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Abstract
In this paper, a novel order reduction technique is suggested for constructing an accurate and less complex reduced order
controller of a higher order system model. This reduction strategy is based on a mixed integrated Routh and differential
approach that can produce the reduced-order model with the same stability properties as the real system. In this procedure, a
simplified Automatic Voltage Regulator (AVR) plant’s reduced transfer function (RTF) is created by reducing the numerator
and denominator using amixedRouth-differential technique. A controller for the large-order system is subsequently developed
using the calculated lower-order model. The higher order AVR system’s PID controller is developed using the lower-order
model of the original system. Different case studies are used to study both the original higher order and the newly designed
lower order AVR systems with and without the reduced controller. With the use of step responses, various error indices, time-
domain responses, and sinusoidal input, the models’ performances for each of the case studies are assessed. Additionally, the
proposed reduced order model and developed controller’s efficacy and accuracy are contrasted with those of other existing
methods.

Keywords Differential-Routh technique (DR) · Order-reduction · Automatic-voltage-regulator (AVR) · Controller · Stability
study

Abbreviations

TF Transfer function
MOR Model order reduction
AVR Automatic voltage regulator
DR Differential-Routh technique (proposed method)
M(s) Reference model TF
M̃(s) Open loop specified model transfer function
G(s) Transfer function of higher order model
Gc(s) Higher order controller TF
R(s) Transfer function of lower order model
Rc(s) Lower order controller TF
Rcl(s) Lower order controller TF with unity feedback
PID Proportional integral derivative
Kp Gain proportional controller

B Rumrum Banerjee
rumrum07@gmail.com

1 Department of Electrical Engineering, Dr. Sudhir Chandra Sur
Institute of Technology and Sports Complex, Kolkata, India

2 Department of Applied Physics, Electrical Engineering
Section, University of Calcutta, Kolkata, India

KI Gain integral controller
KD Gain derivative, controller
SISO Single input single output
KA 10
TA 0.1
KE 1
TE 0.5
KF 2.0
TF 0.04S
K 250
T ι
2 1

T ι
1 45S

T5 1
T4 58.4
T3 13,645
T2 270,962.5
T1 274,875
k 137,499
H 3
KG 0
ω0 377
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1 Introduction

The exact analysis of large-order system is actually very com-
plex and tedious. The reduction of any higher order system is
basically making the analysis, synthesis along with simula-
tion much easier for any real system. Model order reduction
[MOR] theory plays an important role in case of mathemat-
ical modeling of a physical system, such as for designing
various power system components like AVR or power stabi-
lizers etc. The basic guidelines are that working with original
mathematical model of any physical system, which have
higher order system controller, compensators, or analysis of
stability is difficult and the total scenario becomes simple
and easier if anyone deal with reduce model of the original
system. Bendjeghaba [1] proposed a reductionmethodwhich
is based on optimization technique of the actual system and
its lower order model. But this method has a disadvantage
that the higher system is stable but the obtained reduced
order model may not be stable. For overcoming the chal-
lenge associated with stability problem and Ahmed in their
paper [2], Chen [3], Choudhary [4] also implement different
methods based on optimization and stability criteria. Some
othermethods have been illustrated byShamash [5] andChen
[6] describes about stability equation method, Gutman et al.
[7] for reduction of model order which always confirms the
stability of the reduced system without proposing any sta-
bility criteria. Later on, some combined techniques are also
involved in the field of reduction such as denomination reduc-
tion by stability criteria is proposed by Shamesh [7], Chen
et al. [8], Wan [9] and numerator is lowered by other tech-
niques [7–9]. The Routh stability method initially developed
by Shamesh describes the limitation that the dominant poles
are unable to preserve stability for non-minimum-phase-
system [10]. In later stage, it is shown that the reduction
method by using stability equations is also inapplicable for
non-minimum phase systems [11, 12].

In this context, moment matching algorithm is a popular
approach described in [11]. Routh approximation becomes
one of themost popularmethods in terms ofMOR [12, 13]. In
comparison with other reduction procedures, Routh approx-
imation is featured with simplicity in terms of computation,
prosperity of access and the potential to hold the stability of
original model. To overwhelm the above-mentioned limita-
tions, numerous collective techniques are projected based on
these methods [14–19]. The Routh approximation is much
authenticated method but still it fails to maintain stabil-
ity sometimes, in particular, for working with large order

systems. Differential technique [20] is mathematically very
simple and computationally very easy to develop the reduced
model. The stability problem associated with differential
technique can be overcome by using Pole clustering tech-
niques [21]. For pole-clustering technique the order can be
reduced up to third-order or more and second-order model
not possible to develop and this limitation can be overcome
by using modified pole clustering techniques [22]. Another
method of model order reduction is developed with factor
division algorithm and Eigen values of system matrix [23].
The drawback of this technique is that the obtained reduced
model sometimes became unstable. Later on, balance trun-
cation and Markov parameters-based algorithms are also
successfully implemented in themodel reduction theory [24].
The kind of limitation associated with truncation technique
is such as its unsteadiness for large model with order higher
than three.

In recent days’ research, various optimization techniques
are beingused [25]. Popular optimization techniques increase
the mathematical complexity and also, they have a time
bound factor. During last few decades, numerousmethods for
reduction of model in larger-order systems are designed in
the time domain, such as method of aggregation [26], singu-
lar norms-perturbation [27], Arnoldi [28], Krylov identified
subspace [29, 30], and Hankel norm approximation method
[31]. Classically, these methods suggest good estimate but
these approaches also have some limitations such as gain
difference in steady-state between the actual plant and its
reduced models, sometimes it fails to keep the constancy of
the actual model and error boundaries.

In existing power system, the primary concern of reactive
power generation using an alternator is related to genera-
tor excitation control with the help of AVR. The AVR in
an alternator basically regulates the output terminal voltage
at a certain level. In this context, the damping of output
terminal voltage following instabilities is of highly alarm-
ing because it can really affect the safety of the whole
power system. The alternator excitation system is in direc-
tive to preserve alternator voltage and to control the flow
of reactive power using AVR. Hence, with the develop-
ment in the design of reduced order controller for AVRs
as well as the growing difficulty of huge interconnected
power system, fluctuations may endure for a prolonged
period and uncertainty may arise subsequent system distur-
bances [32]. The authors in [9, 16] have highlighted that AVR
model design and further its reduced model developed with
improvedmodel-order-reduction [MOR] technique in simple
way using optimization techniques.

The first objective of this paper is to design the reduce
order model using proposed technique and other objective of
this research paper is to design an algorithm for controller
for the large AVR system using its proposed stable reduced
order model. In literature there are various controller design
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available based on Routh & Mihailov criteria, Balanced
truncation method reduction approaches [12, 33]. But these
methods have limitations such as rising simulation time or
storage memory requirements more. These limitations may
overcome by using several mixed techniques balanced state
representation,modified pole clustering, Pade approximation
[34–36], Ibrahim Kaya [37] paper describes the application
of reduce order model technique and controller design in
domain of power system. Sikandara and Prasad [40] paper
involves differentiation-based khartinov theorem application
and optimization techniques for reduction and Gupta [33]
uses hybrid approach for developing reduced models. Pro-
posed technique involves large computational complexity
and also time consuming due to large iteration process of
optimization.

The features of this work are as follows: (i) a unique
method with derivation of a generalized formula by com-
bining Differential and Routh techniques is developed for
reduction of a higher order system to a lower order sys-
tem; (ii) the developed method is computationally simple,
less time-consuming compare to other approximation tech-
niques; (iii) the proposed method reduces the steady-state
error of the reduced model in comparison with other existing
ones; (iv) the combined method enhances the stability of the
reduced model. (v) The proposed method is applied to an
AVR system for its functionality checking and performance
evaluation is made by comparing with other existing meth-
ods. The uniqueness of the work is that a combined order
reduction scheme is devised such that the higher order sys-
tem is reduced to second-order one and requires only two
variables to evaluate online.

2 Brief overview of order reduction
techniques

2.1 Requirement of order reduction
from generalized higher order models

A generalized transfer function model of a typical higher
order systemwithmth andnthorder of numerator anddenom-
inator, respectively, is represented by Eq. (1) as

G(s) � a1 + a2s + a3s2 + · · · + amsm

b1 + b2s + b3s2 + · · · + bnsn
(1)

where the behavior of the system depends on the values of
each of the coefficients a1, a2… am and b1, b2,…, bn and the
m and n values are large enough for higher order complex
system. In general, these coefficients need not always remain
constant with respect to time, accordingly processing all of
these large coefficients and designing their values for inter-
acting different scenarios of changing input to produce the

desired output is a very tedious and computationally inten-
sive job, and all these require a high-end processor. Thus,
as an alternative, different model order reduction techniques
are proposed so that the system can be realized, maintained
and processed in an efficient and less computational way.

2.2 Brief description of different reduced order
techniques

2.2.1 Differential approach

The differential approach is first introduced by Gutman
[7]. The procedure is based on reduction of the order of
polynomials of numerator and denominator with help of dif-
ferentiation. The numerator and denominator polynomials of
any higher order system is differentiated consecutively until
the transfer function in terms of its coefficients for the desired
reduced order model is produced.

2.2.2 Routh array technique

The Routh stability criterion is the foundation of the Routh
array (RA) approach. This method of lowering the model
order of a high order system depends only on the array,
expressed in the following format, starting with the coef-
ficients of the provided polynomial.

a1 + a2s + a3s
2 + · · · + ams

m (2)

The Routh matrices for the polynomials that make up the
numerator and denominator of Eq. (2) are formed as per gen-
eral Routh table formation.

In Routh table odd coefficients are made up the first, third,
fifth, etc. rows, while even coefficients aremadewith the sec-
ond, fourth, sixth, etc. rows. The first two rows are produced
using the provided transfer function, and the other rows are
calculated using the provided equation [21]

Ci j � Ci −2, j+2−
(
Ci−2, 1x Ci−1, j+1

)

Ci+1, 1
For i ≥ m (3)

2.2.3 Pole clustering technique

Higher-order systems are divided into two distinct clusters
using a combination of actual poles and imaginary poles
in pole clustering approaches. A new cluster centre is then
established with the aid of some numerical operations, and
a new reduced order model of a third-order system is cre-
ated while maintaining the original system characteristics.
The details of splitting of polynomials into clusters and their
reduction schemes are elaborated in [28].
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2.2.4 Optimization techniques

Particle swarm optimization (PSO), Big-bang algorithm,
Genetic algorithm, simulated annealing approach etc. var-
ious optimization techniques are adopted for model order
reduction approach. Using different optimization technique
approximates the coefficients of reduced model to provide
stable response. But optimization techniques rely on large
number of iterations which makes the analysis of reduction
techniques complex and more over time consuming. Though
optimization techniques are latest observations still it is not
popular in case of reduction technique due its overburdening
system feature.

2.3 Derivation of reduced order model using
proposed differential-Routh technique

The advantages of both differential approach andRouth array
technique are extracted and are utilized in this proposed tech-
nique. Differential method is simplest technique in the field
of MOR, but this method also suffers from serious limitation
of steady-state error. Routh approximation offers stability of
MOR. But this method becomes complicated for nonlinear
systems and for very large systems. The proposed technique
combines the advantages of both methods having less com-
plexity. By virtue, differential technique has the capability
to reduce the order of the system from high to lower and
Routh technique can improve system stability. The proper-
ties of both these techniques are extracted in this proposed
work where initial steps are associated with differential tech-
nique to reduce computational complexity while later steps
utilizes Routh technique to move the system more stable one
without steady state error.

Let us consider a system having transfer function G(s) of
same order as described in Eq. (1). The proposed method is
applicable to systems having order of numerator (n) greater
than four (minimum one step of differentiation and One step
Routh for getting stable reduced model for stable reduced
order) than that of its denominator. In order to realize the
proposed Differential-Routh (DR) method, the following
equations are derived and described in stepwise manner.

Rearranging the denominator polynomials of G(s) of
Eq. (1) in reciprocate form, Eq. (2) can be derived as

D(s) � bn + bn−1s
n−n+1 · · · + b3s

n−2 + b2s
n−1 + b1s

n

D(s) � b1 + b2s
2 + b3s

3 + · · · + bns
n

(4)

Differentiating the reciprocated denominator 2 times,
Eqs. (5) and (6) are obtained

(5)

D1(s) � 0 + bn−1(1)s
0 · · · + b3(n − 2)sn−3

+ b2(n − 1)sn−2 + b1(n)s
n−1

(6)

D2(s) � 0 + 0 · · · + b3(n − 2)(n − 3)sn−4

+ b2(n − 1)(n − 2)sn−3 + b1n(n − 1)sn−2

Simplifying Eqs. (4)–(6) the generalized equation to get
the denominator polynomial upto 4th order is derived as –

(7)

D′(n − 4)(s) � b1n! s0

(n − 4)!
+
b2(n − 1)! s1

(n − 5)!
+
b3(n − 2)! s2

(n − 6)!

+
b4(n − 3)! s3

(n − 7)!
+ · · · + bn−4(3)! sn−4

1!

Further rearranging Eq. (6) in normalization form, it can
be re-written as

(8)

D(n − 4)(s) � 0 +
bn−4(3)! s

1!
+ · · · + b3(n − 2)! sn−6

(n − 6)!

+
b2(n − 1)! sn−5

(n − 5)!
+
b1n! sn−4

(n − 4)!

Rearranging the denominator of Eq. (8) and applying
Routh-array technique, Routh table having second-order
denominator is formed as represented in Table 1 format.

The first, third, fifth, etc. rows consist of odd coefficients
while the second, fourth, sixth, etc. rows are with even coef-
ficients. The coefficients of first two rows are generated from
Eq. (8) and remaining rows are calculated using row 1 and 2:

Ci j � Ci −2, j+2−
(
Ci−2, 1x Ci−1, j+1

)

Ci+1, 1
For i

≥ 3 and i ≤
[
(n − 1 + 3)

2

]

In a very similar manner, the numerator polynomial is
reduced to represent in the form of Eq. (8) as

N ′(m − 4)(s) � b1m! s0

(m − 4)!
+
b2(m − 1)! s1

(m − 5)!
+
b3(m − 2)! s2

(m − 6)!

+
b4(m − 3)! s3

(m − 7)!
+ · · · + bn−4(3)! sm−4

1!
(9)

Thus, the reduced transfer function of the system is rep-
resented as follows:

R(S) � c0 + c1s

d0 + d1s + d2s2
(10)

where the coefficients c0, c1 and d0, d1, d2 are obtained
from Routh table for numerator and denominator part in the
conventional way, respectively. Thus, a larger order system,
represented by Eq. (1), is reduced to a lower order model as
represented by Eq. (10) using differential-Routh method.
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Table 1 Routh-array for
denominator Row no Coefficients

1 bn−4(3)!
1! … b3(n−2)!

(n−6)! … b1n!s0

(n−4)!

2 b4(n−3)!
(n−7)!

b2(n−1)!
(n−5)! ….

3 … … … .

The performance of the derived lower order model is to
be checked now with various stability analysis methods. The
errors are to be estimated and to be compared with other
existing reduction techniques in order to prove its efficacy.

2.3.1 Case study 1

If the numerator of a transfer function in a control system has
only a constant term (i.e., no s-term, where s is the Laplace
variable), it indicates that the transfer function has a DC gain
or steady-state gain. In this case, the transfer function can be
represented as:

Numerator : k and Denominator : (s + a)(s + b)(s + c)

· · · (s + n),

Where ′k′ is the constant gain and

(s + a)(s + b)(s + c) (s + n)

represents the poles of the system.

If the numerator of the transfer function only contains a
constant term, the reduced numerator polynomial using the
differentiation method will be zero. This is because the dif-
ferentiation of a constant results in zero, and setting s to zero
in the resulting polynomial yields the steady-state response
of zero. So, it is another limitation of differential method of
reduction.

2.3.2 Case study 2

If a row in the Routh-Hurwitz array becomes all zeros, it indi-
cates that there are roots of the characteristic equation with
real parts equal to or larger than zero. In control system anal-
ysis, this situation could imply that the system is marginally
stable or unstable. When working with reduced-order mod-
eling in control systems, the intention is to capture dominant
behavior of the system ignoring less significant dynamics.

Here’s a general process to determine a reduced-order
model when a row in the Routh-Hurwitz array becomes all
zeros:

Identify the problematic pole: the row of zeros in the Routh-
Hurwitz array corresponds to a pole of the system’s transfer
function that has a real part equal to zero or greater. This pole
is a cause of instability or marginal stability.

Remove the dominant unstable/marginal mode: the unstable
or marginally stable mode is generally the dominant mode
causing the instability. If you’re looking to create a reduced-
order model, you can neglect this mode and consider the rest
of the modes.
Formulate the reduced-order transfer function: the reduced-
order transfer function will include all poles except the
dominant unstable/marginal mode. This can be done by fac-
toring out the problematic pole from the original transfer
function.
Create the reduced-order state-space model (if needed):
if you’re working with state-space representations, you’ll
need to derive the reduced-order state-space model from
the reduced-order transfer function. This involves finding a
state-space realization that corresponds to the reduced-order
transfer function. Remember that the reduced-order model
might not capture all aspects of the original system’s behav-
ior, especially if the neglected poles contribute significantly
in certain operating conditions or frequency ranges. It’s a
trade-off between model complexity and accuracy.

Finally, always consider the context of your specific
control system and its requirements when determining a
reduced-order model. In some cases, it might be better
to address the instability directly rather than relying on a
reduced-order approximation.

3 MOR applied to automatic voltage
regulator (AVR) of an alternator

3.1 Generalized schematic of an automatic voltage
regulator (AVR)

The role of AVR in synchronous generator is fundamentally
to regulate the voltagemagnitude of a synchronous generator
at a specific level. The schematic diagram of AVR system is
shown in Fig. 1.

The terminal voltage of an alternator varies in proportion
with the change in reactive-power and is sensed using poten-
tial transformer (PT).ThePToutput is rectified and compared
with reference voltage to generate error in voltage. This error
is then processed and fed to the excitation controller of the
AVR system. The generation of reactive-power is controlled
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Fig. 1 Schematic diagram of automatic voltage regulator system of an alternator

to a new equilibrium by changing the output voltage of the
alternator to the desired value.

3.2 Derivation of transfer function for AVRmodel

For developing the generalmodel ofAVR,major components
like amplifier, exciter, generator and sensor etc. are used,
as shown in Fig. 2. For simplicity, considering four basic
components of the AVR system like (i) amplifier, (ii) exciter,
(iii) generator, (iv) sensor, the transfer functionmodel ofAVR
is represented as.

Considering stabilizer part, the closed-loop transfer func-
tion became-
Vt (s)

Vref (s)

� KAKE KGKRKF (1 + sTR )(1 + sTF )

[(1 + sTA)(1 + sTE )(1 + sTG )(1 + sTR)(1 + sTF ) + KAKE KGKRKF ]

(11)

It is seen for many cases that small amplifier gain is not
satisfactory and for increasing the relative stability, a zero is
needed to be added to the AVR open loop TF. With proper
adjustment of KF and TF, a satisfactory response can be
obtained.

The developed model is of 5th order which is as given
below:
Vt (s)

Vref (s)

� KAKE KGKRKF (1 + sTR )(1 + sTF )

[(1 + sTA)(1 + sTE )(1 + sTG )(1 + sTR)(1 + sTF ) + KAKE KGKRKF ]

Let us consider, K � KAKEKGKRKF

Vt (s)

Vref (s)
� K (1 + sTR)(1 + sTF )

[(1 + sTA)(1 + sTE )(1 + sTG )(1 + sTR)(1 + sTF ) + K ]

N (s) � k T ι
2s

2 + k T ι
1s + k,

GAV R � k T ι
2s

2 + k T ι
1s + k

T5s5 + T4s4 + T3s3 + T2s2 + T1s + (k + 1)

Considering the given values of a practical AVR [1]:

KA � 10, TA � 0.1, KE � 1, TE � 0.5,

KF � 2.0, TF � 0.04s, K � 250, T ι
2 � 1,

T ι
1 � 45s, T5 � 1, T4 � 58.4, T3 � 13645,

T2 � 270962.5, T1 � 274875, k � 137499,

H � 3, KG � 0, ω0 � 377, KR � 1 and TR � 0.0

GAVR � �Vt (s)

�Vref(s)

� 250(s2 + 45s + 500)

s5+58.5s4 + 13,645s3+270, 962.5s2 + 274,875s + 137,500

(12)

Equation (12) represents the 5th order model of AVR sys-
tem on which the proposed MOR is to be applied for its
performance testing.

3.3 Error analysis

The effectiveness and accuracy of the developed algorithm
are studied by applying it to AVR model. For screening
the practicability and usefulness of the newly developed
algorithmwith someprevailing algorithms, numerous perfor-
mance errors are calculated. The low-order models designed
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Fig. 2 Block diagram of AVR

by the proposed MOR algorithms and other techniques are
compared in terms of various performance error indices such
as relative integral square error (RISE), integral absolute
error (IAE), integral square error (ISE), and integral time-
weighted absolute error (ITAE).

In this evaluation, a variety of performance error indices
were employed to quantitatively measure the discrepancies
between the low-order models generated by the proposed
Model Order Reduction (MOR) algorithm and those derived
from other established techniques. These error indices
encompassed the following key metrics:

Relative integral square error (RISE): this index quantifies
the cumulative squared differences between the actual sys-
tem responses and the desired responses, normalized to the
integral of the squared desired responses. It provides insight
into the overall system performance over time.
Integral absolute error (IAE): IAE computes the integral
of the absolute differences between the actual and desired
responses. It offers a measure of the cumulative error mag-
nitude over the entire response duration.
Integral square error (ISE): similar to IAE, ISE calculates the
integral of the squared differences between actual and desired
responses. It emphasizes larger errors more prominently due
to the squaring operation.
Integral time-weighted absolute error (ITAE): ITAE com-
bines the error magnitude with a time weighting factor,
reflecting the idea that errors occurring earlier in the response
have a greater impact on system performance. This index is
particularly sensitive to early-time errors.

By employing these performance error indices, the
researchers were able to comprehensively evaluate the per-
formance of the proposed algorithm in comparison with

existing algorithms. This allowed for a detailed under-
standing of the strengths and weaknesses of the developed
approach across different aspects of system behavior.

In conclusion, the study involved assessing the effec-
tiveness and accuracy of a newly developed algorithm for
model order reduction by applying it to an AVR model.
The researchers systematically compared the performance of
low-order models generated by their algorithm with models
obtained from other techniques, using various performance
error indices. This comprehensive analysis provided valuable
insights into the practicality and utility of the proposed algo-
rithm within the context of AVR control and beyond. Here,
with help of MATLAB simulation process various errors has
been calculated.

The performance error indices are described in [9, 16, 32,
33] as:

ISE �
∞∫

0

[
g(t) − gr (t)

] 2 dt (13)

RISE �

∞∫

0

[
g(t) − gr (t)

]2 dt

∞∫

0

̂[g(t)]
2

(14)

IAE �
∞∫

0

∣∣g(t) − gr (t)
∣∣2 dt (15)

ITAE �
∞∫

0

t
∣∣g(t) − gr (t)

∣∣ dt (16)

where g(t) and gr(t) are the unit step responses of the orig-
inal AVR and the abated system, respectively. In addition,
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Fig. 3 Approaches for controller design

̂g(t) is the impulse response of the original AVR. The min-
imum values of the performance error indices of a reduced
AVR system indicate that the lower order AVR system is
improved approximant to the original AVRmodel and equiv-
alent reduction-method is a better method compared to other
existing methods.

3.4 Controller design for AVR

One of the important objectives of order reduction is to
design the controller withMORwhich has actually to control
the original larger order system so that the overall mathe-
matical calculations and computational burden are reduced.
Automatic voltage regulators (AVRs) are primarily used to
address unstable power system conditions. AVR is essen-
tial for electrical equipment, particular high-technology item
with stringent voltage requirements and imported precision
electrical equipment. This has led to the development ofmore
sophisticated and high-tech voltage regulators to meet the
demand for various types of precision equipment.

3.4.1 Controller schematic for AVR system

From Fig. 3, it can be clearly understood that for designing
a controller for AVR system can be approached two ways-
firstly with using original higher order system which will
develop higher order controller and secondly with reduce
order AVR system reduce order controller can be developed.
Here, the problem is to design a controller Gc(S) for AVR
system, G(S) for getting desired voltage output such that the
closed-loop response with unity feedback is stable and has
desired quick response.

In Fig. 4a shows closed-loop higher-order system with
higher order controller. Figure 4b shows reduced order
system including reduce order controller in closed-loop for-
mation. Figure 4c shows reference model which close loop
model can approximate the original response of the system.
Figure 4 describes that reduce order controller design with
help of reference model M(s).

Fig. 4 Closed-loop configuration with reference model

3.4.2 General algorithm for controller-design

Step1: Reference model M(S) constructed on the base of
requirements whose close loop system principally approxi-
mate to that of the original response of close loop.

M(s) � a0 + a1s + · · · + amsm

b0 + b1s + · · · + bnsn
(17)

Step 2: Determine an equivalent open loop specific model

M̃(s) � M(s)

1 − M(s)
(18)

Step 3: Specification of the structure of the controller:

Gc(s) � p0 + p1s + · · · .... + pksk

q0 + q1s + · · · + qlsl
(19)

Step 4: For defining the unidentified control parameters,
the characteristics of closed-loop system is match with that
reference:

Gc(s)G(s) � M̃(s)

Gc(s) � M̃(s)

G(s)
� α

�
i�0

ei s
i

(20)

where ei is basically the power series coefficients at s �
0. Now, the controller parameters pi and qi are evaluated
by comparing the equation in well-known mathematical
approach, i.e., pade [41] sense.

Step 5: Comparing equation step 4 the desired controller
parameter can be obtained.
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Step 6: The transfer function of the closed-loop system
can be obtained as-

Gcl (s) � Gc(s)G(s)

1 + Gc(s)G(s)
(21)

Step 7: Using the reduced model of AVR by repeating
steps 4 and 5 the closed-loop transfer function for reduced
model can be determined as follows-

Rcl (s) � Rc(s)R(s)

1 + Rc(s)R(s)
(22)

Equation (22) represents the controller for the reduced
plant.

Example of controller parameter calculations The transfer
function of the full order model of AVR [1]:

GAVR � �Vt (s)

�Vref (s)

� 250(s2 + 45s + 500)

s5 + 58.5s4 + 13645s3 + 270962.5s2 + 274875s + 137500
.

and that with the proposed DRmethod can be represented
as:

RAVR � 0.01777 s + 0.4873

s2 + 1.043s + 0.536
(23)

Now, for this 2nd order model the reference model has
been chosen using damping ratio ζ and natural frequency
(ωn) (as it gives the approximately similar response of the
original system)

M(s) � 0.536

s2 + 0.7123s + 0.536
(24)

Now open loop transfer function of the reduced model
using reference model obtained as-

M̃(s) � 0.536s2 + 0.3818s + 0.2873

s4 + 1.425s3 + 1.043s2 + 0.3818s
(25)

The controller structure is given by:

Rc(s) � M̃(s)

R(s)

� 0.536s4 + 0.9408s3 + 0.9728s2 + 0.5043s + 0.154

0.01955s5 + 0.564s4 + 0.7841s3 + 0.5668s2 + 0.2047s

� 1

s
(0.7523 + 0.8897s + 1.24s2 − 1.668s3 − · · ·) (26)

Now, consider the generalized structure of PID controller:

Rc(s) � kp +
ki
s
+ kDs (27)

Comparing Eqs. (26) and (27) we get:

kp � 0.8897
ki � 0.7523
kD � 1.24

, Rc(s) � 0.8897 + 0.7523
s + 1.24s

The closed-loop transfer function of Reduced AVR with
controller obtained as:

Rcl (s) � 0.02388s6+0.6968s5+1.198s4+1.263s3+0.6739s2+0.2129s

0.9941s6+2.721s5+3.293s4+2.347s3+0.9527s2+0.2129s
(28)

3.4.3 Stability analysis of MOR AVR controller

For understanding the stability of the proposed system, few
stability checkingmethods such as step responses, bodeplots,
response behavior with sinusoidal inputs are utilized. The
stability aspects AVR system are analyzed in time domain
by means of step and sinusoidal response and in frequency
domain by implementing Bode plot of reduced model.

Following Eq. (1), if K > 0 exists and the system G(s) is
stable, then:

‖G u‖ L2 ≤ K‖u‖L2
Regardless of the fact that this is the correct definition for

systems with transfer functions, it is infrequently applied.
Bound output follows from bounded input. When y(t) →
0andu(t) → 0, a system is stable.

4 Experimental result

4.1 Case studies with reduced AVRmodel

Considering original AVR system where the system param-
eters are expressed as

N (s) � k T ι
2s

2 + k T ι
1s + k, GAVR

� k T ι
2s

2 + k T ι
1s + k

T5s5 + T4s4 + T3s3 + T2s2 + T1s + (k + 1)

Considering the system parameters from literature [1] of
a practical AVR system

KA � 10, TA � 0.1, KE � 1, TE � 0.5,

KF � 2.0, TF � 0.04s, K � 250, T ι
2 � 1,

T ι
1 � 45s, T5 � 1, T4 � 58.4, T3 � 13, 645,

T2 � 270, 962.5, T1 � 274, 875, k � 137, 499,

H � 3, KG � 0, ω0 � 377, KR � 1 and TR � 0.0
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GAVR � �Vt (s)

�Vref (s)

� 250(s2 + 45s + 500)

s5 + 58.5s4 + 13645s3 + 270962.5s2 + 274875s + 137500
(29)

4.1.1 Case 1: reduced order AVR system using DRmethod
without controller

This 5th order system is reduced to a 2nd order sys-
tem where the coefficients are calculated from Routh
table following Eq. (8). In a similar way, numerator is
reduced using differential-Routh technique. After simpli-
fying reduced transfer function by dividing numerator and
denominator coefficients, the 2nd order reduced model thus
takes the form like:

0.01777 s + 0.4873

s2 + 1.043s + 0.536

Here, Fig. 5a shows the step input behaviors of the original
system without controller and proposed reduction technique
along with various existing reduction schemes. Figure 5a
shows the comparison of terminal voltage variation (AVR).
So, it showing the comparison with original system response
with different reduced order techniques along with proposed
method (DR). Referring to Fig. 5a, the reference values
are varied for the regulation. Table 2 describes parameters
obtained from step responses. It has been easily seen from
Fig. 5a and from Tables 2 and 3 that obtained result of error
analysis of different methods indicates that proposed method
is much closer to actual system.

Figure 5b shows the sinusoidal behaviors of original sys-
tem and reduced models while Fig. 5c gives us the exposure
to frequency domain stability obtained analysis using bode
plot along with phase offset adjustment. Table 4 indicates
the phase margin, gain margin, and stability aspects obtained
using bode analysis. As per this first case study, higher order
AVR system is reduced using proposed DRmethod. Further-
more, error analysis is performed to realize the deviation from

original system and its reduced model. From Tables 2 and 3,
comparing the parameters of the original system and reduced
models of different existing techniques along with proposed
method, it is obtained that proposed method showing better
results compare to other existing techniques.

4.1.2 Case 2: reduced controller design for AVR

As it is well known that design of controller for higher order
system is a tedious job, a reduced order controller for AVR
system is developed in this case study. It is very easy to under-
stand that calculating controller parameters became easy, less
time consuming and complexity of mathematics when the
calculations are done using lower order models. The transfer
function of the full order model of AVR-

GAVR � �Vt (s)

�Vref (s)

� 250(s2 + 45s + 500)

s5 + 58.5s4 + 13645s3 + 270962.5s2 + 274875s + 137500

and that with the proposed DR method can be represented
as:

RAVR � 0.01777 s + 0.4873

s2 + 1.043s + 0.536

Using Eq. (28), the closed-loop transfer function of
Reduced AVR with controller is obtained as-

Rcl (s) � 0.02388s6+0.6968s5+1.198s4+1.263s3+0.6739s2+0.2129s

0.9941s6+2.721s5+3.293s4+2.347s3+0.9527s2+0.2129s
.

Considering the same values of PID controller parameter
the original AVR with controller transfer function obtained
as-

Gcl (s) �

281.8s10 + 2.937 × 1004s9 + 4.748 × 1006s8 + 2.61 × 1008s7 + 5.623 × 1009s6 + 4.576 × 1010s5

+7.37 × 1010s4 + 7.372 × 1010s3 + 3.846 × 1010s2 + 1.175 × 1010s

0.8263s12 + 96.68s11 + 2.565 × 1004s10 + 1.796 × 1006s9 + 1.852 × 1008s8 + 6.396 × 1009s7

+7.25 × 1010s6 + 1.72 × 1011s5 + 1.977 × 1011s4 + 1.362 × 1011s3 + 5.408 × 1010s2 + 1.175 × 1010s

.

4.2 Stability analysis with controller

Here, Fig. 6a compares the step response attributes of the
proposed reduction technique with those of the original sys-
tem and many other reduction schemes with controllers.
Figure 6b shows its sinusoidal behaviors and Fig. 6c fre-
quency domain behaviors. All the parameters of PID con-
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Fig. 5 a Step response for change in terminal voltage of an AVR system without controller. b Comparison of sinusoidal input responses of AVR
system and its reduced models. c Bode response of original system with its reduced models with phase offset adjustments

Table 2 Comparisons of different Parameters of Reduced order Model of AVR

System and reduced
models

Reduced transfer
function

Rise
time

Settling
time

Settling
min

Settling
max

Overshoot Peak Peak
Time

AVR system – 2.956 8.092 0.820 0.946 4.134 0.946 6.098

State elimination [37] 0.306
s+0.2266 9.695 17.264 0.833 0.921 0 0.921 46.540

Balanced truncation
[17]

s +22.5
2.378s2+43.76s+22.28

3.658 8.727 1.789 1.914 5.557 1.914 6.448

Logarithmic
pole-clustering and
Markov parameter
[39]

0.07992 s +11.01
s3+21.88s2+30.38s+10.82

4.640 8.120 0.919 1.017 0 1.017 16.583

Pade approximation
[41]

0.01955s + 0.5361
s2+1.056s+0.5362

3.915 8.147 1.136 1.305 4.470 1.305 5.986

Proposed method
(DR)

0.01777 s + 0.4873
s2+1.043s+0.536

2.956 8.088 0.819 0.948 4.122 0.947 6.092
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Table 3 Comparisons of different Error Calculations

Techniques RISE IAE ISE ITSE ITAE

AVR system 0.005 0.3264 0.1499 0.0542 0.1394

State elimination [37] 50.34 50.34 35.79 9.727 9.727

Pade approximation [41] 0.004 0.3874 0.2485 0.0794 0.314

Balanced truncation [17] 0.006 0.633 0.1699 0.2133 0.2166

Logarithmic pole-clustering and Markov parameter [39] 0.004924 0.5588 0.2809 0.0617 0.3732

Proposed method (DR) 0.00499 0.3032 0.143 0.0621 0.1127

Table 4 Comparison of Bode Plot parameters

System and reduced models Reduced transfer function Phase margin Gain margin Stability

AVR system – α 177.2 Yes

State elimination[37] 0.306
s+0.2266 145 α Yes

Balanced truncation[17] s +22.5
2.378s2+43.76s+22.28

α α Yes

Logarithmic pole-clustering and Markov parameter[39] 0.07992 s +11.01
s3+21.88s2+30.38s+10.82

α 77.67 Yes

Pade approximation[41] 0.01955s + 0.5361
s2+1.056s+0.5362

α 81.4 Yes

Proposed method (DR) 0.01777 s + 0.4873
s2+1.043s+0.536

α α Yes

troller have been calculated and shown in Table 5 using the
same technique of controller design as per proposed method.
The parameters derived from time domain analysis are shown
in Table 5.

It is clear from Fig. 6 and from Table 6 that the proposed
method of controller design with combined differential and
Routh approach perform better than existing other method
of literature. From the analysis of Tables 6 and 7 results
of PID controller, it indicates that the obtained results of
the suggested method are significantly more similar to the
actual system and its performance also shown better com-
pare to other existing methods. The sinusoidal behaviors of
the original system and the reduced models are depicted in
Fig. 6b. The frequency domain stability analysis shown in
Fig. 6c. After adding controller with the reduced second-
order model of AVR system has been designed. So, step and
sinusoidal responses obtained from transfer function model
to understand stability in time-domain andBodeplot has been
considered for frequency domain analysis. After comparing
with proposedmethod and other existingmethods it is clearly
seen that proposed technique gives us better performance.

5 Conclusions

The article emphasizes the pivotal role of a controller inmain-
taining stability and desired output in an Automatic Voltage
Regulator (AVR) system. It proposes a novel reduction
scheme that combines enhanced differential approximation
with the Routh array, offering several key advantages. (i) It
ensures stability preservation in higher-order systems, a crit-
ical aspect of system design. (ii)It eliminates the need for
gain adjustment or extensive tuning, simplifying the reduc-
tion process. (iii) It is computationally simple, enhancing
efficiency and practicality. (iv) It addresses steady-state error
problems associated with traditional differential reduction
methods. (v) It simplifies controller development, boosting
computational efficiency in AVR systems. (vi) It is easy to
apply in AVR systems, streamlining calculations without
requiring complex mathematical approaches. (vii) It under-
scores the importance of AVR systems in power technology,
advocating for simpler mathematical models for enhanced
controller design. (viii) It holds potential for wider appli-
cations in multiple-input, multiple-output (MIMO) systems
and hybrid methods, providing a foundation for advanced
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Fig. 6 aComparison of StepResponse closed-loop systemperformance
including reduced model controllers. b Comparison of Sinusoidal
Response of closed-loop system performance including reduced model

controllers. c Comparison of Bode Response closed-loop system per-
formance including reduced model controllers

Table 5 Comparisons of different Parameters of Reduced order Model of AVR

Techniques Kp KI KD Rise
time

Peak
time

Settling
time

Overshoot

AVR system 1.24 0.8897 0.752 3.327 6.4756 9.1718 6.0739

State elimination [37] 0.392 1 0.415 6.309 19.8336 11.1634 0

Pade approximation [41] 1.29 0.5702 0.415 6.389 12.0360 16.6596 3.2927

Balanced truncation [17] 0.325 0.2719 0.395 4.976 9.7225 13.9089 4.9316

Logarithmic pole-clustering and Markov parameter [39] 1.011 0.6702 0.395 6.878 13.0513 13.2555 5.4073

Proposed method (DR) 1.24 0.8897 0.752 3.270 6.4873 9.1486 6.1221
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Table 6 Comparisons of different Error Calculations including controller

Techniques RISE IAE ISE ITSE ITAE

State elimination[37] 4.166 × 10–08 0.9062 0.6383 0.9799 0.4533

Pade approximation[41] 2.4 × 10–05 0.2503 0.1252 0.05961 0.0781

Balanced truncation[17] 1.799 × 10–6 0.2311 0.08243 0.06916 0.1084

Logarithmic pole-clustering and Markov parameter[39] 2.166 × 10–06 0.7062 0.3383 0.5799 0.645

Proposed method (DR) 1.873 × 10–6 0.2711 0.1263 0.05845 0.1022

Table 7 Comparison of Bode Plot parameters

System and reduced models Kp KI KD Phase margin Gain margin Stability

AVR system 1.24 0.8897 0.7523 103.4592 α NO

State elimination [37] 0.392 1 0.415 149.6943 α NO

Balanced truncation [17] 1.29 0.5702 0.415 - 180 α NO

Logarithmic pole-clustering and Markov parameter [39] 1.011 0.6702 0.395 - 180 α No

Pade approximation [41] 1.2 0.8765 0.7523 134.4604 α Yes

Proposed method (DR) 0.325 0.2719 0.395 125 α Yes

Proposed method results are shown in bold

compensator or controller design. Lastly, the proposed tech-
nique offers a more effective and straightforward solution
compared to existing reduced controller design methods.

However, the article acknowledges certain limitations:
first, the validity of assumptions made by the Differential
Reduction (DR) method may lead to discrepancies if not
universally applicable. Second, the reduction process may
oversimplify complex interactions within the system. Third,
sensitivity to initially neglected system parameters can limit
its applicability. Lastly, the DR method is strictly for linear
time-invariant systems, restricting its use in analyzing non-
linear or time-varying systems.
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