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Abstract
Solar irradiation is a crucial parameter in the design andoperation of solar energy systems.However, its long-termmeasurement
everywhere is hindered by the maintenance and cost of measurement devices. Therefore, numerous research studies have
been conducted to determine solar irradiation, leading to the development of various prediction models. Recently, artificial
neural network (ANN) models have been shown to enable researchers to make more accurate predictions. This study aims
to identify the most effective algorithms and functions for accurately predicting instantaneous solar irradiation using ANN
models with different network structures. Five commonly used training algorithms and two different ANN architectures are
examined in this study. These models are tested with various transfer functions, and the impact of the number of neurons in
the hidden layer on prediction results is also investigated. Meteorological data collected at 5-s intervals from a meteorology
station in Hakkâri Province between 2019 and 2021, totaling one million data points, are used for model training. The ANN
model with a network structure consisting of 100 neurons, trained with the Levenberg–Marquardt algorithm and “tansig”
transfer function, achieved the best prediction performance with a correlation coefficient (R) of 0.9783 and a mean absolute
percentage error of 6.79%. For an 80-10-10 data split, the mean-squared error, normalized root-mean-squared error, and mean
bias error were found to be 0.024, 7.206, and 0.800, respectively. The solar irradiation prediction performance varied based
on the training algorithm and particularly the transfer functions used. Similar approaches can be employed in regions where
measurement devices cannot be installed, enabling successful prediction results even without direct irradiation measurements.
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ANN Artificial neural network
AR Autoregressive process
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d Day length
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DL Deep learning
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GA Genetic algorithm
GBT Gradient boosting trees
H Relative humidity
H0 Extra-atmospheric solar irradiation
Kt Openness index
La Latitude
Lo Longitude
LM Levenberg–Marquardt
LSTM Long-short-term memory
M Month
MA Moving average process
MAPE Mean absolute percentage error
MBE Mean biased error
MLP Multi-layer perceptron
MSE Mean square error
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nRMSE Normalized root-mean-square error
NWP Numerical weather prediction
PV Photovoltaic
r Rain
R Correlation coefficient
R2 Coefficient of determination
RF Random forest
RMSE Root-mean-square error
S Sunbathing time
SVM Support vector machine
T avg Average temperature
Tmax Maximum temperature
Tmin Minimum temperature
w Wind speed
WT Wavelet transform
Y Year
Z Altitude

1 Introduction

Today, renewable energy sources have become more impor-
tant due to climate change affecting the world entirely. The
fact that solar energy is a clean, renewable, and usable energy
source has led all the countries of theworld to produce energy
from this source due to the global climate crisis of the world.
Therefore, to increase the efficiency of solar energy sys-
tems and to evaluate their applicability, engineering designs
and scientific studies need up-to-date data on the amount of
solar irradiation which could not be easily measured in some
regions [1, 2]. These data are not always available due to
the high cost of solar irradiation measurement sensors and
require constant maintenance and calibration [3–6].

Reliable solar irradiation information is essential for
the design and development of solar energy systems [7].
Additionally, knowing the solar irradiation is crucial for
determining the most suitable location for installing a pho-
tovoltaic (PV) system [8]. Therefore, accurate knowledge
of solar irradiation plays a significant role in ensuring the
security of the power grid and effectively storing reserves of
backup energy sources [9, 10].

Accurate irradiation forecasting assists in grid planning
and improves power quality [11, 12]. However, the non-
stationary behavior and variability of solar irradiation make
this task quite challenging [13]. To overcome this challenge,
solar irradiation prediction models are required, and many
models have been developed. Currently, the methods used
for solar irradiation prediction can be categorized as shown
inFig. 1,with the selection of thesemethods primarily depen-
dent on the prediction time horizon [14].

When examining the prediction methods in Fig. 1, it is
known that hybrid methods demonstrate better performance
in terms of prediction accuracy compared to basic methods
[16]. However, they come with a computational complexity
that requires a longer time to reach a result. Additionally,
their performance is highly dependent on carefully selected
historical input data [17]. Therefore, this study focuses on
investigating the effectiveness of network architecture, data
set distribution, algorithms, and functions in ANN models
using commonly used meteorological parameters for solar
irradiation prediction. The best results obtained from the
algorithms and functions used in the ANN model for solar
irradiation prediction are tested with different data distribu-
tions.

ANN is widely used for predicting different solar irradia-
tion components [13, 18–21]. Recent studies have confirmed
that both experimental methods and models are acceptable
approaches for solar irradiation prediction. However, the use
of methods like ANN modeling has been shown to enable
researchers to achieve higher accuracy in their predictions
[18, 22].

ANNs are commonly used in models aimed at predict-
ing solar irradiation in different time intervals and locations
around the world. Meteorological parameters such as sun-
shine duration (S), relative humidity (H), temperature values
(Tmax, Tmin, and T avg), extraterrestrial solar irradiation (H0),
latitude (Lo), longitude (La), altitude (Z), wind speed (w), and
wind direction are among the most frequently used data for
solar irradiation prediction [23–25].

Gutierrez-Corea et al. propose anANNapproach for short-
term prediction of solar irradiation in Spain, using nine input
sequences consisting of ten values from ten different loca-
tions in Spain. They use the “logsig” activation function. The
results obtained show errors ranging from 22.6 to 32.1% for
forecast horizons of 1 to 6 h [26]. Similarly, Bosch et al.
indicate that in their solar irradiation prediction study using
data obtained from 12 different stations in Spain, ANN is an
effective and straightforward methodology for calculating
solar irradiation levels over complex mountainous terrains
using data from a single radiometric station [27].

Mellit and Pavan proposed an ANN model using daily
solar irradiation and air temperature data obtained in Italy.
They used the LM training algorithm and reported that the
model showed good prediction performancewith aminimum
correlation coefficient of 94% [28]. Voyant et al. conducted
a study in France using data obtained from a ground sta-
tion to predict solar irradiation using the ANN model. They
evaluated the impact of external data and data selection on
the prediction. Additionally, they examined the effects of the
number of hidden layers and neurons, activation function,
learning algorithm, and comparison functions used during
the learning stage [29].
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Fig. 1 Solar irradiation
prediction methods [11, 15]
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Mohandes et al. [30] conducted a solar irradiation pre-
diction study in Saudi Arabia using data obtained from
41 stations and employing the “logsig” activation function.
Wang et al. [19] performed solar irradiation prediction in
China using an ANN model with the LM algorithm and
“logsig” and “purelin” activation functions. Yadav andChan-
del [31] predicted solar irradiation in India using an ANN
model with the LM algorithm and the “tansig” activation
function. In addition to these studies, there are numerous
other works on solar irradiation prediction carried out by
Quej et al. [32], in Mexico, Marzo et al. [33], in Chile, Hal-
abi et al. [34], in Malaysia, Marzouq et al. [35], in Morocco,
Jahani et al. [36], in Iran, Antonopoulos et al. [37], in Greece,
and Guermoui et al. [38], in Algeria.

Turkey is a country surrounded by seas on three sides, with
an average annual total irradiation of 1527.46 kWh/m2 and
an average annual sunshine duration of 2741 h. The regions
located in the south and east, in particular, are suitable areas
for solar energy investments. Therefore, successful results
are obtained in solar irradiation prediction studies, especially
for the regions located in these areas. These studies and their
details are presented in Table 1.

In this study, an attempt has been made to predict the
instantaneous solar irradiance, which is the most crucial
parameter for electricity generation in PV systems. Real
meteorological data, including ambient temperature, relative
humidity, atmospheric pressure, wind speed, and solar irra-
diance, recorded at 5-s intervals depending on the time series
from the meteorological station, were utilized. Data from the
meters are transferred to a workstation (Intel Xeon Silver
4114 CPU @ 2.20 GHz, 32.0 GB RAM) along with date
and time values and used as input and output data on the

ANN model created in a MATLAB environment. Various
training algorithms and activation functions based on ANN
were employed. With the use of ANN, two different net-
work structures with 5 different functions were developed to
analyze the relationship between meteorological input data
(such as ambient temperature, relative humidity, atmospheric
pressure, wind speed) and solar irradiance based on the time
series (year, month, day, hour, minute, and second). The
obtained results enable the determination of the effective-
ness of network structure, data set distribution, algorithms,
and functions in solar irradiance prediction using basic mete-
orological data. In this context, the main contributions of the
study are as follows:

• Determining the effectiveness of activation functions used
in the ANN model for solar irradiance prediction.

• Developing an ANNmodel for solar irradiance prediction
using data obtained from a single geographical location
and ensuring its generalizability to other regions.

• Determining the impact of data distribution used during
the training and testing stages of the ANN model on solar
irradiance prediction.

• Investigating the prediction performance of the ANN
model in solar irradiance prediction using statistical indi-
cators to assess accuracy.

• Determining the most suitable network architectures in
ANN models used to predict solar irradiance for design-
ing or assessing solar energy facilities in regions without
meteorological measurement stations.

• Developing various ANN models with the capability to
analyze the relationship between meteorological parame-
ters and solar irradiance.
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Table 1 Solar irradiation estimation studies and evaluation metrics in Turkey

Reference Prediction model Parameters used Assessment metrics

R2 MAPE RMSE

Ağbulut et al. [4] ANN H0, d, Tmax,Tmin,B 0.932 15.92 2.157 MJ/m2

Demir et al. [39] SVM, LSTM, ELM Tmax,Tmin,w,H ,Lo,La,Z 0.895 15.17 2.297 MJ/m2

Sözen et al. [40] ANN Lo,La,Z ,T avr,S 0.998 6.73 NA

Ozgoren et al. [41] ANN H0,Lo,La, Z ,S,H ,T 0.993 5.34 NA

Kaba et al. [42] DL H0,Tmax,Tmin,S,B 0.98 NA 0.78

Yildirim et al. [43] LSTM, MLP, ANFIS 0.945 NA 101.20 W/m2

Yildirim et al. [44] ANN H0,Lo,La,Z ,S,H ,T 0.961 NA 0.14

Bilgili et al. [45] ANN S,T ,w,M,d 0.965 7.88 NA

Alizamir et al. [46] MLP, ANFIS, GBT Tmax,Tmin,w,H 0.864 NA 7.352 MJ/m2

Ozan Şenkal [47] ANN Lo,La,Z ,T 0.934 0.320 MJ/m2

Karaman et al. [48] ELM w, T , S 0.991 NA 0.0297

• Determining the effectiveness of training algorithms and
transfer functions on prediction accuracy in ANN models
modeled with different network architectures.

The remaining sections of the article are structured as fol-
lows: Sect. 2 provides details about ANN, the study area,
the data set used, and the criteria for performance evalua-
tion based on research methodology. In Sect. 3, the results
obtained from theANNmodels are presented, discussed, and
analyzed. The final section presents the main findings of the
study.

2 Methodology

In this study, many ANN-based approaches to predict solar
irradiation were designed and applied, and their results were
confirmed. In the first stage of the study, models were devel-
oped to analyze the relationship between time-dependent
solar irradiance and a set of meteorological parameters in a
specific geographical area. In these models, the effectiveness
of different training algorithms (trainscg, trainlm, trainrp,
traingd, and trainoss) and different transfer functions (logsig,
poslin, tansig, purelin, radbas, hardlim, tribas, and satlin),
which are easy to implement, widely utilized in the literature,
and have demonstrated predictive accuracy, has been investi-
gated. The functions that give the best results in these models
were determined. In the second stage, the performance in
forecasting success of the created network models was ana-
lyzed, and the best-performing model was determined. Each
model was dedicated to estimating the amount of solar irradi-
ation at times, including all seasonal periods of the year. All
components of all approaches were designed, implemented,
and validated according to the flowchart in Fig. 2 using the

multi-layer perceptron (MLP) neural network model created
with the MATLAB2021a software. The process of prepar-
ing the information and its uses in modeling are described as
follows:

• To prevent prediction models from being affected by dif-
ferent ranges, the input data are normalized as depicted in
Fig. 2 (in the range − 1 to + 1) [13].

• To create neural networks by defining different functions
with neural network layers and neurons.

• To train networks according to defined functions.
• To test networks according to the defined data.
• To receive output data from the neural network.
• To return normalized data to output data.
• To evaluate the performance of the neural network and
compare its output with the measured data.

Using meteorological parameters measured by sensors
depending on time parameters, the study, network training,
and modeling are based on two different network models. In
both network models, the input parameters were selected as
similar. The first type of network model (10-10-1) is called
ANN_I, which consists of small hidden layers that are the
same as the number of input parameters. The second type
of network model (10-100-1) is called ANN_II, in which
a large hidden layer is formed by squaring the number of
input parameters. Thus, in addition to different training algo-
rithms and transfer functions in solar irradiation estimation,
the effect of the network structure was determined by taking
into account the model, the number of neurons, and differ-
ent hidden layers. The operating conditions for the design of
network models are given in Table 2. Training of the ANN
architecture was continued until the minimum MSE value
was reached.
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Fig. 2 The flowchart used in the study

Table 2 Operating conditions set for models

Operation network type Multilayered
Back-propagation
Algorithm (MLP)

Training function Trainscg, Trainlm, Trainrp,
Traingd, Trainoss

Performance function MSE

Number of inputs 10

Number of outputs 1

Number of hidden layers 1

Number of neurons in the hidden
layer

10, 100

Transfer function Logsig, Poslin, Tansig,
Purelin, Radbas, Hardlim,
Tribas, Satlin

2.1 Artificial neural networks (ANN)

ANN models demonstrate higher accuracy in solar irradi-
ation prediction compared to empirical models and other
forecasting methods. Qazi et al. [49], by evaluating the work
of various researchers, have proposed the application ofANN
techniques to achieve better results in future studies aimed at
forecasting solar irradiation. The ANN technique is one of
themost popular performance applications and iswidely used
in many areas such as optimization, regression, control, and
classification [50–52]. The basic unit of an artificial neural
network is a neuron, which uses a transfer function to formu-
late output. Choosing the number of neurons in the hidden
layer and the number of hidden layers for any artificial neural
network model is very complex. Often, one hidden layer is
sufficient for complex applications. The training behavior of
neurons depends on their activation function. Each input is
multiplied by a weight as a relationship parameter between a
neuron and several layers of neurons. A transfer function is
applied to obtain the neuron result in the final stage [51]. The
multi-layer network used in this study is presented schemat-
ically with input parameters in Fig. 3.

As can be seen in Fig. 3, the parameters of ambient tem-
perature, relative humidity, wind speed, and atmospheric
pressure, which are measured depending on the time param-
eters, are included in the first layer. According to the weights
assigned to neurons and the number of neurons in the latent

layer and the last layer, the total amount of solar irradiation
is accepted as the network output.

2.2 Study region

The study area is located in the province of Hakkari in the
southern part of the Eastern Anatolia Region with a sur-
face area of 9551 km2, accepting a sunshine duration of
approximately 14 h especially in summer, and high solar irra-
diation potential. Ahlborn brand “Almemo 2590Datalogger”
device with measurement sensors is used in the meteoro-
logical station at Hakkari University Çölemerik Vocational
School campus (N: 37.571799, E: 43.724936) located at an
altitude of 1755 m. above sea level. Some important geo-
graphical details of the study area and its appearance on the
map of Turkey are given in Fig. 4. The selected location has a
cold climate zone and has a very high value in terms of solar
irradiation value and sunshine duration. From this point of
view, the place chosen for the study is quite important. In
addition, the region chosen as the study area in the current
solar irradiation estimation studies in the literature has very
suitable areas for the installation of solar power plants and the
efficient operation of the system. For this reason, the results
obtained from this study are a guide for academic and invest-
ment studies to be made for the operation and operation of
solar energy systems. The fact that no study has been car-
ried out on the data obtained with real measurement values
in Hakkari adds innovation and contributes to the study.

2.3 Data

The actual data measured from the meteorological station
located at the campus of Hakkari University are used during
the design and verification phases. Solar irradiation is con-
stantly changing due to instantaneously changing weather
conditions, and it can be obtained better with the data mea-
sured in shorter intervals [53]. The data set consists of one
million data with a five-second period between 2019 and
2021. These measured data versus the measurement time
include solar irradiation, ambient temperature, wind speed,
relative humidity, and atmospheric pressure from the mea-
surement sensors. The chosen study area,Hakkari, represents
a region in which all four seasons with their respective
meteorological characteristics occur throughout the year.
Conducting measurements at short intervals, as frequent as
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Fig. 3 Schematic diagram of the
multi-layered ANN with the
inputs used in the study
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Fig. 4 Location and information of the study zone on the map of Turkey

Table 3 Meteorological record samples (data set sample)

Year Month Day Hour Min Sec Ambient temp.
(°C)

Wind speed
(m/s)

Relative
humidity (%)

Atmospheric
pressure (hPa)

Solar irradiation
(W/m2)

2019 03 12 06 22 49 2.3 0.0 100 812.2 2

2019 12 30 08 22 38 − 4.9 0.1 89.1 836.4 19

2020 06 26 11 49 38 30.5 1.0 21.6 818.4 957

2020 11 12 06 47 23 23.0 3.6 92.4 828.4 9

2021 01 19 07 54 17 − 1.0 0.3 100 821.5 11

2021 09 04 08 05 35 21.6 1.1 34.8 812.9 467
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every 5 s, and covering all seasons enables the collection
of comprehensive data. Interestingly, the obtained data not
only exhibit the unique characteristics of the study area but
also display similarities with other geographically compara-
ble regions within Turkey. Table 3 provides an example of
data obtained from other regions with similar characteristics
to the study area. As a result, this study benefits from an
extensive data set comprising long-term and multi-seasonal
measurements, along with diverse meteorological parame-
ters, indicating that the results obtained are likely applicable
to other regions as well.

The data set is divided into two subgroups:Adesign subset
including 800,000 pieces of data and a simulation test subset
including 200,000 pieces of data. Table 3 shows some exam-
ples of a data set sample. In this table, the first six columns
represent time parameters, and the last five columns represent
five meteorological records based on time parameters.

As shown in Fig. 5, the data obtained from the weather
station are divided into two parts: training and simulation.
The training data set is designed as 5% testing, 5% valida-
tion and 90% training data, 10% testing, 10% validation and
80% training data, 15% testing, 15% verification and 70%
training data, 20% testing, 20%verification and 60% training
data and 25% testing, 25% validation and 50% training data,
respectively. After completing the training stage, the simu-
lation was performed with randomly selected 200,000 data
which are not included in the training data set to simulate the
model and compare the results. The evaluation of all models
was made according to the simulation results.

2.4 Performance evaluation criteria

Prediction performance is an evaluationmetric that measures
how well a model matches the actual values and the accu-
racy of its predictions. Commonly used performance metrics
serve the purpose of evaluating the results of predictionmod-
els and comparing them with one another. As a dependency
scale metric, RMSE cannot be used for model comparison
across multiple data sets [38]. In this context, MSE, nRMSE,
MBE, MAPE, and R2 metrics have been used to compare
the performance success of prediction models. These per-
formance evaluation criteria, along with their equations and
explanations, are provided in Table 4.

In Table 4, N refers to the number of data; yı refers to
the true value of global solar irradiation; ŷi refers to forecast
value; yi refers to the average of the measured global solar
irradiation.

3 Results and discussion

In this research, ANN reaches the optimum result to estimate
the solar irradiation by changing the transfer function types

and the number of neurons in the hidden layer using trainlm,
trainscg, trainrp, traingd, and trainoss training algorithms.
Thus, in solar irradiation estimation studies, the performance
of transfer functions in network structures with small and
large neurons is determined in different training algorithms.
Tables 5, 6, 7, 8 , and 9 present the modeling results with
several conditions in the mentioned categories. A network
structure was modeled with ten inputs, a single layer, having
10 and 100 neurons to estimate the amount of solar irradiation
using ANN. Measurements of ambient temperature, wind
speed, relative humidity, and atmospheric pressure at inter-
vals of 5 s and the time parameters in the form of year, month,
day, hour, minute, and second are introduced to the input
layer. There is a neuron in the output layer since only one
parameter is considered as the network output. The “pure-
lin” function was selected as the conversion function for all
models, and the most efficient function type was determined
by using the transfer functions “logsig,” “poslin,” “tansig,”
“purelin,” “radbas,” “hardlim,” “tribas,” and “satlin” for hid-
den layers. Each model created in the ANN was tested five
times, and the best-performing model was determined.

Prediction performance metrics are used to evaluate the
accuracy of the model and compare the performance of
different models or methods. Lower error values indicate
better prediction performance, while higher error values may
indicate that the model needs improvement. However, each
metric has its own advantages and disadvantages. The most
appropriate metric should be selected depending on the type
of model and application area. In this study, the evaluation
results on the MSE metric on how the percentage change
of the data in the input layer of the ANN model in solar
irradiation estimation affects the solar irradiation estimation
performance according to the transfer functions and the train-
ing algorithms included in the ANN structure are shown in
Tables 5, 6, 7, 8, and 9.

When Tables 5, 6, 7, 8, and 9 are examined, ANN_II
determined the best predictive value for the “tansig” transfer
function as 97.58% using 15% test data with the “trainlm”
training algorithm.ANN_Imodel determined thebest predic-
tive value for the “logsig” transfer function as 96.25% using
15% test datawith the “trainlm” training algorithm. Both net-
work models showed similar predictive values when using
the “logsig” and “tansig” transfer functions. In these algo-
rithms, the resultswith the lowest performancewere obtained
using the “purelin” and “hardlim” functions. In this study, the
optimum result is reached by changing the function types and
the number of neurons in the hidden layer. The statistical per-
formance of the modeling results performed under the best
test conditions is presented in Tables 10, 11.

In line with the changes made on the data set, the effect of
the change of training algorithms and transfer functions on
the performance results shows little change. The reason for
this is that the ANN model is trained with a large number of
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Fig. 5 Data set layout for
training, verification, and testing
of solar irradiation forecasting
models
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Table 4 Performance metrics used in the study and their explanations

Metric Equation Explanation

MSE
MSE � 1

N

N
∑

i�1
(yi − ŷi )2

It is used to find the difference between the target and output that the neural network produces
in the training process. MSE is usually the parameter that is minimized by the training
algorithm

nRMSE RMSE �
√

1
N

∑N
i�1(yi−ŷi )2

yi
∗ 100

It is obtained by RMSE and the average value of the measured data. If the nRMSE is small,
the forecast model has a better performance. The success of the forecast model is considered
as follows
Excellent: nRMSE < 10%
Good: 10% < nRMSE < 20%
Moderate: 20% < nRMSE < 30%
Bad: nRMSE > 30%

MBE
MBE � 1

N

N
∑

i�1
(yi − ŷi )

It is an important metric for the long-term performance of forecast models. The smaller value
of MBE indicates that the forecast model has a better performance. A positive MBE means
an overestimate of the calculated value. A negative MBE indicates an underestimate in the
calculated value

MAPE
MAPE � 1

N

N
∑

i�1

(yi−ŷi )
yi

∗100 The average of the absolute values of the prediction errors is the percentage of the absolute
values of the actual data. The lower value of the MAPE is an indicator of the better
performance of the model. The success of the forecast model is considered as follows
High forecast: MAPE ≤ 10%
Good prediction: 10% < MAPE ≤ 20%
Reasonable prediction: 20% < MAPE ≤ 50%
Incorrect prediction: MAPE > 50%

R2
R2 � 1 −

∑N
i�1(yi−ŷi )2

∑N
i�1(yi−yi )2

It provides information about how well a model can predict a set of measured data. Its value
varies between 0 and 1. A value of R2 approaching 1 is an indication of better performance

Table 5 Prediction performance of “trainscg” training algorithm based on data set and transfer functions

Test data Network structure Trainscg

Logsig Poslin Tansig Purelin Radbas Hardlim Tribas Satlin

5% ANN_I 95.91 95.53 96.06 86.56 96.14 81.97 96.04 96.03

ANN_II 96.15 96.40 96.20 86.56 96.86 87.35 96.68 96.76

10% ANN_I 96.04 95.81 96.12 86.56 96.13 81.00 95.92 96.00

ANN_II 96.45 96.52 96.47 86.56 97.13 88.13 96.86 96.95

15% ANN_I 96.08 95.63 96.10 86.56 96.10 81.77 96.06 96.08

ANN_II 96.89 96.47 96.97 86.56 97.20 87.18 97.11 96.91

20% ANN_I 96.01 95.66 96.16 86.56 96.13 80.66 96.04 96.00

ANN_II 96.91 96.53 96.89 86.56 97.10 84.26 96.43 96.18

25% ANN_I 96.07 95.82 96.15 86.56 96.10 81.48 96.11 95.75

ANN_II 96.85 96.36 96.95 86.56 96.88 85.66 96.49 96.07
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Table 6 Prediction performance of “trainlm” training algorithm based on data set and transfer functions

Test data Network structure Trainlm

Logsig Poslin Tansig Purelin Radbas Hardlim Tribas Satlin

5% ANN_I 96.22 96.09 96.23 86.56 96.20 81.21 96.17 96.14

ANN_II 97.49 97.25 97.47 86.56 97.47 87.41 97.27 97.33

10% ANN_I 96.23 96.08 96.20 86.56 96.19 81.12 96.12 86.15

ANN_II 97.47 97.25 97.47 86.56 97.16 88.07 97.29 97.31

15% ANN_I 96.25 96.09 96.21 86.56 96.20 81.71 96.08 96.17

ANN_II 97.41 97.24 97.58 86.56 97.24 87.93 97.19 97.22

20% ANN_I 96.23 96.15 96.22 86.56 96.18 80.68 96.11 96.15

ANN_II 96.89 96.91 96.90 86.56 96.54 86.53 96.98 97.12

25% ANN_I 96.22 96.11 96.24 86.56 96.17 81.21 96.14 96.17

ANN_II 97.18 96.95 96.91 86.56 97.23 87.09 97.11 97.25

Table 7 Prediction performance of “trainrp” training algorithm based on data set and transfer functions

Test data Network structure Trainrp

Logsig Poslin Tansig Purelin Radbas Hardlim Tribas Satlin

5% ANN_I 96.09 95.93 96.06 86.56 96.08 82.96 96.01 95.96

ANN_II 96.89 96.23 96.83 86.56 96.98 87.52 96.82 96.58

10% ANN_I 96.07 95.91 96.12 86.56 96.10 81.68 96.02 96.02

ANN_II 96.80 96.70 96.70 86.56 96.88 87.61 96.90 96.71

15% ANN_I 96.12 95.84 96.06 86.56 96.10 81.69 96.02 96.02

ANN_II 96.90 96.63 96.63 86.56 96.93 87.37 96.93 96.83

20% ANN_I 96.06 96.00 96.08 86.56 96.08 81.92 96.04 96.10

ANN_II 96.68 96.91 96.58 86.56 96.59 83.69 96.74 96.99

25% ANN_I 96.11 95.90 96.06 86.56 96.13 83.24 96.09 96.04

ANN_II 96.92 96.25 96.71 86.56 96.78 85.69 96.56 96.68

Table 8 Prediction performance of “traingd” training algorithm based on data set and transfer functions

Test data Network structure Traingd

Logsig Poslin Tansig Purelin Radbas Hardlim Tribas Satlin

5% ANN_I 91.05 94.90 94.12 86.56 92.80 79.92 90.01 90.16

ANN_II 91.55 94.92 94.82 86.56 93.20 80.13 92.13 90.88

10% ANN_I 90.30 95.10 94.50 86.56 92.62 78.13 91.12 90.28

ANN_II 92.16 95.46 95.62 86.56 93.28 79.26 93.46 92.61

15% ANN_I 92.22 95.14 94.66 86.56 92.10 78.69 90.05 90.55

ANN_II 92.98 95.63 94.79 86.56 92.53 80.12 91.25 90.92

20% ANN_I 89.66 94.25 94.12 86.56 91.28 77.23 90.53 89.22

ANN_II 90.13 94.69 94.56 86.56 91.99 79.36 91.33 90.19

25% ANN_I 89.92 94.01 93.92 86.56 91.12 77.56 90.11 90.33

ANN_II 90.25 94.83 94.22 86.56 92.13 78.52 90.91 91.05
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Table 9 Prediction performance of “trainoss” training algorithm based on data set and transfer functions

Test data Network structure Trainoss

Logsig Poslin Tansig Purelin Radbas Hardlim Tribas Satlin

5% ANN_I 95.90 95.60 95.80 86.56 96.00 80.70 96.00 96.00

ANN_II 96.00 96.00 96.10 86.56 96.10 81.20 96.10 96.10

10% ANN_I 95.80 95.90 95.90 86.56 96.00 80.40 96.00 96.10

ANN_II 95.90 96.00 96.10 86.56 96.20 87.50 96.50 96.20

15% ANN_I 95.80 96.00 95.90 86.56 96.00 82.00 96.10 96.10

ANN_II 96.00 96.20 96.10 86.56 96.90 87.20 96.80 96.90

20% ANN_I 96.00 96.10 96.00 86.56 96.00 81.40 96.10 96.00

ANN_II 96.00 96.30 96.20 86.56 96.90 87.10 96.80 96.70

25% ANN_I 95.90 95.80 96.10 86.56 96.00 81.00 96.20 96.10

ANN_II 96.00 96.10 96.20 86.56 96.10 87.00 96.40 96.00

data sets. The ANNmodel can analyze the changes in almost
all meteorological data sets during the training phase and can
showsuccessful performance results during the testing phase.
However, it can still be suggested to use “15%” test data,
“trainlm” training algorithm, and “tansig” transfer function in
solar irradiation estimation studies using a data set consisting
of basic meteorological parameters.

Successful results could not be obtained in solar irradia-
tion estimation by using the “traingd” training algorithm and
“satlin” and “purelin” transfer functions used in the study.
The reason for this is that the training algorithm is a network
training function that updates theweight and deviation values
according to the gradient descent, while the network model
is running. Because “trainlm” is a network training function
that updates the weight and bias values according to LM
optimization, and it also contains more memory than other
training algorithms; very successful results can be obtained
in solar irradiation estimation studies. The results of the fore-
cast performance shown in Tables 5, 6, 7, 8, and 9 and the
evaluation metrics shown in Tables 10, 11 demonstrate this
situation.

In this research, the optimum result is reached by changing
the function types and the number of neurons in the hidden
layer. Tables 10, 11 give the statistical performance of the
modeling results for ANN_I and ANN_II performed under
the best test conditions. In Tables 5, 6, 7, 8, 9, 10, and 11 all
of the methodologies used throughout the study were used
in the same way. Within the scope of the study, the effects of
all existing functions and data set changes were explained in
detail and their performance values were analyzed.

Figures 6a and 7a show slight deviations between the fore-
cast data and the measurement data depending on the time
series in the most successful functions using the ANN_I and
ANN_II models. Figures 6b and 7b show the worst predic-
tion success in the same models. In these shapes, a solid line

represents the actual value, and a dashed line represents the
predicted value.

In the ANN-I model, the prediction error nRMSE ranges
from 8.947 to 20.749. Based on the nRMSE performance
metric intervals shown in Table 4, it is evident that the worst
prediction result was obtained with the “traingd” training
algorithm and the “hardlim” transfer function used in the
ANN model. On the other hand, the most successful model
achieved an nRMSE value of 8.947, utilizing the “trainlm”
training algorithm and the “tansig” transfer function.

In the ANN-II model, the prediction error nRMSE ranges
from 7.354 to 20.167. In this neural network model, the most
successful prediction performance was observed with an
nRMSE value of 7.354, achieved using the “trainlm” training
algorithm and the “tansig” and “radbas” transfer functions.
However, it is worth noting that although the “tansig” transfer
function resulted in a higher correlation coefficient, it is rec-
ommended for better performance. On the other hand, when
the same network structure was tested with the “trainoss”
training algorithm, the “hardlim” transfer function exhibited
significantly poor performance.

In all the developed models except for the ones created
using the “purelin” and “hardlim” functions, it is observed
that the R index has a high value. However, since this index
shows little variation depending on the number of neurons
and layer functions, it is not appropriate to use it in the evalu-
ation of models. During the modeling process, better results
can be achieved by increasing the number of hidden layers.
However, increasing the number of neurons may also lead to
longer computation times andpotentially reduce the accuracy
of the modeling. For predicting solar irradiation using mete-
orological parameters, the ANN_I model with the “trainlm”
training algorithm and the “logsig” transfer function, as well
as the ANN_II models with the “tansig” transfer function,
was selected as the optimal neural network models among
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Fig. 6 Comparison of forecast and measurement data based on time series of the most successful and worst situation in ANN_I
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Fig. 7 Comparison of forecast and measurement data based on time series of the most successful and worst situation in ANN_II
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Fig. 8 Solar irradiation predicted by ANN_I and ANN_II using the “trainlm” training algorithm
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Table 12 Simulation results for R2 and MAPE

Model name R2 MAPE

ANN_I (LM_logsig) 0.9412 7.82

ANN_II (LM_tansig) 0.9570 6.79

the developed models. Figure 8a, b illustrates the variations
in predicted solar irradiation by the most successful ANN
models.

In the charts in Fig. 8, the vertical axis is the prediction
values and the horizontal axis is the actual values. According
to the simulation results, the correlation coefficient (R) for
the prediction values is shown in the graphs. R � 1 means
that there is a definite linear relationship between the mea-
sured value and the actual value. As can be seen in Fig. 8a,
most of the point for the most successful function in the
ANN_I model, “logsig,” is scattered along the diagonal line.
In Fig. 8b, the points for the “tansig” transfer function in the
ANN_II model are located more collectively and regularly
on the diagonal line. This is an indication that the forecast
results are successful. In addition, the results revealed that
the prediction values had high precision. The determination
coefficient (R2) represents the percentage of data closest to
the best line of compliance of the overall data set for a given
station. Within the scope of this study, the R2 and MAPE
results calculated for the LM algorithm ANN_I and ANN_II
that give the best results in the prediction of instantaneous
solar irradiationusing theparameters recordedby theweather
station are shown in Table 12.

The R2 results clearly show that the predicted instanta-
neous solar irradiation values are very close to the values
measured by the selected ANN_I and ANN_II model.
MAPE results are highly accurate as they perform below
10%. Therefore, from the statistical error analysis shown in
Tables 10, 11, and 12, it can be concluded that the ANNmod-
els created with the LM training algorithm and “tansig” and
“logsig” transfer functions performed well compared to the
data set sample used in this study. Furthermore, the current
study confirms the ability of the identified ANN models to
accurately predict solar irradiation values for all regions with
similar meteorological data located in and around Hakkari.

In this study, solar irradiation estimation studies were car-
ried out using ANN, and results were obtained depending
on the transfer functions affecting the prediction result and
the network structure. In the study, the most commonly used
training algorithms and transfer functions in the literature
have been employed. During the training phase, solar irradi-
ation prediction results were obtained using an ANN model
with randomly selected test data from the total data set, which
was different from the data set used for training. In addition,
many tests were performed on several ANN-based network

structures created. The simulation results show that highly
accurate predictions can be obtained in the ANN’s solar
irradiation prediction. It has also been observed that the per-
centage of the estimate changes in theANNwhen the test data
and training data change. Tests were carried out on two dif-
ferent training algorithms with looping on the eight different
transfer functions, and it was tried to determine the algorithm
and function type that would give the best response to the
system under similar conditions. Although these cycles for
the study yielded prediction values, the algorithm that gave
the best results was “trainlm” and the best transfer function
was “logsig” in networks with small neurons and “tansig” in
networks with large numbers of neurons. Deviation values
depending on the number of repetitions as the results of the
comparison are shown in Fig. 9.

4 Conclusion

This study creates a neural network model of different net-
work structures to predict solar irradiation fromamultivariate
time series data set consisting of meteorological data for the
Hakkari Province of Turkey. The comparison of these neural
network models was then evaluated by a set of performance
metrics.

This assessments provides a better view of the training
and transfer functions in the network structure in predicting
solar irradiation, as well as the contribution of neuron counts
in the hidden layer to the performance. Identifying condi-
tions that affect forecast accuracy helps in many applications
where solar irradiation is the main factor. In the study, the
ANN_II network structure of 100 neurons created using the
“trainlm” algorithm and the “tansig” transfer function per-
formed best. In addition, according to the results obtained in
the network structures created by using regional meteorolog-
ical data, “logsig” and “tansig” transfer functions, especially
with “trainlm” training algorithm, produced a prediction suc-
cess rate of approximately 97%. The same transfer functions
showed successful results in the “trainscg” and “trainoss”
training algorithms. The performance criteria used to evalu-
ate the models were found satisfactory considering the size
of the data set. In the analyses made with the “traingd” and
“trainrp” training algorithms, the prediction success in all
transfer functions showed worse results. Therefore, to use
both training functions in solar irradiation forecasting using
meteorological parameters is not recommended. A large,
more diverse data set with more parameters in different cli-
matic conditions can be used to create models that will help
to provide even better results in the future. It can also be
a guide for monitoring and optimizing the results of solar
power plants that we will benefit more from in the future.

Finally, it is not yet possible to empirically measure the
total solar irradiation at all locations on the Earth, and it also
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Fig. 9 Deviation values
depending on the number of
repetitions for functions used in
the ANN_II model
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requires specialized and expensive equipment with advanced
systems. Furthermore, developing the neural network mod-
els will help the prediction of the solar irradiation accurately
since that process. For this reason, the ANN-based solar irra-
diation estimation models are recommended to replace with
the experimentalmeasurements andmethods basedon empir-
ical relationships.
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