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Abstract
This paper discusses the invertible current–voltage characteristics of perovskite solar cells (PSCs). To that end, the well-known
invertible analytical current–voltage dependencies expressed through the Lambert W function are analyzed and checked on
three examples. It is concluded that the expression for voltage–current characteristics is not applicable for awhole voltage range
(for no-load and low-load operation). Therefore, an analytical closed-form expression for PSC voltage–current characteristics
is derived by using the g-function (or LogWright function). Second, a novel closed-form expression for the no-load voltage
is derived. Third, a novel iterative procedure for solving the g-function is proposed. The proposed iterative procedure for
solving g-functions, called g-IP, is independent of the initial conditions, unlike in the literature. Furthermore, for large values
of the argument of the g-function, approximate solutions for g-function solving were derived and tested, especially for regions
about the maximum power point. The proposed approach guarantees an accurate representation of the PSC voltage–current
characteristics. Therefore, this paper represents unique research in the field of PSC modeling.

Keywords Analytical closed-form solution · g-function · Iterative procedure · Perovskite solar cell

1 Introduction

Environmental protection and global warming, the main
causes of which are industry and the production of electric-
ity from nonrenewable energy sources, have influenced the
increasing use of renewable energy sources in recent decades
[1]. Renewable energy sources are the keys to green tran-
sitions, the keys to energy independence, and the keys to
preserving the environment. According to IRENA data, the
share of renewable sources in the production of electricity is
constantly increasing [2]. This is due to numerous political
and energy crises, as well as the increasing cost of energy
production from nonrenewable energy sources [3].

Solar energy has been the most interesting form of renew-
able energy source in recent years [4]. The price of solar
panels and inverters has drastically declined, which has led
to the expansion of solar power plant installations and small
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solar plants. On the other hand, the large production of elec-
tricity from solar power plants affects the prices of electricity
on the market.

The conversion of electric solar energy into electricity is
performed in solar cells, which are the basic components of
solar panels [5]. However, the efficiency of solar panels is
strongly influenced by the degree of insolation and tempera-
ture, as well as by the occurrence of clouds, rain, and soiling
[6]. Therefore, it is necessary to pay special attention to the
conditions under which solar panels work. Additionally, to
use themaximumpossible production from solar panels, they
must be regulated. Specifically, DC-DC converters, which
are used to control the operation of solar panels at the point
of maximum power (application of maximum power point
tracking—MPPT regulation), must be used [7]. These issues
were the main reasons why research in science in this area
was directed toward the development of solar cells with a
higher degree of efficiency.

The new generation of solar cells is perovskite solar cells
[8], named after the nickname for their crystal structure.
These cells have begun to be intensively researched in the last
decade and have shown exceptional performance in terms of
efficiency [9]. Furthermore, the efficiency of these solar cells
is more than 22% [10], while simulation studies have shown
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an efficiency ofmore than 30% [11]. On the other hand, these
cells are made from different perovskite materials that are
quite cheap, which makes this technology extremely attrac-
tive for research [12]. Moreover, it is important to emphasize
that there is a large amount of research dealingwithmaterials
for new types of solar cells [13–17].

As with other solar cells, the most important characteris-
tic of PSCs is their current–voltage characteristic [18, 19]. In
the mathematical sense, the current–voltage characteristics
of PS are extremely nonlinear. However, numerous studies in
recent years have addressed this area and proposed the appli-
cation of the LambertW equation for the analytical solution
of current as a function of voltage and voltage as a function
of the current of these solar cells [18–20]. In [20], simplified
PSC models were proposed and modified, which neglects
some of the resistances used to describe these solar cells.

The Lambert W equation represents an equation of the
type x � β*exp(− x), where x is a variable and β is a real
number. The solution of this equation is denoted by W (β),
where β is the argument of the function [21]. Numerous iter-
ative methods [22], as well as analytical approaches [23, 24],
can be used to solve the abovementioned equation.Moreover,
as this equation is extensively used in the scientific literature,
software packages, such as MATHEMATICA, MATLAB,
Maple, and Python, have built-in functions for solving this
problem [23]. However, the accuracy of solving this equation
depends on the value of the argument β. Namely, for large
values of the argument β, there is no possibility of their ana-
lytical solution through either the Taylor series [23] or the
application of the Theory of Special Tran Functions (STFT)
[23, 24]. Moreover, both approaches in their mathematical
form imply the scaling of the argument of the Lambert W
function with some natural number, which means that the
already sufficiently large value of the argument β increases
even more. On the other hand, for large values of parameter
β on the order of more than approximately 10309, the com-
putational possibility of solving the Lambert W equation in
software packages is impossible [25]. This large value of the
Lambert W function argument appears for PSC no-load and
low-load currents, which will be discussed and demonstrated
in this paper.

In this paper, the application of the g-function, i.e., the
LogWright function, for mathematical modeling of PSCs is
proposed [25–28]. The application of this function solves
problems related to the high values of numbers that exist in
the application of the Lambert W function. Therefore, the
primary goal is to develop a new analytical model of the cur-
rent–voltage characteristics of PSCs that has solutions for all
voltage and current values. Second, it is important to point
out that the available literature uses the procedure described
in [26] to solve the g-function. The proposed procedure is
based on the application of Halley’s method [25, 26] or New-
ton–Raphson’s iterative procedure [29]. A discussion about

Fig. 1 PSC equivalent circuit

the disadvantages of these methods will also be presented
in this paper. In contrast to existing methods, a new origi-
nal iterative procedure for solving the proposed g-function
is presented in this paper. The proposed iterative procedure
overcomes problems of initial values, as well as other math-
ematical requirements of the existing methods. Furthermore,
based on the presented iterative procedure, a few approxi-
mate solutions for the g-function are proposed and tested in
this article.

Therefore, the main contributions of this paper can be
summarized as follows:

• A discussion about the applicability of the Lambert W
function for solving the invertible current–voltage char-
acteristics of PSCs is given.

• Mathematical formulations of the invertible current–volt-
age characteristics of PSCs will be established.

• For the first time, in the literature, the application of the
g-function in PSC modeling is proposed.

• A new original iterative method for solving the g-function
is proposed.

• A few approximate g-function solutions will be proposed.
• The application of all the well-known and proposed
expressions to three different PSCs will be tested.

To effectively present the research, the work itself is
organized into several sections. In the second chapter, the
PSC equivalent circuit is described, and the basic PSC cur-
rent–voltage equations are given. In the third section, the
g-function is described. Additionally, in this section, iterative
and approximate solutions for the g-function are proposed.
In the fourth section, new, original, inverse current–voltage
relations for PSCs are presented and tested on three PSCs.
The main contributions of the work are presented in the Con-
clusion section.

2 Perovskite solar cells: PSCs

The equivalent circuit of the PSC is shown in Fig. 1 [18–20].
This circuit consists of a current source Ipv (photocurrent
generated in the cell when light falls on it), two diodesD1 and
D2, connected in series, and two resistances RP and RS—one
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Table 1 PSC parameters

Parameters PSC #1 PSC #2 PSC #3

Ipv [A] 0.01865 0.01755 0.02036

Io [A] 8.23·10–8 4.10·10–9 6.89·10–9

n1 + n2 3.074 2.6099 2.7258

Rs [�] 2.72 2.71 2.66

Rp [�] 5050 3400 4280

connected in parallel with the diodes and the other in series
with the connecting end. Resistances RS and RP represent
losses in PSCs (internal and due to a reverse saturation cur-
rent, respectively), while diodes represent active junctions
due to sunlight absorption. Note that the simplest model of
standard solar cells has one diode [30, 31].

Based on PSC physics [18], the reverse saturation currents
of the diodes are equal (I01 � I02), while the voltage ratio on
the diodes is proportional to the ratio of the ideal factors of the
diodes (n1 and n2). Therefore, the current–voltage equation
(I–U) of a PSC has the following form [13–15, 26]:

I � Ipv − I0

(
e

U+I RS
(n1+n2)·Vth − 1

)
− U + I RS

RP
(1)

whereI0 � I01 � I02 andV th �KBT /q is the thermal voltage,
KB is the Boltzmann constant, T is the temperature, and q is
the charge of the electron.

Analytical solutions for the current and voltage of the pre-
vious equation represented by the LambertW equation have
the following forms [20, 32]:

I � RP
(
Ipv + I0

) −U

RS + RP
− n · Vth

RS
· W (βU)

βU � I01RP RS

n · Vth(RS + RP )
e

RP (RS Ipv+RS I01+U)
n·Vth(RS+RP ) , (2)

U � RP
(
Ipv + I0

) − I (RS + RP ) − (n1 + n2)Vth · W (βI)

βI � I0RP

(n1 + n2) · Vth e
RP (I pv+I0−I)
(n1+n2)·Vth , (3)

where W is the Lambert W function.

2.1 Numerical results

Table 1 shows the data for three PSCs taken from [18, 32].
Basedon thedata from this table (PSCparameters), the values
of the arguments of the functions βI and βU were determined
by using Eqs. 2 and 3 for different values of the PSC current
and voltage, respectively. The obtained results are presented
in Fig. 2.

Fig. 2 βI � f (U) (upper graph), and βU � f (I) (lower graph)

Due to the relatively small value of the argument, the val-
ues of βI can be calculated for all voltage values, which is
not the case for βU (for the no-load operation, as well as for
small loads, βU exceeds the value of 10309). Therefore, it is
clear that the expression for the voltage as a function of the
PSC current, Eq. 3, expressed through the Lambert W func-
tion, is not applicable for all current values. However, the
expression for the current as a function of voltage, Eq. 2, is
applicable for all voltage values.

3 g-function: description, iterative
and approximate solutions

In this section, we briefly introduce the g-function. Addition-
ally, a novel iterative procedure for solving the g-function is
proposed, as are its approximate solutions.
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3.1 g-function

The problem of solving the Lambert W function for large
values of the argument was studied in [25–28]. Namely, theg-
function, or the so-called LogWright function [28], which
represents the logarithm of the basic Lambert W equation,
was proposed as a potential solution for solving this type
of equation. Therefore, starting from the basic Lambert W
equation:

W � β · exp(−W ) (4)

and if we express β � exp(α), the g-function has the form
[20]:

g � log(W ) � α − W (5)

In this way, the value of the argument of theg-function (α)
has the logarithmic value of β.

To solve the g-function, the approach described in [26] is
used in most of the available literature. The proposed princi-
ple is based on the well-established Halley’s method [25, 26]
orNewton–Raphson’smethod [29], which therefore includes
the search for the first derivative of the function. Moreover,
the proposed procedure requires limiting the starting value
of the iterative procedure as a function of the argument or
interpolating the starting value within a certain range. Addi-
tionally, to speed up the calculation, the authors suggest using
the calculated value of the exponential value in two adjacent
iterations. For more details, please see [25].

3.2 Proposed iterative procedure for solving
the g-function

In this paper, a new iterative procedure for solving the g-
function is proposed. The proposed iterative procedure starts
with an arbitrary value of W (denoted by (0)W ). After that,
the next value ofW (denoted by (1)W ) is calculated according
to the following form:

(1)W � α − log((0)W ). (6)

If it is
∣∣∣(1)W −(0) W

∣∣∣ > ε, (7)

where ε is the iteration criterion. The initial value of W is
calculated as follows:

(0)W � α − log((1)W ). (8)

The entire procedure is repeated until the needed accuracy
is achieved. Finally, after k iterations, the g-function value

Fig. 3 Convergence curve of W for α � 50

is:

(k)g � α −(k−1) W . (9)

The proposed iterative procedure, called g-IP, was tested
for different values of α, different initial values of (0)W ,
and different iteration criteria ε (see Fig. 3 and Table 2). In
Table 2, the RNI represents the number of iterations needed
to achieve the desired accuracy. A part of the realized MAT-
LAB code is given in Appendix 1.

Based on the presented results,

• it is clear that the proposed iterative procedure does not
depend on the initial value (0)W ,

• the proposed iterative procedure converges efficiently for
all initial values (0)W ,

• g-IP operates effectively for all values of α and
• for large values of the argument α, g-IP converges to a
solution extremely quickly, even in a few iterations.

Therefore, the applicability of the g-IP for solving the g-
function is clear. Note that the g-IP is applicable for α > 1;
for α ≤ 1, it is efficient to use the method proposed in [25]
for g-function solving or to use voltage–current modeling
expressed via the Lambert W function (see Eq. 2).

3.3 Proposed approximate solution for solving
the g-function

Based on the previous conclusions and g-IP observations,
approximate expressions for solving the g-function can be
derived. Namely, the approximate expressions (gapp) have
the form:

gapp1 � log(α − log(α − log(α))) (10)

123



Electrical Engineering (2024) 106:4903–4912 4907

Table 2 Numerical results for g-IP

α ε (0)W RNI α α (0)W RNI

1500 10–5 0.001 3 1000 10–5 0.001 3 700 10–5 0.001 3

1 3 1 3 1 3

10 3 10 3 10 3

1000 3 1000 3 1000 3

10–10 0.001 4 10–10 0.001 4 10–10 0.001 4

1 4 1 4 1 4

10 4 10 4 10 4

1000 4 1000 3 1000 4

400 10–5 0.001 3 100 10–5 0.001 4 10 10–5 0.001 5

1 3 1 3 1 5

10 3 10 3 10 4

1000 3 1000 3 1000 5

10–10 0.001 4 10–10 0.001 5 10–10 0.001 8

1 4 1 5 1 8

10 4 10 5 10 7

1000 4 1000 5 1000 8

Fig. 4 Accuracy of the g-function calculation

gapp2 � log(α − log(α − log(α − log(α)))) (11)

gapp3 � log(α − log(α − log(α − log(α − log(α))))) (12)

The accuracy of the approximate solution for different
values of α is given in Fig. 4. Figure 4 represents the dif-
ference between the exact solution of the g-function and its
approximate solutions, Eqs. 10–12, for different values of
the argument α. Clearly, the best approximation is provided
by gaap3, and the maximum value of the difference compared
to the exact solution, in the entire range, is less than 5 ×

10–5. Moreover, for α > 50, the maximum difference is less
than 10–7. The second approximate function, gapp2, also has
good accuracy (for α > 100, the maximum difference is less
than 10–8), while the first approximate function, gapp1, is the
least accurate (for α > 500, the difference compared to the
exact solution is less than 10–8). Therefore, for α > 500, the
approximate solutions of the g-function have a high level of
accuracy.

4 PSC voltage–current characteristics

With simple mathematical manipulations, the voltage–cur-
rent characteristic of the PSC expressed through the g-
function takes the following form:

U � (n1 + n2) · g(αI ) − (n1 + n2) · log
(

I0RP

(n1 + n2) · Vth
)

− I · RS

αI � log

(
I0RP

(n1 + n2) · Vth
)
+

RP
(
Ipv + I0 − I

)
(n1 + n2) · Vth (13)

Equation 13 represents an original and novel analyti-
cal solution for the voltage–current dependencies of the
PSC. Therefore, the current–voltage characteristics of PCSs
can be represented via the Lambert W function, while the
voltage–current characteristics must be represented via the
g-function approach. The U-I g-function approach for solar
cells is given in [25].

Figure 5 shows the αI-current characteristics for all the
observedPSCs.The value of the argumentα is approximately
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Fig. 5 The value of coefficient αI for all the current values

1000 when the current is low. Additionally, it is evident that
the value of the coefficient α, in the whole observed range,
has a higher value of 1, which confirms that we can use the
proposed iterative procedure.

The current–voltage and power–voltage PSC characteris-
tics of all three observed PSCs are presented in Fig. 6. The
corresponding numerical results for certain current values
are given in Table 3. In this figure, the proposed approach is
compared with the approaches based on the application of
the Lambert W function in Eq. 2. The match between char-
acteristics is obvious. Additionally, according to the results
presented in Table 3, the g-IP requires a small number of
iterations for a high level of calculation accuracy. All these
results confirm the feasibility, accuracy, and originality of the
g-function in modeling the voltage–current characteristics of
PSC cells.

4.1 PSC no-load expression

Based on the previous analysis, it is clear that the most
“problematic” point for voltage–current calculations via the
Lambert W function is the no-load voltage. Therefore, this
point can be only adequatelymodeled by using the g-function
approach proposed previously. Observing the voltage–cur-
rent characteristics in Eq. 13 and taking I � 0, the original
expression for the no-load voltage has the following form:

Uno - load � (n1 + n2) ·
(
g(αI−no - load) − log

(
I0RP

(n1 + n2) · Vth
))

αI−no - load � RP
(
Ipv + I0

)
(n1 + n2) · Vth + log

(
I0RP

(n1 + n2) · Vth
)

(14)

Fig. 6 Current–voltage (upper graph) and power–voltage (lower graph)
characteristics

The numerical results, calculated by using Eq. 14, for the
no-load voltage calculation for all three observed PSCs are
given in Table 4. It is clear that achieving a high level of
calculation accuracy requires a small number of iterations.
Therefore, it is more than evident that we can use any of
the proposed approximate solutions for no-load PSC voltage
calculations.

Additionally, observing Eq. 14, we can see that the dom-
inant effect on the value of αI-no-load has the value of the
parallel resistance. A higher parallel resistance influences a
higher value of the argumentαI-no-load.Note that in [20], other
PSCs can also be found. The value of the no-load voltage for
all of them can also be determined by using the proposed
equation as well as the proposed approximate functions for
solving the g-function.
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Table 3 Numerical results for certain values of currents

I [A] PSC #1 PSC #2 PSC #3

αI RNI* U [V] αI RNI* U [V] αI RNI* U [V]

0.002 1052.8 3 0.9646 775.1 4 1.0154 1135.0 3 1.0112

0.004 925.71 4 0.9488 674.3 4 1.0005 1110.5 3 0.9979

0.006 798.61 4 0.9316 573.5 4 0.9840 886.0 4 0.9835

0.008 671.52 4 0.9123 472.7 4 0.9654 761.5 4 0.9677

0.010 544.43 4 0.8900 371.9 4 0.9436 637.0 4 0.9500

0.012 417.33 4 0.8632 271.1 4 0.9166 512.5 4 0.9295

0.014 290.24 4 0.8285 170.4 4 0.8792 388.0 4 0.9049

0.016 163.15 4 0.7763 69.6 5 0.8112 263.6 4 0.8726

*For ε � 10–10 and (0)W � 1000

Table 4 Numerical results for
no-load voltage calculation PSC αI-no-load Uno-load ε RNI

#1 1179.897 0.979102… 10–5 3

10–10 4

10–15 4

#2 875.892 1.029083… 10–5 3

10–10 4

10–15 4

#3 1259.446 1.023738… 10–5 3

10–10 4

10–15 4

4.2 PSCmodeling around themaximumpower point

During operation, the PSC, similar to any solar cell/panel,
needs to operate within a certain range around the maxi-
mal power point [33]. Namely, as the operating conditions
change, the DC-DC converter, which regulates the operation
of the PSC, "moves" the operating point around the point of
maximum power so that the power obtained from the PSC
is maximized. For that reason, in Fig. 7, we present the cur-
rent–voltage and power–voltage curves expressed by using
Eq. 2 as well as the corresponding characteristics determined
by using the proposed approximate functions for solving
the g-function for PSC #1. The numerical results for cer-
tain current values are presented in Table 5. For the voltage
around the maximum power point, the differences between
the proposed approximate solutions and the corresponding
ones determined by using Eq. 2 are presented in the men-
tioned figure.

Based on the presented results, it is evident that the pro-
posed approximate solution for the g-function has very good
accuracy. Furthermore, the difference between the exact and
approximate solution errors confirms this conclusion. For

that reason, it is more than clear that we can use approxi-
mate solutions for g-function solving for very accurate PSC
operation around the maximum power point.

5 Conclusion

The well-known approach for PSC invertible current–volt-
age modeling, based on the application of the Lambert W
function, cannot be applied for whole voltage ranges, espe-
cially for no-load and low-load values. Therefore, this paper
fills this research gap and proposes novel PSC invertible cur-
rent–voltage characteristics based on the application of the
g-function. Furthermore, in this paper, the original iterative
procedure and approximate solutions for this equation are
proposed and tested. The proposed iterative procedure does
not depend on the initial conditions and does not require
searching for the derivative of the observed function. The
application of the proposed solutions is tested on three dif-
ferent PSCs, especially for no-load conditions and for regions
about themaximumpower point. Theproposedmathematical
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Table 5 Numerical results for approximate solutions

I [A] Voltage [V] Value I [A] Voltage [V] Value

0.012 Uexact
* 0.863194145825277 0.014 Uexact

* 0.828485122976194

U based on gapp1 0.863194152649690 U based on gapp1 0.828485142268963

Error 6.82 × 10–09 Error 1.92 × 10–08

U based on gapp2 0.863194145808686 U based on gapp2 0.828485122908404

Error 1.65 × 10–11 Error 6.77 × 10–11

U based on gapp3 0.863194145825318 U based on gapp3 0.828485122976433

Error 4.03 × 10–14 Error 2.38 × 10–13

0.016 Uexact
* 0.776324310576606 0.018 Uexact

* 0.645351464765004

U based on gapp1 0.776324410831697 U based on gapp1 0.645359085932658

Error 1.00 × 10–07 Error 7.62 × 10–06

U based on gapp2 0.776324309942431 U based on gapp2 0.645351230797813

Error 6.34 × 10–10 Error 2.33 × 10–07

U based on gapp3 0.776324310580618 U based on gapp3 0.645351471947712

Error 4.01 × 10–12 Error 7.18 × 10–09

*Calculated for ε � 10–10 and (0)W � 1000

Fig. 7 Current–voltage, power–voltage (upper graph), and voltage
error-current (lower graph) characteristics

modeling of the PSC invertible current–voltage characteris-
tics is confirmed to be possible, accurate, and original with
the application of the g-function in the whole voltage range.

In future work, attention will be given to the application of
the proposed function for solving other nonlinear engineering
problems in the fields of inductionmachines, storage devices,
power inductors, etc. Additionally, wewill research the novel
iterative procedure for g-function solving to improve the con-
vergence for lower values of the arguments.
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Appendix

The MATLAB code for solving the g-IP is as follows.
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