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Abstract
High dependability, efficiency and low carbon emissions are just a few of the many potential environmental advantages of
distributed generation (DG), which is used widely. Accurate islanding detection and quick DG disconnection were crucial to
avoid safety concerns and equipment damage brought on by the island mode actions of DGs. Several researchers concentrate
on island detection and load scheduling separately. The proposed work focused on islanding detection and load shedding
during an island condition. A sophisticated, intelligent mode detection controller detected the system circumstance, and an
intelligent shedding controlled the optimal load shedding. The proposed model used a standard IEEE 30-bus system with
voltage and current parameters sensed by sensors and given inputs to the intelligent mode detection controller. If the island
condition was predicted to move on load scheduling or normal condition was predicted, electricity continued to the utility
grid and fulfilled the consumer’s required power. The load shedding working process includes system design, data collection
and the creation of efficient load scheduling. Maintain steady voltage stability margin throughout that time to complete that
priority-based shedding depending on the power generation and its accompanying load restriction. The proposed method was
tested for two operating modes, namely detection of islanding modes and load shedding. The proposed approach provides
better results in both modes and maintains voltage stability across the entire time period. The proposed method offered a
better accuracy of 99% for islanding detection mode when the results were contrasted with those from several other existing
methods to validate the performance. As a result, it can be demonstrated that the suggested approach offers better islanding
detection performance as well as load shedding with a constant voltage stability margin.
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1 Introduction

Even with a significant growth in transmission and distribu-
tion, the amount of electricity available still cannot keep up
with the demand. A feasible solution in this situation would
appear to be distributed generation (DG) based on renewable
energy supplies. They can, however, be combined with fuel
cells and other storage devices to form a hybrid system for
dependable and increased power quality (PQ) because wind
speed and solar irradiation intensity are erratic [1]. However,
given the wide penetration of these systems, there are sig-
nificant concerns with islanding occurrence events and PQ
issues that need to be addressed. After the occurrence of
islands, it is standard practice to immediately disconnect all
DRs. The main issues with such island systems are as fol-
lows: (1) The voltage and frequency supplied to customers in
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the islanded system may vary significantly if the distributed
resources in the island do not provide regulation of volt-
age and frequency; (2) islanding may put utility workers in
danger by maintaining an energized line; (3) the distributed
resources in the island may be damaged when the island is
out-of-phase reconnected to the EPS; and (4) islanding may
harm the system’s distributed resources [2].

The most popular islanding detection techniques can be
categorized using remote and local tactics. Complete inter-
action between the DGs and the utility grid control centre is
required for global or remote approaches. Local techniques
can also be divided into three types, such as passive, active
and hybrid techniques, and artificial intelligence (AI)-based.
Passive methods measured the parameters including volt-
age, frequency, active power, reactive power phase angle,
impedance and harmonic distortion to detect the island con-
dition. Active method varies the reactive power to help
destabilize the island and accelerate the dissolving of the
system to extinguish the island. Same as the hybrid model
works based onmonitoring the voltage unbalance and chang-
ing frequency set point of the DG. AI-based approaches are
more effective than thesemodels because it takes a number of
inputs to provide an effective outcome. Thesemethods exam-
ine the network parameters at the point of common coupling
(PCC), which connects the DG site to the utility network,
including voltage, current, frequency and harmonic distor-
tion, in order to find instances of islanding [3]. The signal is
measured and analysed at the terminal of distributed energy
resources (DER) or PCC in the active type when a small
disturbance has been injected into the electrical networks.
The injected disturbance, however, significantly affects the
network parameters when islanding occurs [4]. To precisely
define the islanding condition, several methods have been
devised. The most cost-efficient and efficient method is to
combine a passive methodology with artificial intelligence
[5], because it has been successfully used to accurately
monitor electricity systems online [6]. Some methods devel-
oped for detecting island conditions were hybrid islanding
detection mechanism (IDM) [7], power conversion system
(PCS) [8], long short-termmemory (LSTM) [6, 9], local syn-
chrophasor measurements [10] and direct current microgrid
(DC-MG) [11]. However, in case of specific type of non-
islanding event such as triple-line fault on adjacent feeder,
these methods do not give satisfactory results. Also, there
are many less performance, high cost and reliability issues.
Hence, it is necessary to develop a more efficient signal
processing method for islanding detection and classification
[12].

The idea of promptly disconnecting all DGs is no longer
applicable given the recent advancement of new technolo-
gies in order to prevent equipment damage and reduce safety
threats [13]. The technological challenges in ensuring the
secure and efficient operation of islanded events are the speed

governor response, operational power range, voltage and fre-
quency regulation, earthing or a similar type of protection
for the operation of the island, and resynchronization to the
grid [14]. Voltage and frequency control problems tend to
be the most common of these technical problems, and load
shedding is thought to be the most successful solution [15].
To restore the voltage and frequency of an islanded system
to their nominal values, a load shedding technique must be
utilized to reject a number of loads [16]. Researchers have
proposed various types of load shedding strategies, with the
most practical one being optimal load scheduling employing
computational techniques, like adaptive neuro-fuzzy infer-
ence system [17], artificial neural network (ANN) [18], fuzzy
logic control [19], particle swarm optimization and genetic
algorithm [20]. Those models have the ability to learn by
themselves and produce the output that is not limited to the
input provided to them. But some of the drawbacks are less
reliable, high cost and less performance. So anovel intelligent
island detection and load scheduling system is developed to
detect the islanding condition and schedule the load at the
island period to fulfil the load requirements. This proposed
model is effective to operate, reduces consumer cost and has
high reliability and performance. The main contribution of
the proposed model was discussed as follows:

• An intelligent detection system is designed to identify
the island/fault condition in an IEEE 30-bus system. In
the occurrence of an islanding circumstance, move to a
priority-based optimal load shedding model.

• A standard IEEE 30-bus system is designed, in that G1
is assumed as utility grid, and the remaining generator is
assumed as a renewable energy resource.

• A real-time dataset is designed which contains the power
value of each generator bus during normal and various
fault/islanding conditions.

• A novel island detection controller is designed based on
the generated dataset to detect the system’s condition like
normal or fault/island.

• In island conditions, power shortage occurs; to overcome
these issues, priority-based load scheduling model is done
by using Aquila optimization (AO).

• Generating power, load demand and islanding power are
initialized to shed the load during the particular fault
period. The best shed is identified bymaximizing theVSM
and remaining load, which is taken as the objective func-
tion of the AO.

The remaining part of the manuscript is structured as the
related work of the suggested model is presented in Sect. 2.
The general design and procedure of the suggested method
are discussed in Sect. 3. The performance validation of the
suggested model is given in Sect. 4. Section 5 provides the
work’s overall conclusions.
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2 Related work

One of the biggest challenges faced by today’s power system
is the quick and precise identification of islanding and load
scheduling. Numerous models were designed to detect the
islanding condition and load scheduling in a microgrid. A
few of them are discussed below.

2.1 Islanding detection

In this section, only the islanding detection models are
reviewed. Islanding conditions are caused due to external dis-
turbance. It is necessary to detect the island condition because
the effect of the islanding condition is more dangerous for
utility workers. Some of the islanding detection models are
discussed as follows.

Elshrief et al. [21] presented a phenomenon as fast and
accurately as possible using the technique of rate of change
of power based on the terminal voltage of the photovoltaic
inverter. This detection method is based on the real power
imbalance, which causes transients in an islanded system.
When that happens, the system’s frequency drifts up or down,
making the system’s frequency deviate from its nominal
value according to IEEE and IEC standards. This model
employed a technique based on the PV inverter to quickly
and accurately detect the occurrence. However, there is a
lack of an appropriate origination to use a hybrid technique
that incorporates local and smart techniques such as adaptive
fuzzy.

Abdelsalam et al. [22] developed a model for identify-
ing islanding conditions in an MG. This method consisted
of two parts, the first of which involved extracting some fea-
tures from the voltage and current signals and then analysing
them to determine the second harmonic using the discrete
Fourier transform (DFT). Different case studies are con-
ducted in order to verify the performance of the proposed
methodology in detecting the occurrence of islanding and in
distinguishing between islanding events and non-islanding
events But LSTMs were over prone to overfitting, and apply-
ing the dropout algorithm to curb this issue was difficult.

Karimi et al. [23] developed a method utilizing local syn-
chro phasor measurements as a passive islanding forecasting
method inMG,making use of the voltage and current phasors
that were recorded at the DG connection point. This method
involved using microphasor measuring equipment to keep
track of the voltage-to-current ratio and the rate at which the
voltage and currentmagnitudes changed at the PCC. The pro-
posed method has 99.8% accuracy, 99.89% security, 98.11%
reliability, zero non-detection zone and detection time of
49 ms. The simulation demonstrated that the scheme was
reliable, quick, accurate and easy to use for inverter-based
DGs. Compared to the hybrid technique, the passive tech-
nique was not much good.

Dutta et al. [24] suggested an island detection method was
developed, which used both the software and hardware mod-
ules of microphasor measurement unit (µPMU). Themethod
involves detecting the voltage signals of specified solar gen-
erator buses using a PMU and then using spectral kurtosis
(SK) to extract hidden signal information needed to feed a
random forest (RF) classifier for distinguishing inability and
island situations from other cases. The results were also com-
municated to other solar generator (SG) in the region through
communication channels. The method was poor to perform
at continuous fault periods.

Ali et al. [25] developed a simple Internet of Things
(IoT)-based protocol that was used to convey the voltage
and frequency of each DG through an edge device (ED).
Context-aware policy (CAP) was put into place in ED to
enhance traffic flow across a communication network (CN)
by comparing the current and prior data values. A cloud-
based machine learning (ML) model for ANN islanding
detection was developed in the third layer. Data generated
through islanding mode was used to train the model. A cen-
tralized cloud-based real-time islanding detection scheme
was applied usingANNby sending PMUdata through an IoT
network. The cloud received PMU data for island prediction.
However, the model designing was much more complex and
high cost.

Ramachandradurai et al. [26] suggested a modified pas-
sive islanding detection strategy that coordinates the V–F
(voltage–frequency) index was developed to reduce the non-
detection zones (NDZs). The power mismatch was alleviated
in the identified islands by installing a battery and a diesel
generator, which prevented islanding events. The method
uses here is a passive method in which an islanded bus is
identified in the presence of DG units in a distribution sys-
tem with different ratings.

The above-mentioned related work contains islanding
detection; however, themodels have common drawbacks like
more complex and high cost [22], poor to perform at continu-
ous fault periods [21], notmuch good to process [24] and lack
of an appropriate origination [23]. An advanced technique is
created to address these problems, enhancing the system’s
high reliability and low cost for load scheduling and island
detection.

2.2 Load scheduling

In a microgrid, load scheduling is crucial for lowering costs
and managing consumer power flows depending on prior-
ity. Traditional load scheduling methods relied on numerical
analysis, but with recent technological advancements, arti-
ficial intelligence has been frequently applied. Some of the
related work for scheduling the load is discussed below.

Alhelou [27] developed an effective priority-based load
shedding strategy for an AC/DC microgrid (MG) using
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micro-PMU data. In this study, a priority-based load is devel-
oped. The location and intensity of load shedding are deter-
mined using a flow tracing technique for power-consuming
AC/DC microgrids. By considering the importance of the
loads on the islanded in substantial network outages, amicro-
grid can use this strategy to ensure the power for important
loads. However, the model’s performance is not very good.
Rauf, et al. [28] developed a priority-based paradigm toman-
age and run rural DC-MGs. The supervisory control and data
acquisition (SCADA) system has been integrated to evalu-
ate the priority-based algorithms in a laboratory setting. The
approach focuses primarily on creating a suitable method for
supplying dependable power to the rural areas of emerging
nations.However, this system requiresmore time to complete
a process.

Hassan et al. [29] presented a load shedding (LS) tech-
nique based on priority demands (PDs) considering the wind
power generation. This strategy allows us to prioritize the
loads based on their importance and apply logarithmic RM
while considering the penetration and the wind power. The
simulation findings revealed decreased demands while pro-
viding energy to the crucial loads that were kept operating.
The system’s dependability and efficiencywere increased via
selected LS for the essential loads. However, the system’s
dependability is low. Mogaka et al. [30] presented priority
indices for loads linked to the various buses are determined
using the Fast Voltage Stability Index. The amount of load
that must be shed is then assessed using the artificial bee
colony (ABC) algorithm to ensure that the linked loads and
power generated within an island microgrid are balanced.
However, it is difficult to forecast the load demand at the
fault period.

Awad et al. [31] suggested operating the under-frequency
load shedding (UFLS) relays as efficiently as possible, pro-
viding a reliable multi-objective hybrid optimization algo-
rithm that combines PSO and BF (HPSBF) method. The
convergence rate and the superiority of the identified solution
are two benefits that the optimizer incorporates from particle
swarm (PSO) and bacterial foraging (BF). The IEEE 9-bus
and IEEE 39-bus standard systems are used to examine the
acceptability and feasibility of the HPSBF under various dis-
turbances, such as a single plant failure, simultaneous outages
of several plants and a significant increase in linked loads.
However, the model’s performance is inadequate.

Sarasúa et al. [32] suggested an alternative control strate-
gies in one of the Canary Islands (El Hierro Island) in terms
of reducing the need of load shedding activation. These con-
trol strategies are the variable speed wind turbines inertial
contribution to frequency regulation and the use of Pelton
turbines as synchronous condensers. The participation of
variable speed pumps in the frequency regulation, control
strategy recently adopted in El Hierro power system, has
been included in the analysis. Xu et al. [33] developed a

phase measurement unit (PMU)-based online load shedding
strategy and a conservation voltage reduction (CVR)-based
multi-period restoration strategy that are proposed for the
intentional island with renewable distributed generation.
When the blackout occurs, the correction table updated in
real time based on the PMU data is used to modify the load
shedding plan to eliminate the powermismatch caused by the
fluctuation of renewable distributed generation.However, the
estimation performance in the transient process is poor since
PMU relies on the static signal model, which may result in a
wrong load shedding.

The above-mentioned related work contains islanding
detection and priority-based load scheduling alone.However,
the models have common drawbacks like difficulty in oper-
ating, less reliability [30], high cost [31], time consumption
[31], planning and load scheduling problems [27] and cannot
provide a sufficient outcome [28]. An advanced technique is
created to address these problems, enhancing the system’s
high reliability and low cost for load scheduling and island
detection.

3 Proposedmethodology for islanding
detection and load scheduling

Due to the growing use of DGs, the MG is one of the
energy supply technologies that have attracted much atten-
tion. The control, operating, safety and protection tactics
used in grid-connected mode and island mode would dif-
fer. Thus, it is crucial to put in place a reliable system to
detect accidental islanding conditions in MGs. Once the
islanding mode has been detected, the load, which is chal-
lenging to manage, is required to meet the load demand.
In the proposed model, two phases are introduced to man-
age the power quality in a system. In phase 1, an intelligent
controller is designed to detect whether the system is in
islandingmode or normal condition in a standard bus system.
Island mode includes short-circuit faults, namely triple-line-
to-ground fault (LLLG), double-line-to-ground fault (LLG),
load switching, capacitance switching and line-to-ground
fault (LG). If the system is normal, there is no need for any
scheduling process. If the system is in islandingmode, it can-
not handle the full load demand. Therefore, a cutting-edge
optimization technique is created to control load shedding
during the appropriate island period. Figure 1 shows a pro-
cess of the suggested model’s overall architecture.

The suggested model’s architecture consists of two
phases, including load scheduling during islanding condi-
tions and the identification of island mode. The first step of
the IEEE 30-bus system model studies island detection or
grid linked mode. The suggested model comprises six gen-
erators, twenty-one loads and 41 transmission lines. Sensors
measure the voltage and current parameters. The recurrent
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Fig. 1 Architecture of proposed model

neural network (RNN) controller provides the voltage and
currents. Multiple datasets can be handled by RNNs, which
accept current and historical input data. Due to their inter-
nal memory, RNNs can also be trained using historical
input. RNN can check the proposed network whether it is
island or normal. Island mode includes short-circuit faults,
namely triple-line-to-ground fault (LLLG), load switching,
double-line-to-ground fault (LLG), capacitance switching
and line-to-ground fault (LG). If the islanding condition is
detected, proceed with the load scheduling process, or the
normal condition occurs power supply continues to the grid.
According to the priority of the load, load shedding is car-
ried out. Three categories, such as critical, semi-vital and
non-vital, are used to group the loads. First to be shed will
be the non-vital load, then the semi-vital and finally the crit-
ical load. To increase efficiency during the islanding period,
an optimum load shedding approach employs the Aquila
optimization (AO) algorithm. In load shedding, initialize the
generation, bus data and load data, and then, analyse hourly
load demand and generation of the standard bus system.
Based on the generation at islanding condition, an optimal
load curtailment is done and maintaining constant VSM to
shed the load based on its priority. The proposedmodel sheds
the load at six islanding conditions and continuously main-
tains the VSM.

3.1 Modelling of the standard bus system

Microgrid is considered for the IEEE 30-bus system in the
proposed model. The network considered in this work is a
simplified approximation of the American Electric Power
system using the IEEE 30-bus test case. Six generator buses,
twenty-one load buses and forty-one transmission linesmake
up the IEEE 30-bus system. In this proposed model, G1 is
assumed as the utility grid remaining generators are assumed
as DG and RES.

3.1.1 Modelling of the utility grid

The connection between various levels of voltage is accom-
plished through a transmission line and all of the transform-
ers. Thevenin equivalent circuit data with (Z � R + j X)

impedance is used to build the grid system.

Putility � �V /I (1)

where I represent current and �V denotes potential dif-
ference. A realistic method to combine scattered energy
resources, increase the reliability of the power supply and
reduce operating expenses is provided by the IEEE 30-bus
system. Both grid-connected and islanding modes of opera-
tion are available for the bus system. In islanding mode, the
utility load disconnects the network, whereas grid connecter
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mode links utility grids to satisfy load demand. Voltage and
current are sensed by using sensors concerning time in island
mode or normal power flow to detect whether the system is
in normal or islanded condition [34]. If the island is detected,
it must shed the load to manage the power flows.

3.2 Modelling of intelligent mode detection
controller

A neural network is a collection of interconnected layers
replicating the human brain’s organization and function. It
learns from vast amounts of data while employing intricate
algorithms to train a neural network. RNN functions under
the assumption that each layer’s output is saved and fed back
into the input to predict that layer’s output. The nodes in
the different neural network layers are compressed to form a
single layer of recurrent neural networks. RNN can manage
sequential data, accepting both the data being entered at the
present and earlier inputs. RNNs have internal memories that
allow them to remember prior inputs. The neural network’s
input layer gathers and analyses the data before sending it to
the intermediate layer. The intermediate layer might contain
a number of hidden layers, each with its own bias, weights
and activation mechanisms.

In the suggested model, recurrent neural networks can be
utilized to create a neural network without memory in which
the various hidden layer parameters are independent of one
another. To guarantee that the parameters for each hidden
layer are the same, the RNN will standardize the various
activation functions, weights and biases. Then, rather than
using several hidden layers, it will create a single hidden
layer and loop over it repeatedly. The suggested model, RNN
island detection controller architecture, is illustrated in Fig. 2.

The proposed modelling consists of an IEEE 30-bus sys-
tem. Each bus has a separate voltage and current sensed by
a sensor to generate a dataset. This dataset is given an input
of RNN. yt and xt are the output and input variable step t .

Based on input xt and the preceding hidden state st−1, the
RNNhidden state st is determined.At step t , theRNN’s input
and output variables are xt and yt , respectively.

st � f
((
Uxt + b

)
+Wst−1

)
(2)

ot � V st + c (3)

yt � g(o)t (4)

where f � tanh denotes the memory of RNN, st is the
hidden layer at stept , g represents the sigmoid activation
function of the output layer and the hidden layer, W is the
weight matrix between the hidden layer and hidden layer,U
is the weight matrix between the input layer and hidden layer
and V is the weight matrix between the hidden layer and out-
put layer;U , V andW are not changed in the different steps.
The hidden state is a temporary factor ot that determines the
parameters b and c, which are bias vectors.

3.3 Backpropagation algorithm for RNN training

Backpropagation through time, or BPTT, is a recurrent neu-
ral network methodology that applies the backpropagation
training method to sequence data like a time series. Each
time step, one input is presented to a recurrent neural net-
work, which then forecasts the output. Conceptually, BPTT
operates by unrolling each input time step. The gradient of
the b, V ,W , U and c parameters is calculated using the back-
propagation over time method. A backpropagation training
approach for RNNs, or BPTT, trains these networks using
sequence data, such as time series.

L �
τ∑

t�1

(
1

2
(
�
y
t

j − ytj )
2
)

(5)

where L represents the time sequences cost function, accord-
ing to Eq. (5) the sub-costs at each time step add to the final

cost. Themeasured value is
�
y
t

j and the anticipated value is y
t
j ,

respectively. The definition of the step t hidden state gradient
is,

δt � ∂L

∂st
(6)

where sub-cost at each subsequent time step t + 1 and δt

depends on both the sub-cost at the current step t . Therefore,
t is connected to the hidden layer state st+1 and the output
temporary variable ot
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δt � ∂lt

∂ot
∂ot

∂st
+

∂lt+1

∂st+1
∂st+1

∂st

� V T
(

�
y
t − yt

)
g′(ot ) +WT δt+1diag

(
1 −

(
st+1

)2)

(7)

where diag(.) stands for converting a vector into a diagonal
matrix. But there is no more hidden state afterwards step τ ,
and the δt is expressed as

δτ � ∂L

∂oτ

∂oτ

∂sτ
� V T

(
�
y
t − yt

)
g′(ot) (8)

BP is utilized to gradually regulate the gradient of the
network parameters at stept . The gradient of the following
variables b,c,V , W and U can be represented using the fol-
lowing formula,

∂L

∂c
�

τ∑
t�1

(
�
y
t − yt

)
g′(ot ) (9)

∂L

∂V
�

τ∑
t�1

∂Lt

∂ot
∂ot

∂V
�

τ∑
t�1

(
�
y
t − yt

)
g′(ot)(st )T (10)

∂L

∂b
�

τ∑
t�1

∂L

∂st
∂st

∂b
�

τ∑
t�1

diag(1 − (st )2)δt (11)

∂L

∂W
�

τ∑
t�1

∂L

∂st
∂st

∂W
�

τ∑
t�1

diag(1 − (st )2)δt (st−1)
T

(12)

∂L

∂U
�

τ∑
t�1

∂L

∂st
∂st

∂U
�

τ∑
t�1

diag(1 − (st )2)δt (xt )T (13)

The final gradients of the network parameters are explic-
itly formed by the sum of the sub-gradients at each time
step. Equations (9), (10), (11), (12) and (13) provide a sim-
ple to determine the gradients of the network parameters. As
a result, the following is the modified rule for these parame-
ters,

bn+1 � bn − η
∂L

∂b
(14)

cn+1 � cn − η
∂L

∂c
(15)

V n+1 � V n − η
∂L

∂v
(16)

Wn+1 � Wn − η
∂L

∂w
(17)

Un+1 � Un − η
∂L

∂u
(18)

where η represents the number of times the BPTT iter-
ation occurred and is the RNN’s learning rate. The cost
function’s partial derivatives with respect to the disturbance
of b, c, V, W and U can be found using Eqs. (14)–(18).
Based on the RNN detection, the next level of the process
is decided. That is, if the RNN detects the system condition
is in grid-connected mode, there are no changes for power
flowing; on the other hand, if the RNN detects the system
is in island mode, which includes short-circuit faults such
as triple-line-to-ground fault (LLLG), double-line-to-ground
fault (LLG), load switching, line-to-ground fault (LG) and
capacitance switching, the load must be scheduled for man-
aging load demand.Due to scheduling, the consumer receives
the required amount of power without any fluctuation or
power cuts. The load shedding model of the islanding mode
is discussed in the following section.

3.3.1 Load shedding

The most promising demand-side management strategy is
load shedding, in which consumers move load from peak
to off-peak hours in order to reduce grid power peak and
economic loss. In island conditions, occurs leads to load
unbalancing. To minimize load unbalancing issues using,
load shedding is one of the best ways. This system is made to
determine the island’s power imbalance, choose the minimal
load to shed and make sure that as many loads as possi-
ble are still connected to the system [35]. A vital part of
load shedding is load control and management. The primary
goals of load shedding in an island situation are maintaining
VSM, supplying electricity to associated loads and minimiz-
ing losses.

Design of optimum load shedding The islanded system’s
ideal load shedding is designed to improve the VSM profile.
However, it is also essential to consider the following limits
while optimizing.

Problem formulation The VSM and voltage profile are
intended to be improved by the islanded system’s optimal
load shedding. However, when optimizing, the following
constraints should be taken into account. It is modelled after
a typical distribution system’s radial feeder, and branch I is
linked to buses k and m. Branch I loading index (L i) can be
defined as follows by considering the size and angle of bus
voltages.

L i �
(
2
Vm
Vk

cosδkm
2)

(19)

where Vk represents the voltage at bus k, Vm represents the
voltage at the bus and δkm represents the angle between buses
m and k.
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Voltage stability margin The best load shedding strategy
uses VSM as an indicator to determine how close the system
is to voltage breakdown. The maximum load level for a par-
ticular segment is approximated by the Li index, which is
shown in Eq. (19). All feeder branches loading indices have
been presumed to be the result of VSM that is expressed
below,

V SMsys �
∏
iε	

Li (20)

where ′	 denotes the feeder branch set. As a result, the total
V SM system made up of numerous feeders can be assessed
as,

V SMsys � (
V SM1, V SM2, V SM3, ....., V SMk

)
(21)

where k denotes the number of feeders. To lower the load on
feeders and raise V SMsys to a suitable level, some loads in
the system should be reduced. Using a suitable optimization
algorithm, the optimal amount of load that should be removed
from the system can be found.

Power flow balance As stated in the following equation, the
overall power generated at optimization was equalized to the
overall power used.

∑
Pgi − ∑

Pdi − ∑
Ploss � 0∑

Qgi − ∑
Qdi − ∑

Qloss � 0
(22)

where active and reactive powers produced by the system
are denoted by Pgi and Qgi , respectively, whereas active and
reactive powers absorbed by the load are denoted by Pdi and
Qdi . The reactive and active power losses in a system are
denoted by the variables Ploss and Qloss, respectively.

Voltage stability in bus To overcome the system’s voltage
unstable issues, at each bus i voltage should be kept within
its normal voltage Vi, which is indicated as [Vi−min, Vi−max],
where Vi−min is the i th bus voltage that is allowed to be as low
as possible and Vi−max is the highest voltage that is allowed
to be as high as possible. The inequality function can be used
to express these limits as

Vi−min ≤ Vi ≤ Vi−max (23)

3.3.2 Constraints

The following constraints, such as power flow limit, load
shed limits and power generator limits, satisfactorily address
the projected optimization equality and inequality constraints
issue.

VSM limit The V SMsys must be maintained at a specified
level in order to maintain the voltage profile within the nom-
inal value. The following is a representation of the V SMsys

limit,

0 ≤ V SMsys ≤ 1

Consequently, the V SMsys can be expressed as,

V SMsys ≤ 1 (24)

Power flow limit The maximum thermal limit Sl−max shall
not be exceeded in a steady-state operation, while the appar-
ent power Sl is interconnected by branch l.

Sl ≤ Sl−max (25)

Load shed limit The maximum load that can be reduced
inside the system is determined by the load priority limit.
The absolute minimum load must be maintained for each
load to be kept on a priority list. At all times, the ideal load
sheddingplan shouldbe implemented. Prior to load shedding,
bus i was carrying Sl, and the priority load limit is Spriority.
The potential value for a balanced load demand is Sl−i . The
inequality function allows us to express the constraints as
follows:

Spriority ≤ Sl−i ≤ Sl (26)

Power generator limit To offer the required power for an
islanded mode during load shedding, the generator power
Pgen must be kept at its highest level.

Pgen � Pmax (27)

The Aquila optimization is utilized to identify an ideal
load shedding strategy at an islanded distribution system. The
optimizer identifies the best values after satisfying the con-
straints and objective functions. The overview of the Aquila
optimization (AO) algorithm is stated as follows.

3.3.3 Background of AO

Aquila is the most popular birds globally because its hunt-
ing courage is more effective. Male Aquila searches lonely,
so grabs more prey. Aquila hunts squirrel, rabbits and other
animals using their sharpness and velocity. Aquila has also
been pointed out as intimidating to full-grown deer. The next
important animal in Aquila’s food is a squirrel. Aquila fol-
lows four processes with different distinct are used that are
expressed below,
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• The first hunting process is high fly with an upright stoop
used for flight birds’ hunting. Once Aquila finds prey,
it enters with long, low-angle gliding wings—increasing
wings. Aquila needs the elevation feature to hunt its suc-
cessful prey. To act like thunder, the tail and wings are
opened shortly before the engagement, and the legs are
pushed forward to catch prey.

• The second technique, contour flight by way of a brief
glide attack, is thought to be Aquila’s most frequently
used method. In this technique, the Aquila rises from land
at a low level. Hunting for prey involves being cautious,
whether the animal is flying or running. For hunting and
breeding grouse, ground squirrels or seabirds, this strategy
is ideal.

• The third plundering process is the lower plane, which
strikes slowly downwards. The Aquila selects its prey and
presses against its neck andback in an attempt to enter. This
technique is frequently used for low prey species such as
hedgehogs, foxes, rattlesnakes, turtles and any animal that
lacks an escape reaction.

• The fourth method involves Aquila travelling on the sur-
face and attempting to spasm its prey, to remove young
big prey animals from the exposure area by using this
approach.

By using this optimization, the best optimal load shed is
done at the corresponding island model. The following steps
define how to implement the proposed optimal load shedding
scheme:

3.4 Aquila optimizer-based load shedding

3.4.1 Step 1: initialization

AO is a multi-centre system; the level of evaluation begins
with the inhabitants of Aquila’s outputs (X) randomly gener-
ated between the lower band (LB) and the upper band (UB)
of the given issues. In the proposed method, the parameter
line data, load and generator data with its LB and UB are
initialized.

(28)

Xi j � rand × (
UB j − LB j

)
+ LB j , i

� 1, 2, . . . . . . , N j � 1, 2, 2 . . . ., Dim

where rand represents a random number, LB j denotes jth
lower bound and UB j signifies jth the upper bound of the
problem.

3.5 Step 2: fitness function

The fitness function is considered important for finding the
best optimal solution in optimization. The fitness value of

the proposed method is taken as voltage stability margin and
remaining load power (not fulfil load power).

f � max
(
V SMsys + Premainingload

)
(29)

where V SMsys is the overall system VSM, Premainingload is
the total remaining load and f is the fitness function.

3.6 Step 3: updation

Each solution modifies its placements in accordance with
the optimal result produced by the AO’s optimization tech-
niques. It is offered to highlight the balance between theAO’s
search tactics (i.e. expanded exploration, narrowed explo-
ration, expanded exploitation and narrowed exploitation).
The general formof updating the solution is stated inEq. (30).

XM (t) � 1

N

N∑
i�1

Xi (t), ∀ j � 1, 2, . . . .Dim (30)

where Dim indicates the dimensional area of issues and N
represents the integer of the inhabitant area.

3.7 Step 4: termination

The process is repeated until the best value of the parameter
is obtained, and the procedure ends when the best solution is
found.

Figure 3 shows the proposed optimal load shedding
approach provides a well perform at the island period. It shed
the load based on the priority limit, and curtailment was done
to remove the remaining load. During optimal shedding, the
power flow was maintained and the voltage stability margin
was kept within a limit. The performance evaluation of the
proposed islanding detection and optimal shedding period
was stated as follows.

4 Result and discussion

In this section, the intelligent controller-based islanding
detection and optimal load shedding model is designed and
observed in its performance. In the proposedwork, one of the
phases describes the analyses of 6 types of island detection or
grid-connected mode of the IEEE 30-bus system model. The
parameters of current and voltage are sensed by sensors. The
parameters are given to an advanced neural network. RNN
can check the proposed network whether it is island or nor-
mal. If an islanding condition is detected, then proceed the
process of load scheduling or normal condition occurs power
supply continues to the grid and fulfils the power requirement
in consumers. MATLAB 2021a/Simulink on an Intel Core i5
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Fig. 3 Proposed load shedding model flowchart

processor, Windows × 64-bit and 8 GB of RAM is used to
execute and evaluate the optimal load shedding strategy. The
G1 is first assumed to be a utility grid while designing the
initial IEEE 30-bus architecture. An intelligent controller is
designed to detect whether the system is normal or island-
ing. After detecting the islanding, the load is shed based on
the generation at an individual period. During the shedding
period, the voltage stability of all buses are maintained con-
stantly. The proposed model’s working process consists of
two operations phases that are observed values are discussed
in the following sections.

4.1 Phase 1: island detection

The hybrid islanding detection method that is being pre-
sented purposely introduces an unstable condition into the
system that only appears in islanding conditions and is a

Table 2 Amount of samples for testing and training

Period Number of samples

Testing 2800

Training 11,200

means to identify this instabilitywhen islandingoccurs.Real-
time dataset was created tomake a detection controller which
senses the PCC power and detects the condition of a system.
The dataset creation was discussed as follows.

4.1.1 Dataset creation

The IEEE 30-bus system consists of 6 generators, 21 load
buses and 41 transmission lines. Generator G1 connected to
the utility grid, G2, G3,G4,G5 andG6 are considered renew-
able energy resources and constant power DG. There are six
types of short-circuit faults that can occur in a system, includ-
ing double- and triple-line-to-ground faults, line-to-ground
faults, load switching and capacitance switching to collect the
power data from the generator buses, as shown in Table 1. It
demonstrates 14,000 samples are collected from the designed
model; in each condition, 2000 samples are labelled to train
the detection controller. This dataset is given to the RNN
input to train based on the trained value the intelligent mode
detection controller detects the system condition. The train-
ing and testing data samples are shown in Table 2. It shows
the 11,200 samples for training data and 2800 samples for
testing data around the 14,000 samples.

The proposedmodel effectively predicts the system condi-
tions like island mode or normal mode. Once the islanding is
detected, move on to optimal priority-based load scheduling,
or normal condition occurs continuity to the power supply to
the consumer. This method is more effective as compared to
existing methods. The proposed model simulation parame-
ters and existing methods parameters are evaluated, which is
given in Table 3.

Basedon the above-mentioned ranges, the proposeddetec-
tion controller was created to detect the exact stage of a

Table 1 Data samples and labels
for classifier System Event Type Target Sampling data

Without fault condition Normal 1 2000

Double-line-to-ground fault Line fault 2 2000

Line-to-ground fault 3 2000

Three-phase-to-ground fault 4 2000

Capacitor switching Overvoltage fault 5 2000

Load switching 6 2000

Grid-disconnected mode Islanding 7 2000
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Table 3 Simulation parameter of the detection model

Method Parameter Ranges

RNN Mini batch size 2

Hidden layer 10

Maximum epochs 1

DNN Learning 0.001

Activation function ReLU

Optimizer Adam

ANN Hidden layer 6

system. During the normal condition, the waveform of each
bus is constant because there is no more fault happened in
the system. The waveforms of normal and islanding modes
are observed and sketched in Figs. 4 and 5.

The experimental setup of a three-phase generator in nor-
mal conditions is shown in Fig. 4. Figure 4 illustrates the
generator’s continuity of operations. Figure 4a demonstrates
the generator 1 power flow analysis. Figure 4a clearly shows
the continuous power flow in 0 to 0.32 W in generator 1.
Figure 4b illustrates the generator 2 power flow analysis.
Figure 4b clearly shows the continuous power flow from −
0.07 to 0.26W. Figure 4c demonstrates the generator 3 power
flow analysis. Figure 4c shows the continuous power flow

Fig. 4 Analysis of power flow in normal condition: a G1, b G2, c G3, d G4, e G5, f G6
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Fig. 5 Analysis of power flow in normal condition: a G1, b G2, c G3, d G4, e G5

from −0.01 to 0.061 W. Figure 4d demonstrates the gener-
ator 4 power flow analysis. Figure 4d shows the continuous
power flow from −0.06 to 0.21 W. Figure 4e illustrates the
generator 5 power flow analysis. Figure 4e clearly shows
the continuous power flow from −0.06 to 0.26 W. Figure 4f
demonstrates the generator 6 power flow analysis. Figure 4f
shows the continuous power flow from 0 to 0.018 W.

Island condition In this mode, the grid is disconnected from
the bus system due to a fault arise. During this period, the
voltage of each bus collapsed, so the load power was varied,

thus causing severe causes at the end users. The waveform
of five generator buses in this period is observed and plotted
in Fig. 5.

Figure 5 depicts the experimental three-phase generator
arrangement for an island location. The generator’s opera-
tions are interrupted in the figure. Figure 5a demonstrates
the generator 1 power flow analysis. Figure 5a clearly shows
the power flow variation from -0.08 to 0.4W in generator
1. Figure 5b illustrates the generator 2 power flow analy-
sis. Figure 5b shows the power flow variation from −0.051
to 0.016 W. Figure 5(c) demonstrates the generator 3 power
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Fig. 6 Analysis of confusion
matrix in the island state

flow analysis. Figure 5c shows the power flow variation from
−0.06 to 0.2W. Figure 5d demonstrates the generator 4 power
flow analysis. Figure 5d shows the power flow variation from
−0.06 to 0.29 W. Figure 5e illustrates the generator 5 power
flow analysis. Figure 5e shows the power flow variation from
0 to 0.022 W. The created controller analyses these power
variations to detect the system’s condition.

Confusionmatrix Amachine learning model’s performance
on a set of test data is summarized in a matrix called a confu-
sion matrix. It is frequently used to gauge the effectiveness
of categorical label prediction models, which seek to predict
a categorical label for each input event. The matrix shows
the quantity of true negatives (TN), true positives (TP), false
negatives (FN) and false positives (FP) that the model on the
test data produced.

Figure 6 shows the analysis of the confusion matrix in the
island state. The created dataset was split into two groups
for training and testing to detect the condition of bus system.
As shown in Fig. 6, the actual class values for the first, sec-
ond, third, fourth, fifth, sixth and seventh classes are 69,535,
29,151, 8208, 18,897, 68,850, 4952 and 19,844, respectively,
and 574 samples are wrong predicted. This confusion matrix
was used to evaluate the controller’s performance and con-
trast it with some other recent approaches.

4.1.2 Comparative analysis

The suggested model contrasts with other existing
approaches to validate the performance. The existing
approaches are considered as deep neural networks (DNN)
and artificial neural networks (ANN). The comparison was
held on the accuracy, F1 score, error, kappa, precision,
specificity and sensitivity. Figures 7 and 8 demonstrate the
comparison of suggested and traditional model performance.

The system that predicts a value with the least degree of
error is said to be accurate. Figure 7a illustrates the accu-
racy of the suggested and current methods. The proposed
method has a 99% accuracy rate compared to DNN 97% and
ANN’s 92%. The error value of the suggested and present
methods are then compared. The degree of errors or issues
in a system is known as its error level. The system oper-
ates worse when the error is high and better when the error
is low. The comparison of errors between the suggested and
present methods is shown in Fig. 7b. The suggested approach
has a 1% error rate, compared to 3% for DNNs and 9% for
ANNs. The value of the F1 score for the suggested and exist-
ing methodologies is then examined. The binary kinds of the
system and the degree of dataset accuracy are revealed by a
statistical analysis of the F1 score. Figure 7c compares the
projected and actual F1 scores. The F1 score value for the
proposed technique is 99%, DNN is 97%, and ANN is 69%.
Figure 7d shows the kappa comparison between the proposed
and existing techniques. The consistency of numerous vari-
ables at various rates is measured by kappa. The suggested
model kappa value is 99%, DNN is 90%, and ANN is 68%.

The precision comparison between the suggested and
present models is shown in Fig. 8a. Accurate measurement is
sometimes defined as the number of positive events that can
be reliably predicted. The accuracy of the proposed model
is 99%, which is higher than the accuracy of other modern
approaches like DNN and ANN, which have accuracy values
of 97% and 69%, respectively. Figure 8b compares the sen-
sitivity of suggested and existing techniques. The proportion
between what is actually positive and how exactly a posi-
tive is acknowledged. The proposed method’s sensitivity is
99%, DNN’s is 97%, and ANN’s is 70%. The level of speci-
ficity of the suggested and existing procedures is compared
in Fig. 8c. The specificity of a model refers to how accu-
rately it can predict the actual negatives for each conceivable
kind. Compared to two existing techniques, DNN and ANN,
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Fig. 7 Analysis of suggested and present approaches: a accuracy,
b error, c F1 score, d kappa

with equal specificity values of 99% and 98%, the proposed
method’s specificity value was 99%.

Then the proposed model performance metrics are
compared to some other current approaches like SVM,

Fig. 8 Analysis of suggested and present approaches: a precision,b sen-
sitivity, c specificity

multi-feature-based SVM, pure backpropagation (BP) and
improved LSTM. The comparison was held on the accuracy,
precision and F1 score as shown in Table 4.

A comparison of the suggested method’s performance
with the results of the currently used methods is given in
Table 4 [36]. The capacity of a model to predict a value with
the least degree of error is measured by its accuracy. The
proposed approach has an accuracy rate of 99%, which is
higher than SVM, which has 65%, multi-feature + SVM has
63%, pure BP has 93%, and improved LSTM has 98%. Pre-
cision is a term used to describe precise measurement and is
defined as the total number of real actions that may be accu-
rately predicted. Precision is a term used to describe exact
measurement and is defined as the total number of positive
events that may be accurately predicted.
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Table 4 Comparative analysis of suggested and present approaches

Method Accuracy (%) Precision (%) F1 score
(%)

SVM 65 2 15

Multi-feature +
SVM

63 2 17

Pure BP 93 96 85

Improved LSTM 98 1 96

Proposed 99 99 99

In comparison with other current approaches, such as
SVM, multi-feature + SVM and pure BP, improved LSTM
with corresponding precision values of 2%, 2%, 96%and1%,
the suggested method’s precision value was discovered to be
99%.An analysis of the F1 score’s statistical data exposes the
binary kinds of the system and the degree of dataset accuracy.
Table 4 displays a comparison of the planned and current F1
scores. The F1 score value for the proposed technique is 99%,
SVM is 15%, multi-feature + SVM is 17%, pure BP is 85%,
and improved LSTM is 69%. Compared to existing methods,
the proposed method effectively predicts the island state.

4.2 Analysis of non-detection zone and detection
time

This section of the investigation further assesses the sug-
gested RNN-based algorithm’s effectiveness for each unique
scenario involving generated power from DG and distribu-
tion network voltage range (UN). The voltage and generated
power are restricted to the lowest and highest permit levels in
the generated power and the voltage in the distribution net-
work. For voltage levels ranging from −10% UN to + 10%
UN and 0% to 110% installed for generated power, the step is
specified as 1% and 5%, respectively. The nominal distribu-
tion network voltage (Un) and the total installed capacity of
DG correspond to these values. For those, a total of 17 events
divided into three groups are simulated. The categories that
follow are,

1. Islanding state with the least amount of power imbalance
2. Grid-connected mode with minimum power exchange
3. Grid-connected mode with capacitor switching at mini-

mum power exchange

The above-mentioned cases are utilize to analyse the sys-
tem’s non-detection zone performance. The performance
metrics of proposed RNN model is presented in Table 5. It
shows the proposed model provide an effective performance
at this non-detection zone period.

Table 5 Performance metrics of proposed model at non-detection zone

Metrics Values

Accuracy 0.98

Precision 0.99

Sensitivity 099

Specificity 0.97

FPR 0.14

F1 score 0.99

Fig. 9 Convergence graph of AO

If the island is detected, the load must be scheduled to
manage the power flows with low cost. The load scheduling
model is discussed in the following section.

4.3 Phase 2: load shedding

When an island condition is present, the loads become unbal-
anced. One of the best ways to reduce load unbalancing
difficulties is to use load shedding. The voltage stability of all
buses remains constant during the shedding time. The follow-
ing sections discuss the observed values from the proposed
phase 2 model working process.

4.3.1 Convergence graph of AO

Figure 9 illustrates the proposed model convergence graph.
In this graph, fitness functions consider as voltage stability
margin. The voltage stability margin on a tie line is the differ-
ence between the limit and the actual power transmission. To
maintain voltage stability constant to help to prevenient sys-
tem blackouts. The AO curve constantly maintains in fitness
function 1 in 1st iteration.

The most promising demand-side management strategy
is load shedding, in which consumers move demand from
peak to off-peak times to reduce grid power peak and elec-
tricity bill costs. When an island condition exists, the loads
become unbalanced. One of the greatest ways to reduce load
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Fig. 10 Individual load profile analysis per day

unbalancing difficulties is to use priority-based load shed-
ding. Making a load schedule might help you estimate how
much power is needed for an installation. One of the most
important parts of load scheduling is load control and man-
agement.

The study on the optimum load shedding strategy is clearly
illustrated in Fig. 10. According to the type and time of day,
different DG power injections are made into the four DG
units, which are thought of in this study as constant power
sources. The several categories of DGs and their maximum
active power ratings are displayed in Table 5. As part of the
load shedding study, each individual load profile is displayed
in Fig. 10. According to a base case bus power value derived
from the original IEEE 30-bus technology, 100% of the load
is active at 16.00 period.

A detailed summary of the proposed load shedding plan’s
performance in grid-disconnected mode (island mode) is
illustrated in Fig. 11. Figure 11a illustrates how the amount
of load left over after optimization is comparable to the quan-
tity of power generated throughout the hourly operation. This
result demonstrates that the recommended optimal load shed-
ding technique based on the AO can determine the proper
amount of load to shed without removing the excessive load
from the system. After optimization, the difference between
power generation and load demand constitutes the system’s
power loss, as shown in Fig. 11a. While DG1 and DG3 pro-
vide the system with support from their PV generators, there
is barely any power loss.

On the other hand,when PVDGs are not in use, power loss
is greater in the evening and early morning. Figure 11b illus-
trates that the suggested load shedding technique results in a
load profile that is higher than the load priority limitations.
The proposed AO-based load shedding technique, therefore,
seems to be able to meet the load priority limit requirement.

According to the type and time of day, different DG power
injections are performed into the five DG units, regarded
as continuous power sources in this study. Table 5 shows
the different types of DGs and their maximum active power

Fig. 11 Analysis of optimal load shedding at island condition

Table 6 DG maximum power rating

Generator Type Maximum power rating (MW)

1 PV1 0.265

2 Wind 0.0625

3 PV2 0.21

4 DG1 0.26

5 DG2 0.3

ratings. The PV1 rating is 0.265 MW, the wind turbine rat-
ing is 0.0625 MW, the PV2 rating is 0.21 MW, the DG1
rating is 0.26 MW and DG2 rating is 0.3 MW. During nor-
mal conditions, the power sources are delivered maximum
as mentioned in Table 5; in island condition, the power of
each bus is reduced to the maximum power. The required
parameter settings for the optimization strategies employed
in this investigation are listed in Table 6.

The statistical results for fitness value and VSM are pro-
vided in the correct sequence in Table 7. The best load
shedding results for power islands were achieved by AOwith
a stable fitness. According to Table 7, the proposed model’s
fitness values are 2.02, and a 37% VSM reduction was used
for the load curtailment. This discovery shows that the sug-
gested AO-based optimal load shedding strategy can select
the ideal load to shed without considerably decreasing the
system load.
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Table 7 AO parameter ranges

Parameter AO

β 1.5

A 0.1

� 0.1

	 0.005

Then the proposed optimal shedding scheme was vali-
dated under various generating conditions. The generation
is reduced to 320 MW and analysed the shedding perfor-
mance. The proposed model provides 16.8 MW shedding
and 8.5 MW losses during this period. Same as the genera-
tionwas changed to 300MW, 315MWand 290MW. In these
instances, the load shed is 36.2 MW, 21.6 MW and 46 MW,
respectively. Table 8 shows the load shed under various gen-
eration conditions.

The proposed optimal shedding model provides a better
outcome to secure the bus system. It offers low losses and
satisfies the load as per the generation. Once the island is
detected, the proposed shedding scheme sheds the load based
on the generation. Then proposedRNNmodel detection zone
is compared to some other traditional approaches like hybrid
with fuzzy and hybrid technique. The non-detection zonewas
a loading condition for which an islanding detection method
would fail to operate in a timely manner (Table 9).

The comparative analysis demonstrates the proposed
model detects the fault at a few milliseconds (ms) than the
traditional approaches, because the existing models are inac-
curate data and inputs, and imprecise nature of logic. As
compared to this approaches, the proposed model detect
all fault without fails. The proposed model detects the
fault/islanding condition to shed the load based on the pri-
ority to overcome the non-detection zone issues using RNN
controller and AO (Table 10).

5 Conclusion

The systemwas secured during the island time using a unique
islanding detection and load shedding approach. When there
is no longer access to the external electrical grid, a DG keeps
an area powered, a circumstance known as islanding. In the

Table 9 Load shed under various generation conditions

Power generation (MW) Amount of load shed (MW) Losses
(MW)

320 16.8 8.5

300 36.2 7.8

315 21.6 8.2

290 46 7.6

proposed work, an IEEE 30-bus system with parameters for
voltage and current sensed by sensors is designed. Seven
types of faults were applied individually in the system to
make real-time data and used to train the intelligent detec-
tion controller, which can distinguish between the island and
normal mode. Move on load scheduling if island mode is
detected; else, keep supplying power to the grid to meet con-
sumer demand. The optimum load sheddingmethod involves
analysing the generation and distributing the load according
to priority. The multi-objective optimization problem was
solved using the AO by maximizing the remaining load bus
powers and retaining the VSM in all buses. Therefore, the
islanding detection method can be combined with the best
load shedding technique in a real power distribution system
with DGs. The bus, load and generation data were initial-
ized to shed the load with its priority range. The proposed
method has been tested in both islanding (grid-disconnected)
and grid-connected modes. The suggested approach enables
effective energy flow control to lower costs for both modes.
The suggested method for detecting islanding is equally suc-
cessful as more modern methods like ANN and DNN. The
proposed model offers 99% accuracy at detection perfor-
mance and also offers 37% load curtailmentwith 0.988VSM.
The proposed model was well fit for all atmospheric condi-
tions and in any system. The impacts that face in proposed
model was that it cannot process very long sequences if using
tanh or ReLU as an activation function. So in future work, an
advance island detection approach will be designed to iden-
tify various fault conditions and shedding the load at all fault
period using intelligent shedding scheme at huge sequence
data.

Table 8 Performance of AO in
terms of fitness and VSM at 1 h Condition

no
Fitness VSM Load

curtailment
(%)Before

optimization
After
optimization

Before
optimization

After
optimization

7 – 2.02 1.0335 0.9888 37%

123



3644 Electrical Engineering (2024) 106:3627–3645

Table 10 Comparison of island
detection time (ms) [37] Faults Proposed RNN Hybrid with fuzzy Hybrid technique

Generation < load 0.0053 0.0092 0.0121

Generation � load 0.0234 0.0652 –

Generation > load 0.0086 – 0.0171

Single-phase fault 0.00657 – 0.0082

Double-phase fault 0.0053 – 0.0077
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