipitation, etc. influence the wind patterns [39].
Nonetheless, these methodologies require greater process-
ing time because of substantial volume of inputs, and their
precision relies on numerical weather forecast performance.
Second, the objective of statistical models is to compare past
(as input) data with potential (as output) forecasts of wind
characteristics. Autoregressive moving average (ARMA),
ARIMA, and their hybrid models are commonly employed
methodologies [40]. Machine learning technologies, such as
regression models or neural networks, can improve predic-
tion accuracy evenmore by capturing complex correlations in
data. These models may be trained using historical meteoro-
logical data and turbine performance records. To optimize
the efficiency and dependability of wind power systems,
forecasting power output from wind energy requires a multi-
dimensional strategy that integrates meteorological research,
turbine technology, and modern data analytics. These meth-
ods are often used to forecast renewable energy sources [41],
and the most popular choice among them is the ANN. Dif-
ferent variations in ANN are implemented for wind and
solar power prediction, and good performance has been ver-
ified with large-scale data sets. Nevertheless, in the case of
data sets where data are limited for model preparation, the
SVM has obtained higher prediction results [42]. Currently,
extreme learning models are successful for extremely short

online predictions [43]. Deep learning strategies have been
established to resolve the poor learning skills of traditional
soft computing models. Because it is possible to train large
data sets, it is easier for large-scale data analysis and thus
for long time-series data, which is frequently observed in the
renewable energy prediction field. The convolutional neural
network (CNN) and the RNN possess the capacity to learn
sequence similarity and therefore are used to forecast wind
speed [44].

2.3 Predicting the consumption of electricity

The load signal is a time series; its future production should
be estimated based on past data for load and other fore-
casting parameters that potentially impact the future load.
Initially, statistical methodologies like regression, multiple
regression, smoothing, fuzzy logic, and ML were used for
forecasting.While Hyde et al. [45] and Broadwater et al. [46]
have devised a methodology based on nonlinear load regres-
sion, the initial load prediction experiments demonstrated a
regression using linear regression for load prediction [47].
El-Keib et al. [48] developed short-term predictive frame-
works employing exponential smoothing, while Huang [49]
offered an autoregressive model for forecasting short-term
consumption, among other autoregressive modeling tech-
niques. For the very short-term to long-term predictions
(horizons of less than hour, hour, week, one or more months,
and one to several years), several predictive designs were
created. There are three categories of modeling techniques:
statistical, artificial intelligence, and hybrid. In statistical
models, the output and input are connected by mathemati-
cal equations directly. These models are easy to apply and
work better in short-term forecasts, but they cannot account
for the non-linearity of the load series; therefore, a more
intelligent method is required. Statistical techniques include
ARMA, ARIMA, multiple regression, linear regression, and
multiple regression using ARMA [50–53]. Techniques for
artificial intelligence (AI) are closed systems with unknow-
able internal dynamics. This group includes three important
techniques: fuzzy inference system (FIS) [54], ANN [55, 56],
and SVM [57]. In FIS, the link between input and output
will be determined by a set of linguistic guidelines for fuzzy
structures. In contrast, training determines this relationship
in SVM and ANN. The empirical risk minimization concept
of SVM addresses the issue of the ANN model’s inability to
solve local optimization issues and its tendency to be both
under- and over-fitted [58, 59]. The RF [60, 61] is another
well-liked strategy that relies on training. The enhancement
in RF comes from its nonlinear estimating suitability and
reduced sensitivity to parameter values [62]. Hybridization
is an efficient way to manage the optimal architecture design
and parameter adjustment needed for all AI-based method-
ologies. Research by Khayatian et al. [63] applied an ANN
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to estimate operational energy ratings for Italian residen-
tial structures. In order to anticipate energy performance,
Ascione et al. [64] looked into how energy consumption and
occupant thermal comfort are related. Papadopoulos et al.
[65] also assess tree-based forecasting models to forecast
building energy efficiency. Wang et al. [66] investigated a
recent short-term projection of electricity utilizing RF for
office building factors of envelope, temperature, and time.
For estimating the hourly power usage in buildings, the
research demonstrated RF outperformed regression trees and
SVM. Rathore et al. [67] focused on the prediction of energy
consumption in electric vehicle using different ML models
like RF, XGB, etc. In this study, RF and XGB outperformed
all other models. In a study [68], hourly predictions of short-
term load consumption were made based on meteorological
parameters and public holidays of the country, and the per-
formances of different algorithms were compared. Another
study involved ensemble ofRF andXGB for electrical energy
prediction for the next 24 h of load with and estimation of
load for one week to a month [69].

The study conducted so far have predominantly employed
individual RF and XGB models. In contrast, our approach
involves the utilization of a stacked ensemble compris-
ing both RF and XGBoost models. This novel technique
improves the resilience and prediction effectiveness of our
model by using the complimentary characteristics of these
two popular algorithms. As a result, our work adds a new
viewpoint to the current body of research by highlighting the
effectiveness of ensemble methodologies when compared to
individual models.

3 Methodology

There are two aspects of the research methodology. The first
section explains the compilation and preprocessing of data.
The second part discusses the algorithms used in machine
learning and their methods of implementation.

3.1 Data pre-processing

This research aims to establish a data-driven model to gen-
erate completely accurate forecasts for wind, solar, and
electricity load; hence, utmost attention is paid to collect
and process data. The data utilized in this work will be
described in the following parts, along with the strategies
used to process it. Various data sources included in this paper
like temperature, humidity, pressure, wind speed above 10 m
from ground level, wind direction, and solar PV power pro-
duction for each form of model training and validation have
been obtained from the Ninja renewables project [70]. Here,
the wind power data are limited to only 1 year in normalized
form at the given site which is why we used wind power data

obtainedKaggle; the informationwas accumulated for a time
frame of 10 years. We acknowledge that there may be poten-
tial limitations associated with merging data from different
locations. For example, the characteristics of the areas where
the datawere collectedmay differ in terms of population den-
sity or other environmental factors, which could impact the
comparability of the data. Finally, the only parameter used
for electricity consumption predictions is the past electricity
loadwhich is the hourly load of Tripurawhichmade available
by State Load Despatch Centre (SLDC), Tripura State Elec-
tricity Corporation Limited, Agartala. The data did not have
any details on the position of households, and no weather
data were connected with it. The data set covered the period
from January 2016 to November 2019, and the electricity
consumption was calculated in MW. The proposed loca-
tion corresponds to Agartala, Tripura, India, latitude 23.83
degrees north and longitude 91.28 degrees east.We combined
the data from the three sources into a single dataset using a
common identifier for each data point. The entire dataset is
thoroughly examined to remove abnormalities, outliers, and
missing values. Depending on the kind of missing data, we
used imputation techniques like mean imputation or average
to solve this problem. The heatmap representing the correla-
tions within the parameters is shown in Fig. 1.

3.2 Prediction architecture

For the estimation of a time series using data-driven method,
three forms of models are available, viz. the input–out-
put approach (IO), the nonlinear autoregressive approach
(NAR), and the nonlinear autoregressive with exogenous
inputs (NARX). The fundamental distinction is the type of
information that each system accepts as input. The IO accepts
all kinds of inputs except the previous target series value.
The NAR method accepts the previous values only while
NARX accepts both the past values and exogenous inputs in
order to build the target. The NARX method can be derived
to outperform the other two methods if the target variable
is correlated with the exogenous inputs since it provides
additional information about the system. The three forms
of model representing an association between a dependent
variable ‘y(t + p)’ and different lagged values of either itself
or other independent variables are as follows:

y(t + p) � f (x(t), x(t − 1), . . . , x(t − dx)) (2)

y(t + p) � f (y(t), y(t − 1), .. . . . , y(t − dy)) (3)

(4)

y (t + p) � f (x (t) , x (t − 1) , . . . , x (t − dx) ,

y (t) , y (t − 1) , . . . , y (t − dy)
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Fig. 1 Pearson correlation
coefficient of the target variable
with atmospheric parameters

where y (t) is the forecasted value, x (t) is the input variables,
dy and dx are the previous and input values of the target used
for forecasting, respectively. p is the time horizon for which
prediction is made. It represents the future value of y(t + p)
is a function of past values of a set of independent variables
x(t), x(t −1) . . . or the past values of the dependent variable
itself y(t), y(t − 1) . . . or both.

3.3 Random Forest (RF)

The RF models act as variant of bagging techniques incor-
porating slight modifications. They represent an enhanced
version of the bagging estimator algorithm utilizing deci-
sion trees as the base estimators. This approach involves
selection of randomly chosen samples from the training data.
Nevertheless, unlike bagging, where each tree has a whole
collection of attributes, RF extracts a subset of features to
trainmultiple trees for choosing the best split. Thismakes the
trees more independent of each other, which further makes
the performance of prediction better than bagging. Since each
tree learns from a subset of feature attributes, it is quicker as
well. On the contrary, Bagged decision trees select variables
to split in a greedy manner that lessens the error. As such,
the decision trees can retain some structural resemblances
even with Bagging and in effect have a strong correlation
in their predictions. Therefore, a combination of predictions
from multiple models in the ensemble functions is better
when the sub-model forecasts are uncorrelated or only very
weakly correlated. To reduce the correlation among forecasts
from individual sub-trees, RF modifies the sub-tree learning

method. The learning algorithm is permitted to evaluate each
variable when selecting a split point for the optimal outcome.
RF alters this process by restricting the learning algorithm
to be tested against only a random subset of features. The
ensemble learning technique known as RF involves creat-
ing random subsets of the dataset through bootstrapping,
where each subset serves as the training set for an individ-
ual decision tree. At each node in the decision tree, random
feature sets are chosen for the optimal split. A decision tree
model is trained for each subset, and the predictions from
all decision trees are averaged to generate the final predic-
tion. This approach leverages the power of multiple models
and randomization to improve the overall accuracy that helps
mitigate overfitting and enhances the robustness of the pre-
diction process.

3.4 Extreme gradient boosting (XGB)

XGB uses the principle of the original model of Gradient
Boosting by Friedman [71]. It is a supervised learning prob-
lem, where the training data xi are used to train an ensemble
of ‘K’ trees that forecast the target attribute y′ {T1 (xi ,
yi ) . . .TN (xi , yi )} where xi is the input vector of descrip-
tor that is provided. The implementation of XGB through
gradient boosting decision tree algorithm has proved to be
a highly effective ML algorithm [72]. XGB offers superior
prediction accuracy and significantly faster execution com-
pared to traditional gradient boosting techniques. It includes
L1 and L2 regularization options to mitigate overfitting and
enhance overall performance. Additionally, the algorithm
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incorporates sparsity-aware splitting and a weighted quan-
tile sketch algorithm, enabling it to accommodate different
types of data sparsity and handle weighted data effectively.
The XGB generates a new model that analyzes the error of
the earliermodel and combines itself using a gradient descent
method to reduce the loss in order to make the final predic-
tion. The process of appending models continues until no
additional enhancements can be made. The dataset d(x,y)
with ‘n’ samples with ‘m’ features, while ‘y′’ is defined as
the predicted value of model given by

y′ �
∑J

j�1
f j (x), f j ∈ N (5)

where ‘ f j ’ and ‘ f j (x)’ denote the tree and score given by
j-th tree during forecast, respectively. The ideal leaf weight
‘w∗

j ’that refers to the optimal weight assigned to a leaf node
in a decision tree is provided by

w∗
j � − G j

H j + λ2
(6)

where ‘G j ’ represents the gradient of the loss function w.r.t.
the forecasted values for the j-th leaf, ‘H j ’is the second-
order partial derivatives of the loss function w, and ‘λ2’is a
regularization term. It can be calculated using regularization
term,

�∗ � −1

2

T∑

j�1

G2
j

H j + λ2
+ λ2T (7)

where ‘T ’ represents the total number of leaves in the deci-
sion tree or ensemble of trees.

3.5 Stacking

Stacking is a machine learning strategy whereby multiple
models are combined to enhance prediction accuracy. The
fundamental concept is to train numerous base models on
the same dataset and then utilize their predictions as inputs
to a higher-level model, known as a meta-model, which pro-
duces thefinal prediction.When thebasemodels havevarious
strengths and weaknesses, stacking can be very useful since
the meta-model can learn to "average out" their flaws and
provide more accurate forecasts overall. Stacking may be
implemented in a variety of methods, but the most popular
is to utilize k-fold cross-validation to create out-of-sample
predictions for each base model. These predictions are then
utilized as inputs to the meta-model. This guarantees that the
meta-model is trained on new data and lowers the possibility
of overfitting to the training data.

For instance, a collection of base models, M � (m1,
m2,……,mk) is trained on a given dataset ‘D,’ and the result-
ing predictions are gathered in a matrix P of dimension (n
× k), where n represents number of observations in D. A
meta-model m is then trained on the matrix P and the true
response variable y of D, using a weighted combination of
the base model predictions as inputs:

y′ � m(α1 p1 + α2 p2 + · · · + αk pk)2 (8)

where y′ is the predicted response variable, pi is the vector
of predictions made by base model mi , and αi is the weight
assigned to base model mi by the meta-model m.

3.6 The proposed RF-XGB ensemble

The present research explores howwind and solar power gen-
eration and the stochastic behavior of electricity demand are
estimated by an ensemble of RF and XGB. For many fac-
tors, these approaches were selected, either because of the
good results they have shown or because of the plausibility
to deliver higher precision and black-box models in different
contexts [73]. The RF-XGB ensemble model combines two
popular machine learning algorithms: RF and XG. The RF
algorithm is an ensemble algorithm that builds several deci-
sion trees, integrates their predictions, and produces a final
forecast. RF is well known for initial forecasting because
of its scalability, resilience, and capability to handle diverse
types of data. The XGB algorithm, on the other hand, is a
gradient boosting algorithm that iteratively improves amodel
by adding new decision trees to the ensemble. XGB is very
good at using gradient boosting to optimize predictive perfor-
mance, which helps to better capture complex patterns and
increase accuracy.To create theRF-XGBmodel,wefirst train
a RF model on the training data. This involves constructing
multiple decision trees (DT) based on random subsets of the
features and training them on the training data. Each decision
tree in the forest independently predicts the target variable,
and the final outcome is made by averaging the forecasts of
all the trees in the forest. The mathematical equation for a
single decision tree is written as

y � f (x) (9)

where y and x represent the target variable and feature vec-
tor, respectively. The ‘f ’ represents the decision function that
translates the feature vector to the target variable which is
often written as a sequence of if–else statements. The RF
model uses feature values to partition the data into subsets.
Multiple DT are learned using random samples of the data,
and the final prediction is attained by averaging the predic-
tions of all the trees. The RF model’s mathematical equation
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is written as follows:

y � 1

N

∑
yi (10)

where ‘yi’ is the i-th decision tree’s forecast and ‘N’ is the
total number of trees in the ensemble.

The XGB is then utilized to enhance the predictions of the
RF model. The predictions of the RF model are utilized as
features for the XGB model learned on the training set. The
XGBmodel learns to combine the RF model’s predictions in
order to provide amore accurate final result. Themodel trains
the decision trees sequentially, with each consecutive tree
aiming to fix the error of the preceding tree. The following
is the mathematical equation stands for the result of XGB
model,

y �
∑

. f
i
(x), yi . (11)

where fi (x) is the forecast of the i-th DT and y is the total
of the predictions of all the trees.

Finally, the stacked ensemble model employs a LR model
to combine the predictions of the two models. The process
starts by using the RF model to forecast the target variable
based on the input information followed by improving the
forecast by XGB by merging the RF predictions,

y � w0 + w1x + w2 × RFpred + w3 × XGBpred (12)

where y is the final prediction, x is the feature vector, RFpred
is the prediction of the RF model on x , XGBpred is the fore-
cast of the XGB model on the combination of x and RFpred,
and w0, w1, w2, and w3 are the weights learned by the LR
model. The stacked ensemble model’s purpose is to learn the
appropriate weights for merging the RF and XGB models’
predictions such that the final forecast has the lowest possible
error. The stacked ensemble of RF and XGBmodeled on LR
is shown in Fig. 2.

The precision of the stacked ensemble is improved by
integrating the capabilities of the RF and XGB models. The
RF model is well-known for handling noisy data and high-
dimensional feature spaces, whereas the XGB model is well
known for capturing complicated relationships between fea-
tures andmaking accurate predictions. The stacked ensemble
is capable to exploit the benefits of both models and increase
overall accuracy by integrating the predictions of these two
models using a linear regression model. The RF model may
be able to preserve a few fundamental patterns in the data,
but the XGB model may be able to catch more complicated
patterns. TheLRmodel then learns how to integrate these pre-
dictions efficiently to increase overall accuracy.Additionally,
the stacked ensemble model can also help to reduce overfit-
ting by combining the predictions of multiple models. Since
each model is trained on a different subset of the data, they

Fig. 2 Stacked ensemble of RF and XGB

may be less prone to overfitting than a single model trained
on the entire dataset. The linear regression model then learns
how to weight the predictions of each model to minimize the
overall error on the validation set, which can further enhance
the generalization ability of the model. The mathematical
equation for the stacked ensemble of RF and XGB on linear
regression can be represented as:

y′ � w1×yrf + w2 × yxgb + b (13)

where y′, yrf, yxgb represents the predicted target value for a
given input sample, RF and XGB.w1 andw2 are the weights
assigned to the RF and XGB, respectively, learned by the
linear regression model during training, and b is the bias
term learned by the LR model during training.

The LR model learns the optimal weights w1 and w2 and
bias term b during training by reducing the mean squared
error (MSE) between the predicted target values and the
actual target values on a validation set. The overall preci-
sion of the stacked ensemble is improved by leveraging the
strengths of both the RF and XGB models, as well as by
reducing overfitting through the use of multiple models and
the LR model’s learned weights. The general advantages of
the proposed RF-XGB can be stated as:

1. Being nonparametric, it does not presume or allow data
to obey any specific distribution. This reduces the time
complexity in transforming data into normal distribution.

2. It can process mixed data types.
3. It includes a bias correction approach to address poten-

tial biases in renewable power and load predictions. This
guarantees that the forecasting models provide impartial
and reliable predictions.
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4. The feature multi-collinearity does not influence model
accuracy and predictive performance.

A five-fold CV technique, a common scheme for mea-
suring model performance, was employed to confirm the
model’s accuracy. The investigations are run in a Python
environment on a Windows GPU platform using a 16 GB
RAM and 3.6 GHz Intel Core i7-4790 CPU.

4 Result and discussions

The discussed results are divided into four sections, con-
sisting of three types of forecasts, namely electricity con-
sumption, wind power, and solar power, followed by the last
section, in which the model’s effectiveness is validated. The
layout of the results starts with the demonstration of different
data characteristics for each prediction and follows up with
the review of the results of different methods of prediction.

4.1 Electricity consumption predictions

For many factors, the forecast of electricity consumption is
not similar to that of wind and solar power. Firstly, the data
are collected from two independent sources. The first dataset
includes data fromNinja Projectswhile the second dataset for
electricity load is obtained from TSECL, SLDC which had
no other inputs. Eventually, because this data collection has
been obtained from the actual load of the state, additional
data errors and ambiguity, such as instrument failures, are
correlated with it. Correlation heatmap already shown ear-
lier did not reflected major dependencies of electricity load
with weather parameters. Hence, a few extra variables, such
as hour, hour1 (representing peak hour of the day), week, day,
month, year, etc., are appended to check the associations. To
filter out unnecessary data and categorize the utmost impor-
tant characteristics in the dataset, the fundamental correlation
matrix with the relevance of feature is also constructed, as
shown in Fig. 3.

Lagging features are historical values of a variable that are
included in the feature set to forecast the present or future
values of the same variable in ML and time series analysis.
In time series prediction, where past measurements are used
to predict future observations, lagging characteristics are fre-
quently employed. We establish "lagged" copies of the time
series in order to explore any potential serial dependencies
in the data. To lag a time series is to move its values one or
more-time steps ahead, or alternatively, to move the times
in its index one or more steps backward. In either scenario,
the delayed series’ observations will appear to have occurred
later in time.

By taking into consideration the impact of any intermedi-
ate lags, partial autocorrelation is a statistical concept used

in time series analysis to quantify the link between an obser-
vation in a time series and its delayed values. It analyzes the
correlation between two values in a time series that are sep-
arated by a certain number of time steps while accounting
for any other time delays. In contrast, autocorrelation is an
analytical concept employed to quantify the degree of simi-
larity between an observation in a time series and its lagged
values. In other words, it accounts the correlation among two
values in a time series that are divided by a specific number
of time steps. The partial autocorrelation and autocorrelation
are shown in Fig. 4.

The partial autocorrelation and autocorrelation reveal the
strong correlation at Lag1. Hence, lagging power of 1, 12,
24, 48, and 72 h is plotted along with rolling_4_power_mean
and rolling_24_power_mean as shown in Fig. 5.

From the plotted heatmap, it has been observed that
the lagged_power_1, lagged_power_24, lagged_power_48,
lagged_power_72, rolling_4_power_mean, rolling_24_
power_mean are the features highly correlated with the
consumption. Hence, these features are also added for
training the model. The model prediction ahead of 24 h is
revealed in Fig. 6.

Using a straightforward procedure, energy consumption
may be predicted. In addition to separating the target vari-
able and highly correlated features, hyperparameters such as
the number of estimators, learning rate, and tree depth are
set before training the model which involves selecting the
best values for these hyperparameters to optimize the perfor-
mance of themodel. The hyperparameter tuning significantly
affected the overall performance. With systematic hyperpa-
rameter optimization, the model attained enhancements in
its ability to extract intricate relationships and patterns in the
data. Therefore, the RF and XGBoost models individually as
well as in ensemble had enhanced accuracy, and minimum
overfitting. Subsequently, the model was validated through
a fivefold CV procedure. Lastly, a different test set may be
used to assess the model’s performance. This provided an
additional evaluation of the model’s efficiency on hypothet-
ical data and point out any over- or underfitting problems.
Figure 7 displays the comparison of consumption values at
various time horizons with true and expected values of con-
sumption using RF-XGB ensemble.

4.1.1 Wind power predictions

A renewable energy source, wind power has gained promi-
nence recently due to its capacity to reduce greenhouse
gas emissions while also contributing to a more sustain-
able energy future. Although wind speed and direction can
vary significantly across time and space, they are a major
factor in wind power generation. Accurately predicting the
wind power generation is crucial for the efficient operation
of wind farms and integration into the power grid. There
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Fig. 3 Correlation coefficient of dataset parameters for prediction of consumption

Fig. 4 Partial autocorrelation and
autocorrelation for prediction of
consumption

are several methods for wind power prediction, including
NWP, statistical models, and ML algorithms. Each method
has its advantages and limitations and may be more suit-
able for specific applications. In the following sections, we
engaged in feature engineering to extract pertinent data and
provide additional features that may improve the models’
predictive capacity. Finally, we plot the Pearson correlation
heatmap to visualize the correlations among parameters in a
dataset in the context of wind power production as shown in
Fig. 8.

The heatmap does not reveal any major correlations due
to mismatch of location of wind power plant and obtained

weather parameters. To address this issue, “lagged” copies of
the time series are established in order to explore any poten-
tial serial dependencies in the data. Partial autocorrelation
and autocorrelation statistical concept are used to quantify the
link between an observation in a time series and its delayed
values. It analyzes the correlation between two values in a
time series that are separated by a certain number of time
steps while accounting for any other time delays. The par-
tial autocorrelation and autocorrelation on wind power are
depicted in Fig. 9.

The concept reveals the strong correlation at Lag1. Hence,
lagging power of 1, 12, 24, and 48 h are plotted along

123



Electrical Engineering (2024) 106:4947–4967 4957

Fig. 5 Heatmap with lagged
features for prediction of
consumption

Fig. 6 Prediction of electricity consumption (24 h ahead) using RF and XGB ensemble

Fig. 7 Assessment of forecasted and true values of electricity consumption with predicted values using RF and XGB ensemble
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Fig. 8 Correlation coefficient of dataset parameters for prediction of wind power

Fig. 9 Partial autocorrelation and autocorrelation for prediction of wind power

with rolling_4_power_mean and rolling_24_power_mean as
shown in Fig. 10.

As the plotted heatmap reveals, there exist correlations
of lagged_power_1, lagged_power_12, lagged_power_24,
rolling_4_power_mean, rolling_24_power_mean with wind
power. Hence, these features are also added for training the
model. The model prediction ahead of 24 h is shown in
Fig. 11.

A straightforward procedure is used to anticipate the wind
power. The result of the correlation matrix is kept in consid-
eration while training the model and parameters with weak
correlations is dropped from the training set. The feature
matrix containing highly correlated features is segregated

from the target variable, which is wind power. Subsequently,
the RF-XGB model was subjected to a five-fold CV tech-
nique. The prediction of wind speed at various time intervals
ahead is shown in Fig. 3. The comparison shows a very min-
imal variation in the target and forecasted values. Actual and
projected wind power levels are compared at different time
horizon as shown in Fig. 12.

4.2 Solar power predictions

For the prediction of solar power, both the approach and
the steps required are almost same as those for the predic-
tion of consumption. This is because the data (both weather
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Fig. 10 Heatmap with lagged
features for prediction of wind
power

Fig. 11 Prediction of wind power (24 h ahead) using RF and XGB ensemble

parameters and solar power) were collected from the same
source. Nevertheless, the results obtained from this data col-
lection are very different due to the discontinuous existence
of solar power. In Fig. 13, Pearson correlation heatmap for
solar power correlations is indicated with each parameter.

For solar power, the two factors that appear to be
marginally connected to power production are temperature
and humidity. The heatmap only excludes a few parameters,
while features like ‘day_of_week,’ ‘month,’ ‘day_of_year,’
‘week,’ etc. is computed additionally. From the plotted
heatmap, the attributes showed significantly weaker influ-
ence on solar power; therefore, "lagged" copies of the time
series are established like wind power prediction as shown
in Fig. 14.

Here, the concept reveals the strong correlation at
Lag1. Hence, lagging power of 1, 12, 24, 48 and

72 h are plotted along with rolling_4_power_mean and
rolling_24_power_mean as shown in Fig. 15.

As the plotted heatmap reveals, there exist correlations
of lagged_power_1, lagged_power_24, lagged_power_48,
lagged_power_72 and rolling_4_power_mean with solar
power. Hence, these features are also added for training the
model. The model prediction ahead of 24 h is shown in
Fig. 16.

To accurately estimate the solar power, a simple procedure
is pursued like wind power prediction. We constructed the
target matrix with the features matrix with parameters that
have strong correlations. Then, we implemented a five-fold
CV procedure. In Fig. 16, the actual and forecasted solar
power values are compared. An assessment of forecasted and
true values of solar power generation using RF and XGB
ensemble is shown in Fig. 17.

123



4960 Electrical Engineering (2024) 106:4947–4967

Fig. 12 Assessment of the forecasted and true values of wind power generation using RF and XGB ensemble

Fig. 13 Correlation coefficient of dataset parameters for prediction of solar power
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Fig. 14 Partial autocorrelation and autocorrelation for prediction of solar power

Fig. 15 Heatmap with lagged features for prediction of solar power

Fig. 16 Prediction of solar power (24 h ahead) using RF and XGB ensemble
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Fig. 17 Assessment of forecasted and true values of solar power generation using RF and XGB ensemble

4.3 Evaluationmetrics

Several evaluation metrics like mean squared error (MSE),
mean absolute error (MAE), coefficient of determination
(R2), and root mean square error (RMSE) are employed to
assess the effectiveness of the suggested model [74]. MSE is
used to assess how well an estimate or prediction performs.
The average squared difference between actual and projected
values is what is measured. By multiplying the total squared
difference between the actual and anticipated values by the
number of samples, the MSE is determined. The MSE equa-
tion is:

MSE � 1

N

n∑

i�1

(
y − y′)2 (14)

where n represents the observations, y and y′ are the actual
and predicted values in the i-th sample. MSE is frequently
used in regression problems to assess the precision of the
model. The model performs better at predicting the depen-
dent variable when the MSE is smaller. The value of MSE

can be significantly impacted by huge mistakes since it is
sensitive to outliers.

MAE is a statistical metric used to assess the precision of
an estimate or a forecast. The average absolute difference of
true and anticipated values is what is measured. By adding
together, the total absolute disparities between the values that
were anticipated and those that were actually obtained, MAE
is determined. The MAE equation is:

MAE � 1

N

n∑

i�1

∣∣y − y′∣∣ (15)

where n stands for number of observations; y and y′ are
the true and predicted values in the i-th sample. Regres-
sion analysis frequently makes use of MAE, which offers a
simple-to-understand measurement of the average absolute
variance of the expected and the true values. Because MAE
does not square the errors, it is less susceptible to outliers
than MSE. Yet, because it handles all faults equally, it is less
sensitive to significant errors.

R2 score is a statistical measure that indicates the amount
of the variability of the dependent variable that is represented
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by the model’s independent factors. It has a value between 0
and 1, with larger values suggesting that the regressionmodel
fits the data better. It comes from

R2 � 1 −
∑(

y − y′)2
∑

(y − ymean)
2 (16)

RMSE is the metric that measures the average difference
between the forecasted and true values of the dependent vari-
able. It is defined by square root of MSE,

RMSE �
√

∑ (y′ − y)2

N
. (17)

A comparative analysis of various models for electricity
consumption, wind and solar power prediction in terms of
MSE, MAE, R2, and RMSE is shown in Tables 1, 2 and 3,
respectively. A combined analysis is also presented in Table 4
with a graphical representation of R2-score in Fig. 17 to con-
firm the efficacy of the proposed methodology.

We aim to forecast the consumption of electricity, wind
power, and solar power in a particular area based on historical
data. We have selected seven different models to compare:
linear regression, decision tree, lassomodel, LightGBM, cat-
boost, RF and XGB.We have also proposed and developed a
stacked ensemble of RF andXGB for the purpose. The evalu-
ationmetric used for comparability of themodels isR2,MSE,
MAE, and RMSE, which computes the average variance of
the predicted consumption and the actual consumption. We
obtained an accuracy of 0.98 for prediction of consumption
and solar power, while 0.99 for wind power. The reported
accuracy is highest among all the models including lone RF
and XGB. The error metric of MSE, MAE, and RMSE is
also lowest among all the models. In prediction of electrical
energy consumption, the proposed model performed better
that lone RF itself by 1%. Inwind power prediction, Catboost
performed better than all other models which is superseded
by our proposed model by accuracy of 5%. In case of solar
power prediction, LightGBM performed better than all other
models which is superseded by our proposed model by accu-
racy of 1%.

Based on the findings, it is revealed that the proposed
ensemble achieved the best results in wind power, solar
power, and electricity consumption predictions, with RMSEs
of 188.69, 25.92, and 4.90 and R2 score of 0.99, 0.98, and
0.98. The suggested RF-XGB ensemble had a higher grade
in the comparison study than other models for predicting in
low volume datasets. Finally, a comparative study of differ-
ent models in terms of R2 for forecasting wind power, solar
power, and electrical load forecasting is presented in Fig. 18.

A comparative analysis of the proposedworkwith existing
studies in the literature based on RF and XGB is shown in
Table 5.

Themodel evaluationmetrics for RF andXGB algorithms
were recoded. With an R2 value of 0.89, Random Forest was
able to attainMAEvalues of 90%and95%.XGBoost showed
an R2 value of 0.91 and an RMSE of 5.9%. A comparison
between the Random Forest and XGBoost ensembles also
revealed better results, with an RMSE of 0.955 and an R2 of
0.91. The Random Forest and XGBoost combined stacked
ensemble fared better, with an R2 of 0.98 and an RMSE of
4.909. These findings demonstrate the effectiveness of the
proposed ensemble methods in raising prediction accuracy.

5 Conclusion & future scope

With traditional energy supplies such as coal, oil, and nat-
ural gas dwindling as well as the environmental impact of
burning fossil fuels, governments and businesses gradually
depend on the production of renewable sources of energy.
Wind and solar are exciting renewable energy sources, which
have been growing rapidly. An intrinsic characteristic of
these resources is that the ability to generate energy cannot
be managed entirely or even predicted. To ensure that renew-
able energy sources are integrated effectively into the grid,
it is essential to have appropriate forecasting and manage-
ment methods in place. A grid integrating renewable energy
sources must be tracked continuously and must be able to
predict unexpected changes in energy supply and demand. In
this paper, predictive analytical methods have been success-
fully implemented that predicts wind power, solar power, and
electricity consumption for the state using a stacked ensem-
ble of RF and XGB. By combining the predictions of these
two models using a LR model, the stacked model is capa-
ble to leverage the strengths of both models and improve
the overall accuracy. The RF model is capable of capturing
a portion of the simpler trends, while the XGB model may
be inclined of capturing the more complex trends. The LR
model then learns how to optimally combine these predic-
tions to improve the overall accuracy. The variance of these
predictions is quantified by R2 and RMSE. The expertise
gained from the data-driven models is thought to contribute
to a better investment and use of power storage systems, lead-
ing to an economically viable solution enabling even higher
rates of renewable energy penetration in the grid.

Eventually, it is important to point out that when consider-
ing upcoming energymarket several additional opportunities
and problems must be dealt with. All these possibilities can
be incorporated into a predictive smart grid control system,
and these research findings can be applied immediately, pro-
moting, and contributing to the shifting of power industry to
new and sustainable modes. More study is needed to assess
and compare the limits of the existing ensemble for forecast-
ing with more complicated models and optimization-based
training approaches. Further study is needed to emphasize
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Table 1 An analysis of various
models aimed at forecasting the
consumption of electrical energy

Model MSE MAE RMSE R2-score

Linear regression 811.29 22.456 28.483 0.48

Decision tree 355.64 13.232 18.858 0.77

Lasso model 811.45 22.463 28.486 0.48

LightGBM 273.52 12.085 16.538 0.82

Catboost 105.27 6.986 10.260 0.93

Random Forest 34.479 3.4861 5.8720 0.97

XGBoost 205.84 10.226 14.347 0.87

RF-XGB ensemble (proposed) 24.105 3.1235 4.9098 0.98

Table 2 An analysis of various
models aimed at forecasting the
wind power

Model MSE MAE RMSE R2-score

Linear regression 983,530.97 573.14 991.73 0.89

Decision tree 768,724.51 513.65 876.76 0.91

Lasso model 983,548.09 573.19 991.73 0.89

LightGBM 918,529.56 579.55 958.39 0.89

Catboost 458,124.32 407.16 676.84 0.94

Random Forest 714,336.42 493.04 845.18 0.92

XGBoost 630,774.50 466.61 794.21 0.92

RF-XGB ensemble (proposed) 35,606.98 109.58 188.69 0.99

Table 3 An analysis of various
models aimed at forecasting the
solar power

Model MSE MAE RMSE R2-score

Linear regression 29,830.92 139.49 172.71 0.47

Decision tree 8924.67 48.289 94.470 0.84

Lasso model 29,950.54 140.06 173.06 0.46

LightGBM 1356.75 18.616 36.834 0.97

Catboost 4741.02 37.404 68.855 0.91

Random Forest 8103.24 46.876 90.018 0.85

XGBoost 6041.42 42.361 77.726 0.89

RF-XGB ensemble (proposed) 671.88 13.991 25.920 0.98

Table 4 A combined analysis of
wind power, solar power and
load consumption prediction

Model Wind power Solar power Electrical load

RMSE R2-score RMSE R2-score RMSE R2-score

Linear regression 991.73 0.89 172.710 0.47 28.483 0.48

Decision tree 876.76 0.91 94.470 0.84 18.858 0.77

Lasso model 991.73 0.89 173.060 0.46 28.486 0.48

LightGBM 958.39 0.89 36.834 0.97 16.538 0.82

Catboost 676.84 0.94 68.855 0.91 10.260 0.93

Random Forest 845.18 0.92 90.018 0.85 5.872 0.97

XGBoost 794.21 0.92 77.726 0.89 14.347 0.87

RF-XGB ensemble (proposed) 188.69 0.99 25.920 0.98 4.909 0.98
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Fig. 18 Comparison of different prediction models

Table 5 A comparative analysis
of proposed work with existing
studies in the literature

Study Prediction parameter Model Metrics

[65] Energy performance Random forest MAE—90% &
95%

[66] Building energy Random forest R2—0.89

[67] Energy prediction Random forest RMSE—5%

[67] Energy prediction XGBoost RMSE—5.9%

[68] Electricity demand Random forest RMSE—2075.54

[68] Electricity demand XGBoost RMSE—2038.54

[69] Electrical energy Random forest & XGBoost
ensemble

R2—0.91,
RMSE—0.955

Proposed Renewable power & electricity
consumption

Stacked ensemble of
Random Forest &
XGBoost

R2—0.98,
RMSE—4.909

mostly on assessment of enhancing the suggested technique’s
maximal forecasting horizons with enhanced accuracy in
big multi-step forecasting. While there are still challenges
to overcome in modeling accurate forecasts, improvements
in ML and AI are bringing up new prospects for boosting
forecast accuracy and lowering uncertainty. Further research
and development in this field will be required in the future to
allow significant deployment of renewable energy technol-
ogy and to help the global effort to combat climate change.
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