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Abstract
One of the industries that use fossil fuelsmost frequentlyworldwide is transportation. Therefore, electrifying the transportation
system, such as the creation of plug-in electric vehicles (PEV), has become essential to reducing the effects of carbon dioxide
emissions and using less traditional energy supplies that are not ecologically friendly. PEV deployment must be flawless,
necessitating a well-developed charging infrastructure. The best location for fast charging stations (FCSs) is a crucial issue.
As a result, this article offers a practical method for choosing the best site for FCSs using the east delta network (EDN). When
transportation is made electric, the infrastructure of the electrical distribution networkmay also need to be changed. Therefore,
when adopting FCSs, three factors need to be considered: actual power loss, reactive power loss, and investment cost. The
energy demand from the electrical grid is also increased by including FCSs in the power distribution network. To lessen the
impact of FCSs on the system, this research report suggests integrating photovoltaic distributed generation (PVDG) at certain
places in the distribution network. Consequently, the system becomes dependable and self-sustaining. After deploying the
FCSs and PVDGs, the distribution system’s dependability is also examined. Six case studies (CS) have also been suggested
for deploying FCSs with or without DG integration. As a result, the CS-6’s active power loss decreased from 1015.38 to
830.58 kW.

Keywords Plug-in electric vehicle · Charging infrastructure · Adaptive particle swarm optimization · Photovoltaic distributed
generation · Distribution network

1 Introduction

Rapid system upgrades are necessary to accommodate dis-
tributed generation (DG) and electric vehicle charging sta-
tions (EVCS) in the current power networks. The size of the
PVDGs market is mostly driven by the growing demand for
solar-based distributed generation (PVDGs). This is because
PVDGs are good for the environment, their costs are going
down compared to traditional energy generation, new tech-
nology is making them easier to use, and they are getting
cheaper. The term "prosumers," which describes people who
deliver and consume energy simultaneously, was coined due
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to the growing usage of PVDGs, wind power generation, and
other DGs technologies, which opened the door for small and
medium-scale involvements. PVDG has been demonstrated
to decentralize the electrical power network, reducing power
losses, improving bus voltages, and being environmentally
beneficial.

As they support the explosive expansion of PEVs and
lower greenhouse gas (GHG) emissions in the transporta-
tion system, these distributed renewable energy technologies
could help reduce dependency on fossil fuels [1, 2]. Addi-
tionally, as PEVs gain popularity, there is growing concerned
worldwide regarding the continued use of petroleum-based
products in the transportation sector due to their negative
environmental effects and depletion [3]. Additionally, PEVs
provide benefits like lessened noise pollution, decreased
operating costs, and emission-free driving [4, 5].

This extensive use of plug-in electric vehicles (PEVs) in
the transportation sector will benefit the environment and
improve network stability by enabling frequency and voltage
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regulation and acting as a vehicle-to-grid (V2G) to smooth
out any sudden increases in load or grid losses [6]. Contrarily,
the integration of EVCSs into the distribution network must
be done strategically since it may lead to excessive loads [7],
which could worsen power quality, increase power loss, and
cause voltagevariations to exceed allowed limits [8].With the
widespread penetration of randomly distributed PVDG, the
issue worsens as more EVCSs are added to the distribution
network. In order to lessen the negative impacts that EVCSs
have on the distribution network, it is necessary to deploy
EVCSs properly.

Electric vehicle charging infrastructure plays a crucial role
in achieving the larger objectives of sustainability and low
carbon emissions in several ways. The primary benefit of
electric vehicles is that they produce zero tailpipe emissions.
By encouraging the adoption of EVs through the availabil-
ity of charging infrastructure, we can significantly reduce
greenhouse gas emissions, particularly in urban areas where
transportation is a major contributor to air pollution. EV
charging infrastructure can be designed to utilize renew-
able energy sources like solar and wind power. This means
that as the grid becomes cleaner and more reliant on renew-
ables, the carbon footprint of charging EVs decreases further,
contributing to overall sustainability. Electric vehicles are
quieter than traditional vehicles with internal combustion
engines, reducing noise pollution in urban areas. This can
lead to improved quality of life and contribute to a more sus-
tainable and livable environment. Electric vehicles are not
dependent on fossil fuels, reducing a country’s reliance on
oil imports and vulnerability to oil price fluctuations. This
enhances energy security and economic stability.

1.1 Related works

The authors in [9] obtained the charging station’s optimal
location and capacity by optimizing the transportation cost
value. The problem is handled by the whale optimization
algorithm. Furthermore, the power loss of the electrical net-
work, voltage deviation, and EV charging costs are offered in
the literature as objective functions for the problem formu-
lation to obtain the optimal location of CSs and RESs [10].
Additionally, minimizing electrical power loss and charg-
ing zone center is the objective function for placing CS in
[10], which is solved using the bat optimization algorithm.
In [11], investment cost and operational cost for charging
stations are set as the objective function for determining the
optimal location of charging stations with renewable energy
sources, and the formulated optimization problem is solved
by a genetic algorithm. In [12], the authors considered trans-
portation cost for traveling to charge theEV, active power loss
cost of the electrical system, and investment cost for installing
the charging station as the objective functions, and the formu-
lated optimization problem is solved by the hybrid technique

using gray wolf optimization and particle swarm optimiza-
tion. Furthermore, the uncertainties related to electric vehicle
power demand and photovoltaic power generation are han-
dled using the Monte Carlo method.

A power loss of an unbalanced radial distribution net-
work was proposed as an EVCS deployment goal in [13],
and the outlined optimization problem was solved using the
particle search optimization technique. Additionally, [14]
investigated where parking lots should be placed in order to
maximize parking lot revenues. The genetic algorithm (GA)
produced the best results while using the cost of power loss,
reliability, voltage variation, and parking lot as the objec-
tives. Similar issues are covered in [15], which also uses the
gray wolf optimization algorithm to solve an optimization
problem while accounting for installation and active power
loss costs for placement. The focus of [16] was on the best
CS deployment for sustainable cities, and they proposed
a multi-objective issue. Additionally, the annualized time
opportunity cost, trip expense, construction expense, and
operation expense are purportedly objective functions, and
GA addressed the suggested issue. The quantum-behaved
and Gaussian mutational dragonfly algorithm is used to
address the defined problem [17] discovered the ideal loca-
tion of CSs and capacitors while accounting for power loss
costs.

The overall cost is lowered in [18] by the optimal place-
ment and size of the CSs in the IEEE 123 distribution system,
which results in decreased power loss and an enhanced
voltage profile. Furthermore, without considering the traffic
network, [19] identifies the optimal sites for CS in Allahabad
city of India distribution network to reduce active power
loss and development costs. The authors of [20] explore the
yearly profit maximization for allocating distributed genera-
tion (DG) and customer service (CS) in 33 and 69 distribution
systems. Again, in [21], CS and DG are optimally allo-
cated in a microgrid and distribution network, respectively,
while cost minimization is considered. In [22], the place-
ment of rapid charging stations for electric buses takes into
account the routes and distribution system of the buses. To
reduce power loss and voltage variation, the authors of [23]
place the CS in a distribution network that overlaps with the
traffic network. Moreover, power loss of the electrical net-
work and voltage stability index is formulated as objective
functions for the optimal location of charging stations with
distribution generations and proposed problemhanded by the
new nature-inspire meta-heuristic technique known as future
search algorithm [24] and further this problem is solved by
Coyote optimization algorithm, and also highlights the com-
putational efficiency of the proposed techniquewith PSO and
gray wolf optimizer [25]. The authors in [26] obtained the
optimal location of the capacitor with EV load at the dis-
tribution network by considering the voltage stability index
and power losses of the distribution network and the for-
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Fig. 1 Single line diagram of the charging station [32]

mulated problem is handled by improved flower pollination
algorithm. Furthermore, active power loss and voltage devi-
ation of the IEEE-33 and IEEE-69 bus systems are used to
place the charging stations and renewable energy sources,
and the multi-objective optimization problem is solved by
modern meta-heuristic Aquila optimizer [27].

After installing the charging station and DGs in [28], the
dependability of the distribution system was examined. In
contrast, the suggested problem is tackled using the hybrid
gray wolf optimization particle swarm optimization tech-
nique, which uses the cost of voltage variation and power loss
as objective functions. Moreover, in [29], the authors cate-
gorized the objective functions under the three approaches
for deploying charging stations in electrical and transporta-
tion networks: the distribution system operator approach,
charging station investor approach, and electric vehicle driver
approach.

1.2 Findings and contributions

This study enhances the adaptive particle swarm optimiza-
tion approach for placing FCS in the proposed EDN network
with integrating PVDG. Furthermore, the PVDGs are ran-
domly scattered and positioned at the electrical node of the
suggested electrical system. The following are the esoteric
contributions of this paper:

1. A adaptive particle swarm optimization approach is pro-
posed for optimizing the location for proposed FCSs in
the given EDN system. According to the authors, an

APSO has never been used for positioning the charging
station.

2. Consider an electrical network with PVDG that is arbi-
trarily sized and positioned to mimic consumer-based
decentralized penetration. Most studies involve scattered
generations to account for the impact of FCSs on the
electrical system. In contrast, this investigation comprises
FCSs and PVDG over the proposed distribution system.

3. Under the charging station investor approach, one objec-
tive ismodeled andunder the distribution systemoperator
approach, two objectives are modeled for the place-
ment of FCS. Therefore, themulti-objective optimization
problem is formulated under the two approaches.

2 Problem formulation

The appropriate positioning of the FCSs is one of the primary
focuses of this study. This multi-objective issue includes var-
ious economic elements, including operating costs, and costs
related to the required equipment and land. Furthermore, the
multi-objective optimization problem is formulated for the
placement of the proposed charging infrastructure to enhance
the distribution system’s performance and reduce the costs
related to the charging station installation. Figure1 displays
a block diagram with a single line.

2.1 Photovoltaic distributed generations

As noted previously, integrating EV charging demand from
the grid is inadvisable for decreasing carbon emissions if
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Table 1 PVDGs randomly
generated location at respective
nodes

Distributed PVs Active power in kW Reactive power in kVAR Node number

PVDG-1 840 275 5

PVDG-2 1119 368 16

PVDG-3 560 184 22

the electricity is produced using commercial fuels. Conse-
quently, including PVDG in the grid is strongly advised to
achieve the same advantages. In addition, the PVDG should
be spread throughout the system to decrease losses andmain-
tain voltage stability. In addition, our approach identifies
areas for deploying PVDGs with sufficient space and favor-
able atmospheric conditions. In [30], the authors alleviate
the grid strain due to charging demand for PEV at the dis-
tribution system. In addition, 1/10 of the energy demand of
the east delta network (EDN) is generated from renewable
energy sources for the actual benefits of the electric vehi-
cle to reduce carbon emission [31]. Therefore, three units
of PVDG are proposed with different capacities as shown
in Table 1 with total active power generation is 2519 kW,
whereas total reactive power is 827 kVAR using 0.95 power
factor.

2.2 Buildup cost reduction objective

The variance in land prices depends on the investigated local-
ity. In addition, the buildup cost contributes substantially
to the project’s entire investment. However, this cost will
decrease in the future as technology advances. Hence, FCS
investors must study the land price of each potential FCS
location. Therefore, the buildup cost (BC) is computed using
the land cost, equipment development cost, and fixed cost
for the charging connectors, as shown in Eq. (1). They esti-
mated for installing FCS is 100 m2 approximately. Hence,
the cost of the land required is determined for the five-year
land leasing. In addition, the buildup cost reduction objective
(BCRO) at the i th bus is formulated as total buildup cost in
a normalized manner, as shown in Eq. (2).

BCi = Cost f i x + 100 × Ndays × Costlani + (Nc − 1)

×Conp × Condev (1)

BCROi = BCi

max(BCi )
(2)

where price rate per m2 per day is expressed by Costlani for
the 5 years duration at i th node, Nc is the proposed number of
connectors at the charging station,Conp represents the power
capacity of the charging point, Condev represent the total cost
for the development of every charging connector, and Ndays

represent the total days required for proposed planing.

2.3 Real power loss reduction objective

For the optimal distribution of the proposed charging station
in the EDN system, real power loss and reactive loss are
modeled as objective functions. Therefore, the real power
loss reduction objective (PLRO) is modeled for the reduction
of the real power loss of the system. The PLRO assesses
potential increases in grid power losses upon connection of
FCSs. This is shown in Eq. (3).

PLRO = 1 − PLBase

PLFCS (3)

where PLBase and PLFCS represent the distribution system’s
total active power loss without and with interesting charging
stations, respectively. In addition, the real power loss for the
proposed EDN system is calculated by Eq. (4).

PL =
Nb∑

b=1

(
P2
b + Q2

b

V 2
b

)
Rb (4)

where Pb is the real power flow in bth line, Qb is the reactive
power in bth line of the proposed system, Rb represents bth
line resistance, and Vb represents the voltage of sending node
of the respective line.

2.4 Reactive power loss reduction objective

The reactive power loss reduction objective (QLRO) offers a
predetermined threshold for preserving grid voltage stability.
This indication is represented using Eq. (5).

QLRO = 1 − QLBase

QLFCS (5)

where QLBase and QLFCS are the reactive loss for the pro-
posed network without integrating the charging station and
with integrating the charging stations as suggested, respec-
tively. Moreover, the reactive loss of the power for the
proposed network can be determined using Eq. (6).

QL =
Nb∑

b=1

(
P2
b + Q2

b

V 2
b

)
Xb (6)
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where Xb is the bth line reactance, and Vb represents the
voltage of sending node of using line.

3 Multi-objective function

For the optimal placement of FCS, three objectives are mod-
eled as suggested in the paper. Therefore, multi-objective
optimization problems have been formulated using the pro-
posed objective to reduce the buildup cost of the charging
station and enhance the performance of theEDNsystem. Fur-
thermore, there are different approaches available to handle
the multi-objective problem but the easiest method is to use
the weighted coefficient method. Therefore, three weighted
coefficients for eachobjective are assigned to the problem.By
using this approach, the multi-objective optimization prob-
lem can be handled as single objective problem as denoted
by the eq. (7).

Objective = α × PLRO + β × QLRO + δ

×
N∑

i=1

(BCROi × Xi )/NFCS (7)

where N is the nodes of the proposed electrical network, and
Xi is the variable which can have the value of 0 or 1. If Xi=
0, it shows that no charging station at the given node, if Xi =
1, it shows that charging station must be integrated at given
node. where α, β, and δ are the weighing coefficient that
decides the value of particular objectives function for finding
the optimal deployment of the charging station, expressed in
Eqs. (8) and (9), respectively.

α + β + δ = 1 (8)

0 ≤ α, β, δ ≤ 1 (9)

α, β, and δ are the weighted coefficients, and the value of
these coefficients depends on the participation of the respec-
tive objective in the final decision for the placement of
charging stations (Table 2).

3.1 Constraints

Some limits are proposed for the proper solution of the pro-
posed optimization problem to place the charging station
in the distribution network, these limits are given in detail
below.

Node voltage constraint The upper and lower voltage limits
are set for all given nodes of the EDN electrical network,
defined in Eq. (10).

V lower ≤ Vi ≤ V upper (10)

Table 2 Used parameters Parameters Value Unit

NEV 2000 –

Chtime) 0.33 Hours

NC 10 –

st 18 Hours

Costfix 21900 $

Condev 109.5 $

pf 0.95 –

pEV 96 kW

Cp 100 kVA

CE 0.11 $/kWh

Ndays 1825 –

where V lower is the lower node voltage, V upper represents the
upper node voltage, and Vi is the i th node voltage.

Active power limit constraints In Eq. (11), the lower limit
and upper limits of the active power are imposed for each
line of the proposed electrical network.

P lower ≤ Pj ≤ Pupper (11)

where P lower is the lower limit of the active power in lines,
Pupper is the upper limit of the active power in lines, and Pj

is the active power at j th line.
Reactive power constraint Reactive power limits are imposed
for each line for the stability and reliability of the electrical
system, which is formulated as given in Eq. (12).

Qlower ≤ Q j ≤ Qupper (12)

where Qlower represents the lower limit, Qupper represents
the upper limit, and Q j represents the line reactive power at
j th.

Power balanced constraints The power required of the elec-
trical network with EV demand should be balanced by the
PV generation and power taken from the grid, formulated in
(13).

PEV + Psys = PPV + Pgrid (13)

where Psys represents the power required of the EDNwithout
EV charging demand, Pgrid represents the grid power, PEV
represents the EV charging demand, and PPV is the power
produced from PVDGs.

Number of FCSs constraints: The total required FCSs is com-
puted using (14); hence, the number of FCS is restricted to
the bare minimum to reduce the cost function.

Nmin
FCS ≤ NFCS (14)
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where Nmin
FCS is the minimal number of charging stations

required in the planned region; each FCSs have a set number
of 100 kVA connections.

4 The proposed adaptive particle swarm
optimization algorithm

The particle swarm optimization is driven by modeling
social behavior instead of population-based evolutionary
algorithms, and each possible outcome is connected with
the velocity. The outcome, often known as “particles,” then
“fly” through the search space. Therefore, at the beginning,
a particle-sized population is generated. Then, the velocity
of each particle is continuously changed based on that par-
ticle’s experience and the experiences of its partners. The
particles are anticipated to travel toward locations with more
effective solutions. Furthermore, according to the objective
of an optimization issue, each particle’s fitness may be eval-
uated. During each iteration, each particle’s velocity will be
computed as follows:

vk+1
i = wvki + c1r1(pbest

k
i − xki ) + c2r2(gbest

k − xki )

(15)

where xki represents the particle i position at kth itera-
tion, pbestki represents the particle’s best previous location,
gbestk represents all particle’s best previous location at the
kth iteration, w denotes the inertia weight, c1 represents a
cognitive parameter, c2 shows social parameters, and r1 and
r2 both are randomly generated integers inside the interval
[0, 1]. After computing the velocity, each particle’s new loca-
tion may be determined using Eq. (16).

xk+1
i = xki + vk+1

i (16)

The PSOmethod applies the update equations many times
until the predetermined number of generations G is attained.

Although adaptive particle swarm optimization (APSO)
has demonstrated significant advancements by providing
rapid convergence in specific problems, it does have some
deficiencies. Lacking a velocity control mechanism, APSO
is found to be incapable of searching at a fine-grain level.
Numerous attempts exist to enhance APSO’s performance
through variable inertia weight. The inertia mass is crucial to
the performance of PSO, which balances the swarm’s global
exploration and local exploitation capabilities. A large inertia
weight facilitates exploration but prolongs particle conver-
gence. In contrast, a small inertia weight causes the particle
to converge rapidly but can also result in local optima [33].
The step-by-step implementation of adaptive PSO is shown
in Fig. 3 by the flowchart.

Although thesemethods increase the performance of PSO,
they cannot accurately depict the actual search process when
the true ideal value is known in advance, and no feedback is
gathered from how distant the particle’s fitness is from the
estimated optimal value. A high velocity is still required to
explore the solution space worldwide for a particle whose
fitness is distant from the genuine optimal value. Hence, its
inertia weight must be adjusted to bigger values. To per-
mit more precise local investigations, inertia weight must be
adjusted to a modest value when only a tiny amount of move-
ment is required. In addition, by adopting the same inertia
weight for all particles and disregarding variances in parti-
cle performance, a rough animal backdrop was reproduced
rather than a more detailed biological model. Throughout
the search, each particle’s position varies dynamically. Thus,
each particle locates in a complicated environment and faces
a unique circumstance.Hence, each particlemay have unique
trade-offs between global and local search capabilities.

In this research, the inertia weight is dynamically adjusted
for each particle based on the adjacency index (AI), which
represents the closeness of individual fitness to the actual
ideal solution.Basedon this index, every particlemight deter-
mine how to change the values of its inertia weight. In this
regard, the proposedAPSOspecifies the velocity update rules
as given in Eq. (17):

vk+1
i = wk

t v
k
i + ck1r1(pbest

k
i − xki ) + ck2r2(gbest

k − xki )

(17)

To compute the inertia weight for the i th particle in the kth

iteration, given by xki in Eq. (18), the adjacency index (AI)
must first be established.

AI ki = F(pbest1i ) − FKN

F(pbestki ) − FKN
− 1 (18)

whereF(pbest1i ) is the fitness of the particle’s best prior loca-
tion and FKN is the known genuine ideal solution value. It
may be inferred that the AI varies with the number of par-
ticles and is configured based on the best recollections of
the particles’ responses. A tiny AIi indicates that the fitness
of the i th particle is far from the true ideal value, necessi-
tating a vigorous global search and a high inertia weight. A
large AIi , on the other hand, indicates that the i th particle is
in close proximity to the true optimum, necessitating strong
local exploitation and, therefore, a low inertia weight. Thus,
the value of inertia weight for each particle in the kth itera-
tion is determined dynamically using the following Eq. (19).

wk
i = 1

1 + exp(−α × AI ki )−1
(19)

where α is a constant in the range [0, 1]. Using the preced-
ing assumptions and definitions, it is possible to deduce that
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0.5 ≤ wi < 1. The value of inertia mass for each parti-
cle in the kth iteration depends on the value of parameter
α. The value of parameter α determines the rate of decrease
of inertia weight. The greater the rate of increase of inertia
weight, the lower the parameter α value. The particle swarm
size chosen is 50. Adaptive PSO algorithms can dynamically
adjust parameters like the inertiaweight, cognitive, and social
coefficients during the optimization process. This adaptabil-
ity allows the algorithm to respond to the changing behavior
of the swarm, potentially speeding up convergence by bal-
ancing exploration and exploitation more effectively. This
adaptability helps prevent premature convergence to subop-
timal solutions and encourages exploration when necessary.
Conventional PSO requires careful tuning of parameters like
the inertia weight and learning coefficients for different prob-
lem types. Adaptive PSO algorithms automate this process
to some extent, reducing the sensitivity to parameter tuning
and making them more user-friendly.

Throughout the search, according to Eqs. (18) and (19),
the particles encounter various fitness; as a result, their iner-
tia weight values and AI vary. Furthermore, while particle
fitness is distant from the true global optimum, AI of the
given particle has a low value, and inertia weight value will
be high, consequently in more global search capabilities and
the identification of interesting search regions.

5 Results and discussions

The suggested multi-stage solution addressed the optimal
FCS placement problem for east delta network (EDN) elec-
trical system. TheEDNdistribution system is a component of
the unified Egyptian network (UEN) [31]. The EDN single-
line representation is depicted in Fig. 2. 11 kV is the rate
line voltage, 27.22 MVA is the rated capacity, and 0.854 is
the power factor of the EDN system. Table 1 presents the
location and size of the distributed renewable generation.
The proposed FCS includes ten 100 kVA connections with a
power factor of 0.95 (Fig. 3).

This research was employed for the allocation of FCSs in
the 30-bus EDN system to demonstrate the effectiveness of
the proposed APSO algorithm.Moreover, the esoteric APSO
technique was also employed to compare the fitness value
supplied in the objective Eq. (7) to the variable α, β, and δ

for the FCSs placement in the network. This technique gives
ideal placements for FCSs with randomly placed PVDGs
and reduces investment cost, actual power loss, and reac-
tive power loss. The optimal necessary number of FCSs was
five. Nevertheless, six scenarios were shown for the place-
ment of FCSs by varying the α, β, and δ values. In addition,
six case studies, including the placement of FCSs alongside
renewable-based distributed power were provided to address

Fig. 2 Single line diagram of the EDN [5]
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Fig. 3 Flowchart of adaptive
particle swarm optimization
algorithm

Table 3 Results with FCSs
placement

Cases α β δ Ploss (kW) Qloss (kVAR) Norm. IC Cost Fun Optimal locations

Base – – – 807.63 362.13 – – –

Case-1 0 0 1 1278.83 563.36 0.4736 0.4736 11,14,18,25,28

Case-2 0.1 0.1 0.8 1278.83 563.36 0.4736 0.4513 11,14,18,25,28

Case-3 0.2 0.2 0.6 1194.49 532.23 0.4888 0.4217 7,11,14,18,28

Case-4 0.3 0.3 0.4 1055.51 481.01 0.5587 0.3755 2,4,11,14,15

Case-5 0.4 0.4 0.2 1048.85 478.31 0.5762 0.3037 2,4,7,11,14

Case-6 0.5 0.5 0.0 1015.58 466.35 0.7201 0.2128 2,3,4,5,14

the sensitivity analysis for optimizing the FCS site by modi-
fying the weight constant.

5.1 Results analysis of the obtained location of FCSs
without PVDGs

In Case-1, the buildup cost is factored into the optimization
issue,with neither active nor reactive power losses addressed.
For Case-2, however, the ideal placements are determined
by including 10% of real power loss and 10% of reactive
power loss, together with 80% of the buildup cost, into the
optimization issue. Because of the minimal power loss, the
ideal placement of FCSs is identical to that of the preced-
ing example. In addition, for Case-3 20% part of real power
loss reduction objective, 20% part of the reactive power loss
reduction objective, and 60% buildup cost participate for the
decision of FCS location. In Case-4, the active and reactive
power losses rise from 20 to 30%, while the investment cost

decreases from 60 to 40%; hence, power losses are the most
important element in determining the appropriate position
of the FCS. Similarly, in Case-5, the incorporation of power
loss is increased and the investment cost is decreased while
determining the ideal position of the FCS. Lastly, in Case-6,
only power losses are evaluated for the placement of FCS;
hence, the best position of FCSs derived in this example has
lower power losses than previous proposed cases. Due to the
growing power losses in the objective function, the losses
obtained from Case-1 through Case-6 continue to decrease.
Table 3 provides the findings acquired for the FCSs sites
with real power losses, reactive power losses, and cost func-
tion values for the relevant scenarios. In addition, the actual
and reactive power flows for the EDN lines are obtained for
each of the given situations.
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Table 4 FCS with PVDG
results Analysis

Cases α β δ Ploss (kW) Qloss (kVAR) Norm. IC Cost Fun Optimal locations

Base case – – – 550.46 247.90 – – –

Case-1 0 0 1 1068.13 470.23 0.4736 0.4736 11,14,18,25,28

Case-2 0.1 0.1 0.8 1068.13 470.23 0.4736 0.4746 11,14,18,25,28

Case-3 0.2 0.2 0.6 992.03 442.67 0.4888 0.4698 7,11,14,18,28

Case-4 0.3 0.3 0.4 882.02 402.10 0.5338 0.4488 2,7,11,14,15

Case-5 0.4 0.4 0.2 862.49 395.01 0.5762 0.4079 2,4,7,11,14

Case-6 0.5 0.5 0 830.28 383.14 0.7201 0.3441 2,3,4,5,14

Fig. 4 Obtained bus voltage for Case-1

5.2 Results analysis of the obtained location of FCS
with PVDG

For Case-1, the total power loss is not factored into the charg-
ing station placement determining criteria. As demonstrated
in Table 3, this results in greater power losses than other
cases. Moreover, in Case-2, the ideal placement of CSs is
found by factoring in 10% of real power loss. On the other
side, reactive power loss participates 10% and the buildup
cost of the charging station participates 80% for the decision
to find the optimal location of the FCSs; due to low power
losses, the optimal location of FCSs remains unchanged. In
addition, in Case-3, 20%, 20%, and 60% of the real power
loss, reactive power loss, and investment cost were consid-
ered while determining the location of the FCS. In Case-4,
power loss concerns increase from 20 to 30%, while invest-
ment cost decreases from60 to 40%, resulting in power losses
being the dominant factor in determining the appropriate site
of FCS. Similarly, while calculating the ideal position of the
FCS in Case-5, the power loss factor is increased, but the
investment cost factor is decreased. In Case-6, however, only
power losses are evaluated for FCSplacement. Thus, the ideal

placement of FCSs results in the lowest power losses. Due to
the rising power losses in the objective function, the losses
accumulated from Case-1 through Case-6 continue to rise.
Table 3 displays the findings obtained for the placements of
FCSs with actual power losses, reactive power losses, and
cost function values for all analyzed cases. As demonstrated
in Table 3, the normalized value of investment cost increases
from Case-1 to Case-6 for deploying FCSs. In contrast, as
shown in Table 4, the arrangement of charging stations with
PVDGs reduces the installation cost.

5.3 The node voltage profile results analysis

The voltage profile of the respective nodes is depicted in
Figs. 4, 5, 6, 7, 8, and 9 for proposed cases. Figure4 illus-
trates the node voltage of the system after the integrating EV
charging load without and with PVDG for FCS placements
and FCS deployments with PVDG in Case-1. The findings
indicate that in Case-1, FCS deployment drops while FCS
placement with PVDG sites rises. Figure5 demonstrates the
voltages in Case-2 during FCS placement and FCS place-
ment with PVDG. Furthermore, adding FCSs with PVDGs

123



2604 Electrical Engineering (2024) 106:2595–2608

Fig. 5 Obtained bus voltage for Case-2

Fig. 6 Obtained bus voltage for Case-3

improves the voltages in Case-3, as shown in Fig. 6. Volt-
ages in the deployment of FCS with PVDG are equal to the
basic scenario depicted in Fig. 7. After the installation of FCS
with PVDG, the obtained voltage profile is improved as com-
pared to base case in Case-5 and Case-6, as demonstrated in
Figs. 8, 9. In addition, Fig. 10 depicts the performance of all
the methods with the proposed APSO technique.

5.4 Total power loss results analysis

With the deployment of the fast charging station in the sug-
gested EDN system, the actual power loss decreased by
20.6% in Case-6 compared to Case-1, the reactive power loss
decreased by 17.28% in Case-6 compared to Case-1, and the

investment cost decreased by $ 34.23. Figure11 illustrates
the actual and reactive power loss while placing CSs with
and without PVDG addition. In addition, the placement of
FCSswith PVDGs in the proposed EDNnetwork reduced the
power loss by 22.23% for Case-6 compared to Case-1, the
reactive power loss by 18.64% for Case-6 compared to Case-
1, and the investment costs by 34.23% for Case-1 compared
to Case-6.

6 Conclusion

The paper suggests a novel model to strategically position
rapid EV charging stations while integrating solar-based
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Fig. 7 Obtained bus voltage for Case-4

Fig. 8 Obtained bus voltage for Case-5

distributed generation. This model revolutionizes the imple-
mentation of fast charging stations (FCSs) by significantly
reducing investment needs andminimizing power losswithin
the system, all while maintaining power quality and voltage
stability. An adaptive particle swarm optimization method
is presented for effectively locating charging stations with
distributed photovoltaic (PV) generation in the electrical sys-
tem. Furthermore, the paper compares the performance of
this proposed algorithm with several other available tech-
niques. It also outlines six cases illustrating the establishment

of FCSs based on charging infrastructure costs, considering
real and reactive power loss for station construction. The
paper additionally evaluates the distribution system’s reli-
ability for deploying fast charging stations, both with and
without PV integration, within the proposed electrical sys-
tem. Six specific case studies (CS) were proposed to explore
the deployment of fast charging stations (FCSs),with orwith-
out distributed generation (DG) integration. Notably, in the
sixth case study (CS-6), the active power loss was reduced
from 1015.38 to 830.58 kW.
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Fig. 9 Obtained bus voltage for Case-6

Fig. 10 Performance analysis of the proposed APSO with other techniques

The researchers expect that their study will streamline the
incorporation of plug-in electric vehicles into the power
grid, reducing CO2 emissions and incentivizing investors to
develop charging infrastructure. Moreover, advancements in
research and technology are essential for effectively identi-

fying optimal locations for charging stations. Future research
could explore diverse energy management approaches, inte-
grating electric vehicles, grid functionality, and the potential
for charging stations to power homes to enhance the effi-
ciency of the distribution network.
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Fig. 11 Active and reactive power losses for proposed case studies
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