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Abstract
Owing to the stochastic behavior of renewable energy activity and the multiple design considerations, the advancement of
hybrid renewable energy-based microgrid (HREMG) systems has become a complex task. This study proposes a design
optimization algorithm for the long-term operation of an autonomous HREMG along with the optimal system capacities. The
investigated energy system comprises photovoltaic panels, wind turbines, diesel generators, and batteries. It aims to energize
a remote coastal community with a daily load demand of 400 kWh in Marsa Matruh, Egypt. Since most studies utilize
commercial tools in the design optimization procedure, the African vultures optimization approach (AVOA) is developed to
find the optimal energy alternative and determine the optimal component’s capacity considering achieving theminimumenergy
cost and loss of power supply probability. Moreover, an adequate energy management strategy is suggested to coordinate
the power flow within the energy system in which renewable energy sources are fully penetrated. To check the AVOA
robustness and efficacy, its performance is compared with the HOMER Pro most popular commercial tool as well as with new
metaheuristic algorithms, namely the grasshopper optimization algorithm (GOA) and Giza pyramid construction (GPC) under
the same operating environment. The results revealed that the proposed AVOA achieved superior economic results toward the
least net present cost ($346,614) and energy price (0.0947 $/kWh). Moreover, over 20 independent runs, the AVOA showed
a better performance in terms of convergence and execution time compared to other tools/algorithms. The obtained findings
could be a useful benchmark for researchers in the sizing problem of hybrid energy systems.

Keywords Capacity planning · Metaheuristic optimization · African vultures optimization approach · Energy–economic–en-
vironmental analysis · Hybrid renewable energy systems

1 Introduction

1.1 Background and context

In 2019, the number of people without access to electricity
reached 770 million who mostly live in sub-Saharan Africa,
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rural areas, or developing Asia [1]. Despite the global efforts
and progress for the energy access policies to achieve devel-
opment and sustainable electricity for all, it is estimated that
about 670 million people will still lack access to electric-
ity by reaching 2030 [2, 3]. These developments were based
only on fossil energy which causes a global fossil energy cri-
sis and environmental problems [4, 5]. Consequently, much
focus has been given renewable energy sources (RESs) such
as wind, solar, wave, and hydroelectric due to their various
advantages such as low running cost, clean, and rich char-
acteristics [6, 7]. The huge development of RESs can be
realized in Fig. 1a and b which describes the most recent
indicators for both country and technology, respectively [8].
From Fig. 1a, energy generation from PV and wind tech-
nologies combined offer about 68% of the RESs. As China
stays at the top of the PV market in the world, a signifi-
cant reduction in new PV facility embellishments occurred
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in 2020 due to COVID-associated interruptions. RESs are
expected to cover 99% of global demand growth by 2025
as shown in the last statistics offered by the IEA in Fig. 2
[7].
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Fig. 1 RESs growth by a country and b technology [8]

Although thewind and solar energies have fast growth, the
randomness and intermittence make the system an exces-
sive size when only one energy source is used [9]. Also,
this randomness reduces the reliability of the standalone
system since the generated energy is influenced by both
solar irradiance and wind speed variabilities [10]. More-
over, RESs require a high cost of investment besides the
large land area for construction. To overcome the problem of
weather variability, energy storage systems (ESSs) are inte-
grated with these sources to form hybrid renewable energy
systems (HRESs). Although the use of ESS ensures a steady
power supply for load leveling, they increase the total sys-
tem cost and reduce the energy conversion efficiency [11,
12]. Also, to overcome the cost issue, optimal planning and
capacities of systems’ components should be accomplished.
Recently, HRESs are developed as a green and cost-effective
solution for reliability, cost, land area issues, and techno-
environmental challenges of conventional sources. The use
of the HRESs in standalone or grid-connected applications
has been addressed in many studies [15–18]. The optimal
capacity planning problem of HRES can be solved using dif-
ferent metaheuristic algorithms (MA) as reviewed in [19,
20], and [21] or via various commercial software tools
such as Hybrid Optimization Model for Electric Renewables
(HOMER) [22],HybridOptimization byGeneticAlgorithms
(iHOGA) [23], REopt [24], System Advisor Model (SAM)
[25], PVWatts [26], and RETScreen [27].

Fig. 2 Growth of electricity demand and RESs in TWh between 2019 and 2025 [7]
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1.2 Literature survey

Considering the scope of this paper, this survey focuses on
studies that employed metaheuristic algorithms, commercial
software, or both.Table 1 summarizes the different up-to-date
studies that addressed the problem of HRES optimal plan-
ning. HOMER software has been widely used in countless
researchworks employing different types of energy solutions
for distinct kinds of load demand. For example, the float-
ing PV units were utilized to feed a small electrical system
in Bangladesh where the techno-enviro-economic investi-
gations were discussed to present the mini-system profits
[28]. In [29], the authors developed a systematic techno-
enviro-economic design optimization for a PV, wind, diesel,
and batteries energy production system using HOMER. The
results revealed that the optimal solution has a TNPC of
351,223 $ and COE of 0.2262 $/kWh. In [30], HOMER was
used to optimize the cost of 13 scenarios that consist of a
hydrogen system, PV, wind, and grid. The authors in [31]
used HOMER to investigate optimal solutions regarding the
energy, economic, and environmental of an HRES connected
with a desalination plant in the newcapital airport inEgypt. In
another study, the authors in [32] reported using the HOMER
software to investigate the techno-economic sustainability
of the HRESs using different elements such as PV, wind,
pumped hydro storage, diesel, and batteries.

The MA have been broadly used in a wide range of appli-
cations in the electric power system; this is due to their
various applicability merits [33, 34]. Nevertheless, the appli-
cations of the MA are not limited to the field of power
systems. In [35], the cyclical parthenogenesis algorithm was
employed for layout optimization of truss structures with
frequency constraints. Also, the authors in [36] introduced
plasma generation optimization as a new physically based
metaheuristic algorithm for solving constrained optimiza-
tion problems. In [37], the dolphin echolocation optimiza-
tion algorithm was introduced to reduce the computational
efforts and time which remain the main challenges that
face theMA users. Another efficient metaheuristic optimiza-
tion algorithm, namely colliding bodies optimization (CBO),
was introduced in [38]. The presented algorithm developed
straightforward formulation to discover minimum or maxi-
mumof functions and does not rely on any interior parameter.
Besides, an enhanced version of the CBO algorithm was
addressed in [39] for design problems with discrete and con-
tinuous variables as well as to escape from local optima
dilemma. Likewise, another physically inspired non-gradient
algorithm, namely water evaporation optimization (WEO),
was developed for solution of global optimization problems
to impersonator the evaporation of a small quantity of water
particles on the solid exterior [40].

The HOMER and the MA were implemented in different
articles to compare and assess their performances. In [41], the

GWO was applied to achieve the optimal techno-economic
PV/wind/battery system sizes for Ras Shaitan in Egypt. The
obtained results achieved by GWO are compared with those
of PSO, WHO, and GA. The study focused only on meet-
ing the load requirements and minimizing the COE. In [42],
fuzzy logic controller is used in the GSA to determine the
effect of the batteries and diesel systems in the HRESs. In
another relevant study [43], the economic and environmental
aspects were compromised for hybrid PV/wind energy and
batteries using the diesel generator as a spare source. The
proposed method is achieved using GA and PSO, and the
results are compared with HOMER. The optimal COE and
CO2, which GA and PSO accomplish, have the lowest val-
ues compared with that obtained using HOMER software. In
[44], the authors proposed amethod to optimize the PV,wind,
and battery hybrid systems for a specific region in Manipur
using a backtrack search algorithm. The obtained results are
compared with HOMER by considering the number of wind
turbines, PV units, batteries, cost, fluctuation rate, and LPSP.
Meanwhile, the authors in [45] used demand–supply man-
agement with PSO to design the optimal off-grid systemwith
PV, diesel generator, and battery to energize residential build-
ings. The results were compared with HOMER considering
the economic, technical analyses, and sensitivity evaluation
in terms of TNPC, COE, RF, and CO2.

Recently, AVOA has been proposed and used to achieve
different objectives such as tuning the gains, optimal recon-
figuration, and optimal sizing [46–48]. In [46], the AVOA
is just proposed instead of the PSO to tune the gains of the
proportional-integral (PI) controllers for extracting the max-
imum power from the PV and wind systems. Meanwhile, in
[47], the AVOA is adopted in the PV system to overcome the
partial shade condition (PSC) where this phenomenon has a
negative effect on the PV array which increases the power
loss, causes hot spots, and reduces the generated power. Fur-
ther, in [48], the AVOA is presented to obtain the optimum
configuration for a HRESs. The HRESs in this study con-
sist of FC/wind/PV where the grid is the main factor in this
investigation. The purpose of this study was to determine the
optimal number of HRES components to achieve the lowest
TNPC and LOPSP. Although the obtained results have been
compared with other MAs, they have not been compared
with any commercial software such as HOMER. In addition,
the results are used for supplying a building in Ahvaz, Iran,
although the main factor was the grid. In [49], an evaluation
of PV/WT hybrid renewable energy system forecasting and
sizing techniques has been presented.

1.3 Research gaps and contributions

To the best author’s knowledge, the proposed AVOA
has not been employed before in the optimal sizing
of the ISOLATED SYSTEM, which is based on a
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PV/wind/battery/diesel energy system; different attempts
have already been accomplished using distinct MA or com-
mercial software (see Table 1). Besides, most existing studies
focus only on economic, technical, or environmental objec-
tives or a combination of them, ignoring reliability and
emission penalty constraints, except [51]. In addition, there
is a lack of depth analysis for both MA and commercial
software in depth. Driven from the research gaps, the key
contributions of the study can be summarized as follows:

• Developing a robust mathematical model for an
autonomous solar/wind/diesel/battery/converter HRES to
power the 24-h load demand of a remote urban com-
munity in Marsa Matruh city, Egypt, considering actual
load and renewable resources data. Meanwhile, presenting
an adequate energy management strategy is suggested to
coordinate the power flow between various energy sources
in RESs which are fully exploited.

• Proposing a new application of the AVOA optimization
algorithm to determine the optimal configuration and com-
ponents’ capacities of theHRESunder study.Theobjective
function is formulated as multiple objectives to minimize
the total net present cost and CO2 emissions while main-
taining the system’s loss of power supply reliability at the
lowest level.

• Validating and comparing the performance of the AVOA
with HOMER, the trusted global standard software in
hybrid power system modeling, and up-to-date meta-
heuristic methods of the grasshopper optimization algo-
rithm (GOA) and the Giza pyramid construction (GPC).

• Providing a systemic and comprehensive energy–eco-
nomic–environmental analysis of the winning HRES
design to understand better the system behavior with the
proposed solution based on AVOA.

1.4 Paper organization

Besides the introduction described in Sect. 1, the mathemati-
cal models of the proposed HRES components are presented
in Sect. 2. The problem formulation and the employed
AVOA-based metaheuristic optimization are discussed in
Sects. 3 and 4. The obtained simulation and optimization
results considering the adopted case study data used are dis-
cussed and analyzed in Sects. 5 and 6. Finally, the most
important conclusions are summarized in Sect. 7.

2 System description andmathematical
modeling

Before the optimization procedure, employing the appro-
priate mathematical modeling of the PV/WT/DslG/BESS

hybrid systems illustrated in Fig. 3 is a prerequisite. A
description of the technical and economic specifications of
the HRES is given in Appendix. Also, the detailed mathe-
matical modeling of each component in the system is offered
in Supplementary.

3 Formulation of the design optimization
problem

In this section, the design criteria and constraints, as well
as the objective function of the optimization problem, are
formulated and discussed.

3.1 Design criteria

3.1.1 Total net present cost

Different criteria are used to examine the feasibility and
performance of HRES. However, the total net present cost
(TNPC) (also called total life cycle cost) approach is yet used
as a benchmark criterion for the economic analysis of HRES
[50]. This is because TNPC represents all outlay and income
costs over the project lifetime by summating the capital cost
(CapC), the operating and maintenance cost (O&MC), the
replacement cost (RepC), the fuel cost (FuC), and the sal-
vage cost (SavC) as in Eq. (1).

TNPC � CapC + O&MC + RepC + FuC − SavC (1)

The entire CapC of the HRES is calculated by Eq. (2)
in which CPV_Cap, CWT_Cap, CDslG_Cap, CBESS_Cap, and
CConv_Cap are the initial capital costs of the PV, WT, DslG,
BESS, and converter, respectively. Also, NPV, NWT, NDslG,
NBESS, and NConv are the number of PV modules, WTs,
DslGs, BESS, and converter, respectively.

CapC � (
NPV × CPV_Cap

)
+

(
NWT × CWT_Cap

)
+

(
NDsIG × CDslG_Cap

)

+
(
NBESS × CBESS_Cap

)
+

(
NConv × CConv_Cap

)
(2)

The FuC of the hybrid system, which is represented in the
DslG, can be calculated by Eq. (3), where FC/yr is the total
yearly fuel consumption in liters.

FuC � FC/yr ×
N∑

i�1

1

(1 + Dr)
i

(3)

The annual O&MC of the system’s components is calcu-
lated by Eq. (4) in which CPV_o&m, CWT_o&m, CDslG_o&m,
CBESS_o&m, and CConv_o&m are the operation and mainte-
nance costs of the PV, WT, DslG, BESS, and converter,
respectively. Also, Dr, Noi, I r, and N are the discount rate,
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Fig. 3 Representation of the proposed HRES system: a schematic diagram and b model using HOMER Pro

nominal interest rate, inflation rate, and project lifetime,
respectively.

O&MC � ((
NPV × CPV_o&m

)
+

(
NWT × CWT_o&m

)

+
(
NDsIG × (

CDslG_o& m + FC/yr
))

+
(
NBESS × CBESS_o&m

)

+
(
NConv × CConv_o&m

)) ×
N∑

i�1

1

(1 + Dr)
i

(4)

where Dr � Noi−Ir
1+Ir

.
Since the lifetime of DslG, BESS, and the system con-

verter is usually shorter than the project lifetime, theymust be
substituted at some stage during the project lifetime. There-
fore, theRepCof the system’s elements is expressed inEq. (5)
in which CDslG_rep, CBESS_rep, and CConv_rep are the replace-
ment costs of theDslG, BESS, and the converter, respectively.
Also, Nc is the lifetime of each component, and Nr is the
number of the needed replacement for the system compo-
nents.

RepC �
⎛

⎝NDsIG × CDslG_rep ×
Nr∑

j�1

1

(1 + Dr)
j×Nc

⎞

⎠

+

⎛

⎝NBESS × CBESS_rep ×
Nr∑

j�1

1

(1 + Dr)
j×Nc

⎞

⎠

+

⎛

⎝NConv × CConv_rep ×
Nr∑

j�1

1

(1 + Dr)
j×Nc

⎞

⎠

(5)

where Nr � � Nc
N � − 1

The salvage cost is the estimated resale value of HRES
at the end of its lifetime. It is subtracted from the cost of
a fixed asset to determine the amount of the asset cost that

will be depreciated. It can be expressed as given in Eq. (6)
where T rem is the remaining time of the component, which is
calculated using Eq. (7). The cost data used to calculate the
life cycle cost of theHRES are given in Table 10 inAppendix.

SavC �
(
NominalRepC

(1 + Dr)
N

)[
Trem
Nc

]
(6)

(7)

Trem � ∣
∣N − (

last time of replacement + Nc
)∣∣ last time of replacement

� Nr ∗ Nc

3.1.2 Penalty of emissions

When the diesel generator is running, it produces differ-
ent harmful gases such as carbon dioxide (CO2), carbon
monoxide (CO), sulfur dioxide (SO2), and nitrogen oxides.
However, carbon dioxide has the dominant quantity, and it
harms the surrounding environment. So, the penalty cost of
the gas emissions will be applied only to the Co2 emissions
as in Eq. (8) in which PnR (30 $/ton) is the penalty rate of
the environmental policies in the country.

PnCE � CO2 emissions/yr × PnR (8)

3.1.3 Cost of energy

The COE is commonly used to calculate the financial via-
bility of HRESs in which the CRF represents the capital
recovery factor during the project lifetime, as represented
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in Eq. (9) [59].

COE �
(
TNPC + PnCE
∑8760

t�1 EL(t)

)

× CRF (9)

where CRF � Dr×(1+Dr )
N

(1+Dr )
N−1

3.2 Design constraints

3.2.1 Capacity constraints

The capacity constraints of the four components in the system
are subjected to the constraints shown in Eq. (10). Besides,
NPV,max, NWT,max, NDslG,max, and NBESS,max are the maxi-
mum number of PV panels, wind turbines, diesel generators,
and batteries, respectively.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ NPV ≤ NPV,max

0 ≤ NWT ≤ NWT,max

0 ≤ NDslG ≤ NDslG,max

0 ≤ NBSS ≤ NBESS,max

(10)

3.2.2 Battery lifetime constraints

The energy collected in the BESS is restricted by the state
of charge (SOC) limits as represented in Eqs. (11–13) [60],
whereas VBESS and CBESS are the BESS’ voltage and rated
capacity in Ahr, respectively.

EBESS,min ≤ EBESS(t) ≤ EBESS,max (11)

EBESS,max � SOCBESS,max × (NBESS × VBESS × CBESS)

(12)

EBESS,min � SOCBESS,min × (NBESS × VBESS × CBESS)

(13)

3.2.3 Diesel generator operational constraints

Since the performance of theDslG becomesmore effective at
greater load demand, theminimumnecessary load is adjusted
at 40% of the DslG nominal power. Consequently, the DslG
can work after fulfilling the limitation displayed in Eq. (14)
[61] in which ηConv is the converter efficiency.

EL(t)

ηConv
≥ PDslG, rated × �t (14)

3.2.4 System reliability constraints

Power system reliability is defined as the capability of this
system to offer uninterruptible energy for a specific time at
particular conditions. The reliability in this study is assessed
utilizing the LPSP factor, which is defined by the hourly loss
of power supply (HLPS) and hourly energy load demand
EL(t). TheHLPS is determined based on the hourly produced
energy, load demand, andBESSenergy levels. TheHLPSand
LPSP are calculated using Eqs. (15) and (16), respectively
[62]. The objective function is subject to a reliability index
of 0% LPSP.

HLPS (t) � EL (t)

ηConv
− EG (t)

− (
(1 − α) × EBESS (t − 1) − EBESS_min

)

× ηrtp

(15)

(16)LPSP �
∑8760

t�1 HLPS (t)
∑8760

t�1 EL (t)

3.3 Objective function

The objective function for the optimal design of the HRES
is formulated to minimize the TNPC in $ and penalty cost
associated with the carbon emission (PnCE) in $, subject
to maintaining various constraints. The summation of the
two terms represents the overall cost incurred by the HRES
throughout its lifetime period. The objective function for the
optimal design of the HRES is formulated to minimize the
TNPC and penalty cost associated with the carbon emission
subject to various constraints. The objective function (ObjFn)
principally hinges on four numeral decision parameters (i.e.,
number of PV panels (NPV ), wind turbines (NWT ), diesel
generators (NDslG), and batteries (NBESS). The optimization
formula is described in Eq. (17).

(17)

ObjFn � minLC (NPV , NWT , NDslG , NBESS)

�
min∑

e�PV ,WT , DslG, BESS,Conv

(TNPC + PnCE)e

4 Proposed solutionmethod

4.1 The African vultures optimization algorithm

This approach is one of the metaheuristics that can solve
various optimization problems. It has been inspired by the

123



4506 Electrical Engineering (2023) 105:4499–4523

lifestyle of African vultures [63]. These vultures are con-
sidered environmentally beneficial animals that can prevent
the carcass from stretching and infecting. Also, they play an
important extra-terrestrial role, and their destruction poses
several serious risks to human health. They are distributed
around the world except in Australia and Antarctica. In
recent years, their population has started to decline, and
they are more popular in African countries and follow the
same lifestyle to find food and sometimes fight each other
for food [64]. The African vultures can be split into three
categories [65]. The first category includes the vultures,
such as the front-footed vulture, which are more likely to
be preyed upon than others due to their healthy physical
condition. The second category includes vultures that are
physically weaker than the first type, such as white-backed
African gyps. The last category includes vultures that are
physically weaker than the other two categories, such as the
Necrosyrtes monachus hooded vulture. The AVOA follows
the behavior of the African vulture during the foraging and
navigation behavior to find the optimal solution to a prob-
lem. The following subsections will present the steps in the
AVOA optimization approach and how AVOA can be used
to solve the design challenges of the HRESs in the city of
Marsa Matruh.

The complete pseudocode of the AVOA is described in
Algorithm 1. It is assumed that N vultures, representing the
initial population of a problem, live in a particular environ-
ment. Vultures are physically divided into two groups in their
natural environment. The first group was designed to com-
pute thefitness function (i.e., objective function) for the entire
original population and select the best positions for the first
and second vultures. In contrast, the other group forms a
population to shift or replace the best two vultures in each
presentation. The AVOA optimization algorithm consists of
four steps to find the optimal solution to a problem.

4.1.1 Finding the best vulture in any group

The best and second-best vultures are selected after the ran-
domly initial population is evaluated throughout the objective
function. At the same time, the other possible solutions move
to the first and second groups by using Eq. (18). In addition,
a new population is recalculated for each fitness function.

R(i) �
{
BestVulture1 ifpi � L1

BestVulture2 ifpi � L2
(18)

whereBestVulture1 is the best vulture in thefirst groupduring
the current iteration, BestVulture2 is the best vulture in the
second group during the current iteration, and L1 and L2 are
the parameters that should be measured before starting the
search process and their sum equals one. The probability of

choosing the best solution is determined by selecting each of
the best solutions for each group using a roulette wheel, as
in Eq. (19), where F is the rate of vultures’ starvation.

pi � Fi∑n
i�1 Fi

. (19)

4.1.2 Defining the rate of vultures’ starvation

A vulture’s behavior while searching for prey depends on
its energy. When satisfied, vultures can travel long distances
in search of prey. However, if they are hungry and unable
to find prey due to a lack of flying energy, they will forage
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from more closed-up vultures and exhibit aggressive behav-
ior. Satisfaction levels can be modeled using Eqs. (20) and
(21).

t � h

(
sinw

(
π

2

i

MaxIT

)
+ cos

(
π

2

i

MaxIT

)
− 1

)
(20)

F � (2rand1 + 1)z

(
1 − i

MaxIT

)
+ t (21)

where i is the current iteration number, the MaxIt iteration
is the total number of iterations, w is a constant number that
should be set before running the AVOA, and both z and h are
random numbers. The range of z is [− 1, 1], while h is in the
range of [− 2, 2]. When z is greater than zero, the vulture
will be satisfied, while the vultures are starved if it is below
zero.

4.1.3 Exploration phase

Vultures can travel long distances in search of food for long
periods of time. They have high visual abilities and high abili-
ties to detect prey and dry animals. They can explore different
random areas using two strategies, where the parameter P1

can control the selected chosen. Furthermore, P1 should be
randomly selected from the range of [0, 1] before the search
operation. In this way, the methodology of these two strate-
gies can be defined by Eqs. (22–25).

P(i + 1) �
{
Eq. (23) ifP1 ≥ randP1
Eq. (25) ifP1 < randP1

(22)

P(i + 1) � R(i) − D(i)F (23)

D(i) � |XR(i) − P(i)| (24)

P(i + 1) � R(i) − F + rand2((ub − lb) rand3 + lb) (25)

where P(i + 1) is the position vector of the vulture during the
following iteration step, R(i) is one of the best vultures in the
current iteration, ub and lb are the lower and upper bound of
the variables, X is the vultures that move randomly to protect
food from other vultures, and rand3 is a random number to
increase the coefficient of random nature while solving the
problem.

4.1.4 Exploitation phase

During the exploitation stage, the efficiency of the AVOA
can be investigated. Two strategies are available at this stage,
depending on the parameters P2 and P3. The parameter P2 is
used for the first phase, while P2 is employed for the second

Fig. 4 Food competition for position vectors [63]

phase. These two parameters can have a value between 0 and
1 and must be evaluated before each phase is started.

First phase If the absolute value of F is between 1 and
0.5, then the AVOA enters this first phase. It is controlled by
Eq. (26). The powerful vultures do not like to share their prey
with other vultures, as shown in Fig. 4. During this time, the
weaker vultures will try to feed around the healthy vultures
and cause some disturbance, which can bemodeled as in Eqs.
(27) and (28).

P(i + 1) �
{
Eq. (27) ifP2 ≥ randP2

Eq. (30) ifP2 < randP2
(26)

P(i + 1) � D(i)(F + rand4) − d(t) (27)

d(t) � R(i) − P(i) (28)

where D(i) is defined from Eq. (24), R(i) is one of the best
vultures of the two groups, P(i) is the current vector position,
and rand4 is a random number between [0, 1] to increase the
random coefficient.

Sometimes, during flight, the vultures move in a spiral
direction. This spiral model is created between all vultures
and the two best vultures, as shown in Fig. 5a, and it can be
expressed as in Eqs. (29) and (30).

⎧
⎨

⎩

S1 � R(i)
(
rand5P(i)

2π

)
cos(P(i))

S2 � R(i)
(
rand6P(i)

2π

)
sin(P(i))

(29)

P(i + 1) � R(i) − (S1 − S2) (30)

where rand5 and rand6 are random numbers in the range of
[0, 1] to enrich the randomization coefficient.

Second phase In this phase, aggressive food competition is
created between the vultures. According to the value of rand3
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Fig. 5 Position vectors during a the rotating flight of vultures and b aggressive competition for food [63]

and the parameter P3, the next position of a vulture can be
defined by Eq. (31).

P(i + 1) �
{
Eq. (33)i f P3 ≥ randP3
Eq. (34)i f P3 < randP3

(31)

When vultures are starving and there is huge competition
for food, several vulture species can flock to the same food
source simultaneously as in Eqs. (32) and (33).

⎧
⎪⎨

⎪⎩

A1 � BestVulture1(i) − BestVulture1(i)P(i)
BestVulture1(i)P(i)2

F

A2 � BestVulture2(i) − BestVulture2(i)P(i)
BestVulture2(i)P(i)2

F
(32)

P(i + 1) � A1 + A2

2
(33)

The food competition also could be aggressive in this
exploitation phase, where the leader vulture becomes starved
and weak and loses its energy to fight against other vultures,
as shown in Fig. 5b. Then, other vultures start moving toward
the leader vulture from different directions as in Eq. (34).

P(i + 1) � R(i) − |d(t)| × F × levy(d) (34)

where d(t) denotes the distance between the vulture and one
of the best vultures in each of the two groups, and levy flight
(LF) is used to increase the AVOA’s effectiveness [66] and
can be expressed as in Eqs. (35) and (36).

LF(x) � 0.01 × u × σ

|v|1/β (35)

σ �
⎛

⎝
�(1 + β) × sin

(
πβ
2

)

�
(
1 + β2

) × β × 2
(

β−1
2

)

⎞

⎠

1/β

(36)

where d denotes the dimensions of the problem, u and v are
random numbers between [0, 1], and β is a constant of 1.5.

4.2 Development of AVOA for the optimal HRES
design

This part describes integrating the AVOA algorithm to
determine the optimal solution to the current optimization
problem. The AVOA is a new metaheuristic optimization
algorithm motivated by the African vultures’ social behav-
ior, as mentioned earlier. The advantages of AVOA are as
follows: easy to implement due to its simple structure, less
storage and computational requirements, faster convergence
due to continuous reduction of search space; its ability to
avoid local minima; and having the ability to find the optimal
solutions for problems with nonlinear relationships between
its variables, hence better stability, and robustness.

The overall result of this optimization problem is to deter-
mine the optimal capacity planning for the city of Marsa
Matruh operating in an isolation mode, given the constraints
andminimal costs throughout the project lifecycle.Anenergy
management strategy (EMS) is required to coordinate the
flow of power between different distributed generations in
the system. The proposed EMS is designed according to a
cyclic charging strategy as shown in Fig. 6. In this strategy,
renewable energy is fully utilized, where it always operates at
the maximum power point under current climate conditions.
It has a rule-based algorithm in the form of “if” and “then”
implementation. Also, the diesel generator has two switched-
on or switched-off positions. In this way, when the diesel is
running (i.e., switchedon), it produces its ratedpower accord-
ing to the capacity obtained from the AVOA algorithm. The
dummy load is used to absorb the surplus power in the system
when charging the BESS to its maximum allowable capacity.

123



Electrical Engineering (2023) 105:4499–4523 4509

Fig. 6 Overall flowchart of the proposed EMS
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Fig. 7 Complete flowchart of the overall AVOA to solve the current optimization problem

The EMS algorithm starts by calculating the annual avail-
able power from the PV and WT based on the given mission
profile at the DC bus. Then, the remaining power (�P), in
the microgrid, can be calculated by subtracting the load, PV,
and WT powers at the AC bus to check if the system needs
additional power or if there is already surplus power in the
system. In the case of�P > 0 (that is, extra power is needed),
the diesel must operate at its rated capacity to meet the load
requirements. At low RESs power and high loading demand,
the design maybe not be sufficient to cover all the remaining
load demands, which the available power of the BESS should

cover. Furthermore, there could be a load shedding condition,
in which the battery cannot deliver at minimum capacity due
to lifetime consideration. In such a case, the HLPS should be
computed, and it will be greater than zero.

The complete flow diagram clearly illustrating the pro-
posed AVOA for the optimization problem under study is
shown in Fig. 7. It starts by loading the input data, such as
meteorological data (solar irradiance, ambient temperature,
and wind speed) related to the location of the current study.
Then, the load demand profile over the year, the technical and
economic factors of the HRES components, and the desired
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Table 2 Parameters of different optimization approaches in the current
study

Item Value

Number of iterations (MaxIT) 100

Population size (nPop) 50

Number of dimensions (dim) 4

Minimum and maximum values (lb, ub) Eq. (37)

limits are also loaded as specified in Sect. 2. The next step
is to define the parameters associated with the optimization
algorithms, as given in Table 2. The dimension of the current
optimization problem consists of four variables: NPV, NWT,
NDslG, and NBESS. Finally, the search space of the compo-
nents’ capacity can be listed in Eq. (37).

Fig. 8 Renewable potential in the
examined location a solar
irradiance b wind velocity

(a)

(b)
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Fig. 9 Hourly, daily, and monthly
load power

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ NPV ≤ 200

0 ≤ NWT ≤ 200

0 ≤ NDsIG ≤ 200

0 ≤ NBSS ≤ 200

(37)

Then, like any metaheuristic approach, a random popu-
lation set is generated within the search space limit of each
dimension. Then, the fitness function is evaluated for each
possible candidate in this list to determine the best first and
second positions of the vultures. The fitness function will
include initial, maintenance, replacement, and salvage costs.
Also, to act against climate change, we have included, within
the fitness function, the penalty due to carbon emission. To
check the feasibility of the proposed optimization method
in solving this HRES capacity planning, we have compared
it with up-to-date optimization approaches for this type of
problem. The comparison algorithms include the GOA [67]
and GPC [68]. Their parameters are given in Table 2.

5 Case study

In this study, the proposed AVOA algorithm is tested and
validated considering the case study and corresponding input
parameters analyzed previously by the authors in [29]. In this
previous examination, the design optimization of HRES was
performed by HOMER software. This offers the ability to
adequately assess and compare the results of the proposed
AVOA with the benchmark model of HOMER, in addition
to the other applied metaheuristic algorithms of GOA and
GPC. The examined locality represents an urban community
in Marsa Matruh city (Egypt) at geographical coordinates of

30°54.3′N and 28°23.73′E. The simulated solar irradiance
and wind speed profiles of the examined community area,
which are collected from theNational Aeronautics and Space
Administration (NASA) [69], are illustrated in the heat maps
given in Fig. 8. Both solar irradiance and wind speed sig-
nificantly vary each hour, day, and month. From Fig. 8a, the
maximum value of the solar irradiance occurs in June with
0.958 kW/m2, while the minimum value occurs in Decem-
ber with 0.393-kW/m2.Meanwhile, in Fig. 8b, the maximum
value of the wind speed occurs in March with 8.03 m/s,
while the minimum value occurs in October with 3.43 m/s.
The electrical load demand in the examined community rep-
resents a group of 60 households, school one school, one
healthcare center, two shops, and one community center. The
details of the energy consumption of each load are collected
from [29].

The hourly, daily, and monthly load demand profile is
given in Fig. 9, from which the maximum load demand
occurs in January at 30.28 kW while the minimum load
demand occurs in September at 8.2 kW. Table 3 summa-
rizes the project’s economic input parameters and various
adopted technical constraints of the optimization problem.
The economic inputs, such as the nominal discount rate and
the expected inflation rate, depending on the economic situa-
tion of the country where the project is established. They are
essentially used to obtain the real discount rate, which con-
verts between the one-time and annualized costs. It is worth
mentioning that an emission penalty of 30 $/tonwas assumed
in the current study to reflect the environmental policies in
the country.
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Table 3 Input parameters and constraints of the optimization problem

Input Value Constraint Value
(%)

Nominal discount
rate

13.25% Maximum capacity
shortage/LPSP

0

Expected inflation
rate

4.8% Minimum
renewable
fraction

0

Project lifetime 25 years Operating reserve
as % of load

5

System fixed capital
cost

0 $ Operating reserve
as % of PV output

5

System fixed O&M
cost

0 $/yr Operating reserve
as % of WT
output

5

Capacity shortage
penalty

0 $/kWh Battery maximum
SOC

100

Carbon dioxide
penalty

30 $/ton Battery minimum
SOC

40

6 Results and discussion

In this section, the optimization results of the proposed
AVOA are presented and analyzed in detail. For clarifying
the efficacy of the presented AVOA, two up-to-date meta-
heuristic optimization algorithms, the GOA and GPC, and
the HOMER optimization software, were also employed to
solve the optimization problem, and the results were com-
pared. As mentioned above, the studied HRES was adopted
from the investigation accomplished by the authors in [29]
using HOMER, but with consideration of emission cost in
the objective function.

6.1 Design optimization results

Themetaheuristic optimization algorithms are independently
executed around 20 times to extract the statistics results, as
summarized in Table 4. Therefore, it is obvious that the pro-

Table 4 Statistics of the metaheuristic algorithms for 20 independent
runs

Metric Optimizer

AVOA GOA GPC

Min 346,614.05 346,685.17 347,222.81

Max 348,073.10 382,924.71 357,824.08

Mean 346,789.82 352,921.34 350,800.81

Median 346,685.17 348,935.70 350,772.36

Std. deviation 319.40 9,995.73 2,484.44

Variance 102,015.78 99,914,630.11 6,172,418.11

Fig. 10 Convergence of the three adopted metaheuristic algorithms

posed AVOA for optimal HRES design provides the best
values compared to GOA and GPC.

The convergence curves of the three adopted algorithms,
including the proposed AVOA, GOA, and GPC, are shown
in Fig. 10. It can be recognized that the proposed AVOA
has a better convergence rate (i.e., the lowest value of the
objective function) and statistical measures compared with
the GOA and GPC approaches. The algorithms started with
initial estimations and remained until the termination con-
dition was fulfilled. Table 5 describes the optimal results
of the three metaheuristics optimization algorithms and the
HOMER optimizer with their relative ObjFn and execution
time. It can be distinguished that the AVOA takes less time
than other approaches and attains superior economic results
at minimum lifecycle cost (346,614 $) and energy price
(0.0947 $/kWh). The AVOA reached the optimal solution
at the 17th iteration, while the GOA and GPC algorithms
found the optimal solution at the 38th and 80th iteration,
respectively. The GPC algorithm appears in the second rank,
followed by GOA concerning ObjFn, despite taking a longer
execution time than the GOA.

Meanwhile, the three optimization algorithms show bet-
ter financial performance than the HOMER, which gives
the highest ObjFn among all methods. For further explana-
tion, Fig. 11 displays the optimal capacities of the different
components obtained by the different metaheuristics opti-
mization algorithms and the HOMER software. It can be
noticed that the three metaheuristic algorithms did not con-
sider employingWTs in the optimal solution, contrary to the
HOMER,which considered 6×2.6 kWWTs.Also,HOMER
requires the highest number of batteries (104 units), and thus,
the ObjFn resulting from the HOMER will be higher than
the other optimization algorithms. Besides, the GOA ranked
third due to the high rating required for the PV units (62
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Table 5 Comparison of the
optimization results of different
approaches

PV WT DslG BESS CON ObjFn Execution time Rank

kW Qty kW Qty kW $ Seconds

AVOA 42 0 27 36 32 346,614 18.66 1

GOA 62 0 22 87 38 362,064 19.51 3

GPC 46 0 31 39 34 353,253 22.76 2

HOMER 43 6 15 104 26.2 370,881 130.6 4

Fig. 11 Optimal capacities of the HRES obtained by the different
approaches

kW) and 87 batteries compared to the other metaheuristic
algorithms.

6.2 Economic analysis

The detailed economic analysis of the metaheuristic algo-
rithms and HOMER is summarized in Table 6 and portrayed
in Fig. 12 for further demonstration. It can be seen that the
proposedAVOAhas the best optimal cost distribution among
all optimizers with the lowest TNPC and LCOE of 346,614
$ and 0.0947 $/kWh, respectively. The initial cost of the

Fig. 12 Illustration of the economic results obtained with AVOA, GOA,
GPC, and HOMER

AVOA optimal configuration is fewer than that of HOMER
at 40.5%. Besides, the TNPC using the AVOA is reduced
by 6.5% compared to HOMER. The optimal configuration
suggested by HOMER has an LCOE of 0.239 $/kWh, while
that suggested by the AVOA is 0.0947 $/kWh, recording a
60.3% reduction. Besides, the suggested LCOE by both the
GOA and GPC algorithms is almost the same. It can be dis-
tinguished from the obtained results that the AVOA is more
efficient than the HOMER and both the GOA and the GPC

Table 6 Detailed economic
results of optimized HRES with
different approaches

Cost component ($) PnCE ($) TNPC ($) LCOE ($/kWh)

CapC O&MC RepC SavC

AVOA 99,800 147,681 78,268 4334.1 25,198.4 346,614 0.0947

GOA 134,050 127,159 82,173 1199.6 19,880.9 362,064 0.0990

GPC 110,450 146,133 76,308 4372.9 24,734.6 353,253 0.0966

HOMER 167,859 84,070 94,520 11,402.6 35,833.5 370,881 0.239
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Table 7 Cost summary of the
optimal system using the
different optimizers

Element Method CapC O&MC RepC SavC

PV AVOA 42,000 4460.5 0 0

GOA 62,000 6584.6 0 0

GPC 46,000 4885.3 0 0

HOMER 42,995 4565.1 0 0

WT AVOA – – – –

GOA – – – –

GPC – – – –

HOMER 60,000 3185.2 11,451.3 5828.1

DslG AVOA 32,400 136,000 60,991 3719.6

GOA 26,400 107,299 45,338 469.934

GPC 37,200 133,495 57,674 3720.1

HOMER 18,000 83,114 36,839 640.38

BESS AVOA 12,600 3823.3 13,276 0

GOA 30,450 9239.7 32,084 0

GPC 13,650 4141.9 14,382 0

HOMER 36,400 11,042 42,960 4,432

Conv AVOA 12,800 3398.5 4001.6 614.42

GOA 15,200 4035.7 4751.9 729.62

GPC 13,600 3610.9 4251.7 652.82

HOMER 10,462 2777.2 3269.5 501.88

algorithms. It is worth mentioning that besides the results
convergence of the metaheuristic algorithms with HOMER,
the former is further accommodating in control preferences
and model advancements. The cost summary of each com-
ponent in the optimal configuration is also generated from
the different optimizers, as summarized in Table 7. It should
be noticed that there are no data generated from the meta-
heuristic algorithms regarding theWT cost since the optimal
solution with each algorithm was reached at zero number
of WTs. In contrast, the use of HOMER has resulted in six
turbines in the optimal solution (see Table 5).

6.3 Energy analysis

The average monthly energy production from the optimized
HRES configuration with both the AVOA and HOMER is
displayed in Fig. 13. The optimal capacity planning achieved
with the AVOA promotes 37.5 and 62.5% energy share from
the PV and the DslG, respectively. Meanwhile, the contribu-
tions of the PV units, WTs, and DslG in the case of HOMER
are 40.1, 25.7, and 34.1% of the total energy produced. As
anticipated, it is indicated that the energy production curves
for solar and wind generationmatch the wind speed and solar
irradiance profiles in the investigated locality. The figure also
reveals that the load demand is efficiently fulfilled using both
optimization methods, and the surplus energy is transferred
to the batteries.

Moreover, Fig. 14a demonstrates the hourly profile of
energy share of the optimal system components and batteries
SOC during a year. From Fig. 14a and aided with Fig. 13a,
it can be seen that the optimal system candidates by the
AVOA share the produced power between the PV system
(high share in summertime) and the diesel generator (higher
share in wintertime). Besides, samples of two consecutive
days during the wintertime and the summertime are indi-
cated in Fig. 14b and c, respectively, from which the energy
management and power flow within the optimal system can
be verified. Similarly, the hourly profile of energy share using
HOMER Pro is indicated in Fig. 15. With a closer view of
the yearly profile in Fig. 15a, the SOC of the battery does
not have a full charge state which discovers that occasionally
the extra power does not transfer to the batteries. The main
reason behind this is the kinetic model of batteries utilized
by HOMER that relies on the charging/discharging record of
the batteries.

Furthermore, the reliability and renewable penetration of
the optimal HRES were assessed using three major param-
eters by the different optimizers: the loss of power supply
possibility, the renewable fraction, and the unmet load ratio.
Figure 16 shows the results of the different optimizers regard-
ing the discussed parameters. It can be recognized that the
three metaheuristic algorithms efficiently served the load
demand with zero unmet load ratio, while for HOMER,
there is a small portion of the load demand still unserved
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Fig. 13 Average monthly
contribution of optimal system:
a AVOA and b HOMER
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(0.0669%). Because the optimization problem is constrained
by a zero-capacity shortage or a zero LPSP, the different
optimizers successfully maintained the reliability limits by
0.0067, 0.0002, 0, and 0.0978% for the AVOA, GOA, GPC,
and HOMER, respectively. Since the optimal HRES was
attained at the highest PV capacity share, the GAO algo-
rithmhas the highest renewable fraction ratio (59.6%) among
all optimization approaches. A similar value (59.3%) was
reached in the case of HOMER owing to the integration
of both PV units and WTs in the derived optimal HRES
configuration (see Fig. 13). The AVOA and GPC meth-
ods have nearly renewable fractions of 40.38 and 44.23%,
respectively, due to the conjunction of the PV rating in both
methods.

6.4 Emission analysis

The impact on the environment is also assessed based on the
amount of produced CO2 by the optimal HRES configura-
tion with each solution approach. Table 8 indicates the diesel
generator and corresponding CO2 emission data. The annual
amount of CO2 obtained using the AVOA is estimated at
79,089.1 kg, almost the same resulting from the GPC algo-
rithm. Besides, the amount of CO2 estimated by HOMER is
the lowest at 47,778 kg/year since the projected diesel has
the lowest fuel rate consumption with 18,251 L every year.

7 Conclusions and perspectives

This study investigates the feasibility and optimal capac-
ity planning of an autonomous HRESs comprising solar,
wind, diesel, and battery sources. The system aims to elec-
trify a remote urban community with 400.09 kWh/day in
Marsa Matruh, Egypt. Four optimization approaches include
three up-to-date metaheuristic algorithms, AVOA (proposed
method), GOA, and GPC, in addition to the HOMER soft-
ware. The optimization problem is formulated to minimize
the TNPC and the emission penalty of HRESs subject to var-
ious design and reliability constraints. In addition, the COE,
renewable fraction, and unmet load ratio were evaluated and
analyzed. The simulation results proved the effectiveness and
robustness of the proposed AVOA in applications of hybrid
electrical systems under different conditions, as summarized
in the following:

• The proposed AVOA algorithm achieved superior results
concerning the objective function value compared to other
approaches. It achieved a minimum TNPC and PnCE of
346,614$ and COE (0.0947 $/kWh), equivalent to 6.5 and
60.4% savings compared to HOMER results, respectively.

• The design based on AVOA efficiently served the load
demand with zero LPSP with an acceptable value for a
renewable fraction of 40.38%.
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Fig. 14 Hourly power sharing of
the optimal system using the
proposed AVOA: a yearly
profile, b 2 days in winter, and
c 2 days in summer
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• The metaheuristic algorithms showed fast execution time,
with AVOA being the first ranked with an average of
18.66 s, followed by GOA (19.51 s) and GPC (7.84 s).
In contrast, HOMER has taken significantly longer than
the metaheuristic algorithms to find the optimal solution
(130 s), which is time-consuming.

Further investigations are recommended for future work,
including analyzing new design criteria (e.g., social and tech-
nological) in more comprehensive multi-objective optimiza-
tion. In addition, other active energymanagement approaches
(e.g., demand-side management) could potentially be advan-
tageous in the analyzed research considering the impact of
varying the input cost and technical parameters.
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Fig. 15 Hourly power sharing of
the optimal system using
HOMER: a yearly profile, b 2
days in winter, and c 2 days in
summer
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Fig. 16 Reliability and renewable
penetration metrics of different
optimizers
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Table 8 DslG and carbon dioxide
emission data Diesel generator data CO2 emissions

Capacity (kW) Hours Fuel (L/year) Lifetime (years) (kg/year)

AVOA 27 3626 29,958 4.13 79,089.1

GOA 22 3511 23,636 4.27 62,399.1

GPC 31 3100 29,406 4.83 77,633.4

HOMER 15 4022 18,251 3.73 47,778
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Table 9 Technical specifications
of the studied system Item Value Item Value

PV Rated
capacity/module

305 W WT Model type Tulipo WT

Nominal operating
temperature

46°C Rated
capacity

2.625 kW

Derating factor 85% Cut-in WS 3 m/s

Temperature
coefficient

− 0.386%/°C Cut-out WS 20 m/s

Ground reflection 20% Rated WS 12 m/s

Highest system
voltage/module

1000 V Hub height 30 m

Open circuit
voltage/module

64.2 V Inertia 7.5 kg m2

Short circuit
current/module

5.96 A Friction
coeff

0.06 N m
s/rad

MPP voltage
/module

54.7 V Lifetime 20 years

MPP
current/module

5.58 A Inertia 7.5 kg m2

Working
temperature scale

(− 40 to + 85)°C BESS Rated
voltage

12 V

Lifetime 25 years Rated
capacity

3.12 kWh

DslG Model type Generic genset Full capacity 260 Ah

Derating factor 70% Capacity
ratio

0.361

Heat recovery ratio 0.0% SOC margins 40–100%

Fuel curve slope
(output)

0.2730 L/hr/kW DOD 60%

Intercept
coefficient (rated)

0.0330 L/hr/kW Rate constant 0.379
(1/hr)

Minimum load
ratio

25% Roundtrip eff 80%

Carbon monoxide
factor

16.34 (g/L) Max. ch.
current

80 A

Nitrogen oxides
factor

15.359 (g/L) Max. dis.
current

80 A

Converter Model type Generic Lifetime 6 years

Efficiency 95%

Relative capacity 100%

Lifetime 15 years

Table 10 Cost data of the of the
studied system Component Capital cost Replacement cost O&M cost Fuel price Source

PV 1000 $/kW 1000 $/kW 10 $/kW/yr – [70]

WT 10,000 $/unit 9000 $/turbine 50/unit/yr – [71]

DslG 1200 $/kW 1000 $/kW 0.039 $/op.hr/kW 0.3 $/L [70–72]

BESS 350 $/battery 300 $/battery 10 $/battery/yr – [73]

Converter 400 $/kW 400 $/kW 10 $/kW/yr – [74]
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