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Abstract
Due to advancements in e-mobility technology, more and more people are opting to use electric vehicles. As there is a
lack of a backup power supply, energy storage device is especially important for onboard systems. So, battery management
systems become an important aspect for these energy storage devices. State-of-charge (SoC) estimation is a vitally significant
assessment index in BMS because it is one of the most critical attributes that represents the working state of power batteries
in EVs. In addition to the quick display of the remaining battery capacity to the user, accurate knowledge of SoC exerts
further control over the charging/discharging process, which may be used to enhance battery life. This can be done in order
to increase the longevity of the battery. According to the findings of this study, the error while estimating the SoC has been
reduced to near about zero. The effect of resistance, temperature and C-rate on SoC has been also considered in this study.
These findings show that the resistance is proportional to SoC below 80%, and after that, it becomes nonlinear. The SoC
calculation using optimized deep learning strategy is proposed in this study. This approach helps to limit the margin of error
in the calculation of SoC. It has also taken into account the occurrence of changes in SoC as a result of the changing C-rate,
temperature, and resistance. Hence, this study helps to offset the negative effects of inaccurate SoC prediction.
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Abbreviations

BMS Battery management system
SoC State of charge
SoH State of health
EV Electric vehicle
OCV Open-circuit voltage
RNN Recurrent neural network
LSTM Long short-term memory networks
Bi-LSTM Bidirectional LSTM
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1 Introduction

Global pollution and climate change challenges pose a signif-
icant threat to human existence. Some developed countries
have declared their intention to phase out their diesel and
gasoline vehicle fleets in favor of electric cars (EVs) in the
near future in an effort to reduce their carbon emissions
[1]. Nonrenewable resources like petroleum will eventually
run out because of their limited quantity. Alternative energy
sources, such as solar and wind, are also viable options.
However, thesemethods necessitate the construction of enor-
mous, complex, and expensive power plants. In addition,
such plants necessitate the use of exceptionally skilled work-
ers [2]. Therefore, most modern portable consumer devices
employ lithium-ion batteries to lessen their reliance on tradi-
tional fuels. In addition, the automotive industry is suffering
a huge setback due to the rising price of crude oil. As a
result, it is very necessary to design automobiles that can
run on alternative fuels in order to combat this problem [3].
It is commonly recognized that switching from fossil fuels
to renewable energy will bring about the desired shift in
our society [4]. To solve the issues, the installation of EV
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has attracted significant attention and has become appealing
options for academic researchers and car professionals owing
to its promising qualities in terms of decreasing greenhouse
gas emissions [5]. Battery is playing a wide role in driving
the electric vehicle. The most common rechargeable bat-
teries are lithium-ion, lead-acid, and metal-nickel-hydride.
Since LIBs are a form of reusable, rechargeable battery, they
dramatically reduce chemical fuel consumption and carbon
emissions. Hence, LIBs are being most popularly used due
to its several advantages over other batteries [6]. Because
of the relevance and current obstacles, developing enhanced
battery management systems (BMS) for EVs has been a hot
research area. Various estimates are used in battery manage-
ment systems, including the state of charge (SoC), state of
health (SoH), state of energy (SoE), state of power (SoP),
state of temperature (SoT), and status of safety (SoS). In
general, the tightly connected SoC and SoH monitorings
are the primary concerns and the foundation for improving
dependability and ensuring safety [7]. The SoC estimation
of battery checks how much power is left in a battery during
a charge–discharge cycle. This keeps the battery safe from
being overcharged or over discharged. The SoH estimation is
used to figure out how much longer the battery will work or
how many more times they can be charged and discharged.
This will tell the need to buy new battery [8]. The remain-
ing sections of this article are laid out as follows: Existing
work has been reported in Sect. 2. The proposed work and
methodology are explained in Sect. 3. Section 4 consists of
results and discussion followed by conclusion in Sect. 5.

2 Related work

More than half of all greenhouse gas emissions come from the
transportation and electricity production sectors since these
industries use fossil fuels as their primary energy source.
The electrification of transport and the reduction of carbon
emissions from power plants are two promising approaches
[9]. But, the problem in EV is the battery. The prediction
of accurate SoC of battery is very crucial task. The manu-
facture and implementation costs of Li-ion batteries can be
greatly reduced if their SoC is accurately predicted.However,
because current sensor technology prevents accurate mea-
surements from being taken outside of a laboratory setting,
this SoC is notoriously difficult to quantify. [10]. There are
various methods for SoC estimation and finding error while
prediction of SoC. It is possible to classify SoC estimating
strategies into different groups like direct measurement, esti-
mated terminal voltage, estimated impedance, Kalman filter,
and the Coulomb counting technique [11]. The open-circuit
voltagemethod is utilized largely for the purpose of determin-
ing the relationship between the open-circuit voltage (OCV)

and the SoC of the battery. Subsequently, a matching OCV—
SoC table is constructed through the utilization of discharge
experiments in order to estimate the SoC based on the map-
ping relationship between the two methods. A battery model
is constructed using the model-based technique in order to
build a time-domain space state equation for the purpose of
predicting the SoC. This allows themodel-based technique to
identify the internal properties of the battery [10]. The adap-
tive approaches provide a more accurate simulation of the
chemical effect and nonlinear charge characteristics of the
batteries by using support vector machine, back propagation
neural network, fuzzy neural network, and radial basis neural
network [12]. Academic interest in the data-driven approach
has grown in recent years because it is straightforward and
does not necessitate a fixed battery model or precise calcu-
lation to estimate the battery’s SoC. As a result of the fact
that the correlations between the battery SoC and the observ-
able variables (voltage, charge/discharge current, resistance,
etc.) may be learned autonomously from the data, several
studies have applied numerous traditional machine learning
approaches in order to simulate the nonlinear characteristics
of batteries [13]. Common learning methods include things
like artificial neural networks, support vector machines, and
semi-supervised learning, among other things [14]. Deep
learning is a subset of machine learning that can efficiently
capture the correlations between observed signals and SoC
by employing multilayer deep neural networks with nonlin-
ear transformations to extract feature information from input
samples.

This can be accomplished through the use of the method
known as "deep learning." In recent years, RNN, which is a
strategy to predicting sequence data that is based on neural
networks and deep learning, has seen a rise in popularity
among academics. [15]. Various SoC estimationmethods are
shown in Fig. 1.

3 Proposed work

This research proposes an optimized deep learning approach-
based data-driven method for estimating SoC. Since deep
learning excels at approximating nonlinear functions, it has
become a common data-driven solution to solving the bat-
tery SoC estimation problem. Previous works track SoC data
in relation to temperature changes only. They neglected to
account for the impact of C-rate variation on the estimated
state of charge. As C-rates control how quickly a battery
charges and discharges, C-rate is one of the most important
aspects that has to be considered while estimating SoC. A
battery’s capacity is often specified in units of 1C. But esti-
mation of SoC at 1-C is not always correct. Draining of a
battery at a varied C-rate theoretically uses the same calcu-
lations as draining a battery at a constant C-rate of 1-C, but
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Fig. 1 Different SoC estimation
methods
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in practice, there is likely to be some internal energy loss.
These energy losses are getting converted to heat and can
reduce the capacity of battery by up to 5% at higher C-rates.
So, in this paper author has considered the C-rate also for
estimating the SoC more precisely. In existing works, the
effect on the internal resistance along with SoC and varying
temperature is rarely considered. In this paper, author ana-
lyzed the change in internal resistance with respect to the
varying temperature and at different level of SoC by using
optimized deep learning strategy. Variation of voltage with
respect to the discharging capacity at different temperature
has also been considered in this article and reduces the SoC
estimation error to 0.3199%.

A battery’s “C-rate” is the rate at which it may be charged
or discharged in relation to its total capacity. It is a typi-
cal term for describing a battery’s ability to send or receive
electrical current. C-rate is commonly expressed as a power
factor for the battery. A batterywith a 1000mAh capacity, for
instance, would be discharged at a current of 1000 mA (1A)
at a rate of 1C. Similar to how 2Cmeans to charge the battery
at a current of 2A, 2Cmeans to charge the battery at a pace of
2000mA. Battery performance, capacity, and lifespan are all
affected by the C-rate. Faster charging and discharging are
possible with higher C-rates, but this trade-off may shorten
the battery’s useful life due to increased heat and stress.

A battery with a lower C-rate may take longer to charge
or discharge, but it will likely have a longer lifespan. It is
important to remember that different battery chemistries call
for various C-rates. It is common for lithium-ion batteries to
have higher C-rates than lead-acid ones. To guarantee safe
and optimal functioning, C-rates should be set according to
the manufacturer’s requirements and guidance. This paper
proposes a Bayesian bidirectional long short-term memory
(Bayes BiLSTM) technique for SoC estimation and predic-
tion of error. Bayesian modeling and bidirectional LSTM

architecture have been brought together in this method. The
model’s goal is to include uncertainty estimation in BiLSTM
network forecasts. The structure of the proposed algorithm is
shown in Fig. 2. The groundwork for developing the network
model is laid during data preprocessing. Existing numerical
inconsistencies will impair the speed and effectiveness of the
model’s training due to the variable magnitudes and magni-
tude units of the gathered battery data indicators for voltage,
current, SoT, SoH, and SoC. Therefore, normalizing the data
samples is necessary to reduce the impact of scale between
the indicators and preserve the model’s accuracy and gener-
alizability. As shown in Eq. 1, the autocorrelation function
(ACF) provides a quantitative representation of the linear
connection that exists between the values of a time series
and its lagging observations.

xk =
∑n

i=k+1
(vt − v)(vt−k − v)

/∑n
i=1 (vt − v)2 (1)

For data preprocessing of variable, below equation Eq. 2
is used where X(xm, xo) is the separation between the two
observations and xmi is the value of variable i in the target
observation, whereas xoi is the value of variable i in the other
observation.

X(xm, xo) =
√√√√

n∑

i=1

(xmi − xoi ) (2)

As shown in Eq. 3, the [0,1] range is transferred to the
actual values by means of the minimal maximum function.

a∗ =
[
(a − amin)

/
(amax − amin)

]
(3)

where n is the total number of observations and xk is the
autocorrelation with a lag of k. The data point at time t is
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Fig. 2 Structure of the proposed
methodology MODELLING
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Table 1 Pseudocode of proposed
algorithm

denoted by vt , whereas the sample mean is represented by
v, normalized data are represented by the symbol a∗, the
actual measured data are represented by the symbol a, and
the minimum and maximum measure values are expressed
as amin and amax, respectively. After this, data segregation
is used followed by Bayes-BiLSTM to train the model. This
study applies the idea of Bayesian optimization to the process
of optimizing the network’s hyperparameters in a way that
improves the accuracy of lithium battery SoC prediction as in

Eq. 4. The optimized hyperparameter a∗ and Bayes’ theorem
is illustrated in Eqs. 4 and 5, respectively. The pseudocode
of the proposed algorithm is shown in Table 1

a∗ = argmin
a∈A

f (a) (4)

B( f |K ) =
[
B(K | f )B( f )/

B(K )

]
(5)
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4 Results and discussion

The Bayes-BiLSTM SoC estimation algorithm that was
presented in the paper has been implemented in MAT-
LAB/SIMULINK. In order to conduct an exhaustive study of
the effectiveness of the suggested strategy, two distinct test
cases have been taken into consideration. In the first scenario,
SoC was estimated at a variety of temperatures; in the sec-
ond scenario, various C-rates were taken into consideration
to ensure the robustness of the suggestedmethod. The perfor-
mance was evaluated in comparison with more conventional
algorithms, each of which does not take into account both
the temperature and the C-rate simultaneously.

A visual representation of the input datasets is shown in
Figure 3. The data include readings of both current and volt-
age. The dataset is mined for its features. In this context, only
relevant features are retrieved, such as current, voltage, and
Soc, while the rest of the data is discarded. It represents the
change in current and voltage with time at constant tempera-
ture of 293 K and at the charging rate of 1C. This figure also
depicts the change in voltage w.r.t. SoC at 293 K and 1 C
charging rate.

Figure 4 shows the change in voltage with respect to dis-
charge current and SoC at different temperature and at the
different C-rate as follows: (a) change in voltage w.r.t dis-
charge capacity with varying temp. (b) Change in voltage
w.r.t discharge capacity with varying C-rate. (c) Change in
voltage w.r.t SoC (%). It represents that the voltage is lin-
ear for lower discharge rate for all temperature and C-rate
and becomes nonlinear for higher discharge rate. The graph
of voltage at different temperature rating is linear for lower
SoC and nonlinear for higher SoC which is undesirable. But,
most of the time it is linear so it is acceptable. The polar-
ization of a battery during discharge serves as the basis for
its discharge curve. A battery’s energy output, shown by the
area under the discharge curve, is highly dependent on its
operating parameters, including the C-rate.

During the process of discharging, a battery’s voltage will
decrease due to the drop. As can be seen in Fig. 5, the pro-
posed topology effectively mitigates the drop at C-rate equal
to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 and hence
maintaining the voltage drop near to zero throughout the
cycle. Electrode deterioration is one of the main concerns
for the battery’s life and quality. There are two pathways that
can lead to electrode deterioration. Two of these processes
include structural/phase changes in the electrode and the cre-
ation and subsequent modification of a surface coating on the
electrode.

The response rate is slowed when a surface coating is
present. The rate at which charges are transferred is also
slowed. This means that the charge transfer rate will decrease
with cycling due to both causes. As a result of the aforemen-
tioned mechanisms, the transport rate will decrease and the

Table 2 Comparison table of different methods for error estimation
while SoC calculation

References Optimization
Techniques

Estimated error in
SoC

Proposed
method

Proposed
Bayes-BiLSTM

Estimated error in
SoC is less than
1% near about zero

[16] Kalman signal big data
algorithm

5%

[17] Improved EKF
algorithm

3%

[18] Model-based SoC
estimation algorithm

1.7371%

[19] Robust EKF algorithm 6%

[20] FFRLS-EKF 2.49%

[21] Double EKF algorithm 1.08%

electrode’s impedance will rise as shown in Fig. 6 for differ-
ent SoC.

Figure 7 demonstrates how, in each SoC state, resistance
steadily reduces as ambient battery temperature rises; in other
words, temperature and resistance are inversely connected. In
comparisonwith high temperature, the variation of resistance
with SoC is more pronounced at low temperatures. Addition-
ally, the variation in resistance at low temperatures exhibits
typical nonlinear properties. As can be seen in Fig. 8a, the
suggested technique significantly lowers the SoC estimation
error at various temperature.

As can be seen in Fig. 8a, the suggested technique
significantly lowers the SoC estimation error at various tem-
perature. The calculated error while prediction of SoC at
333 K is 0.3775%; at 243 K, it is 0.6633%; at 253 K, error is
0.3396%, and at 293 K, the estimated error is 0.3199% but in
other papers it is 5%, 3%, 1.7371%, 6%, 2.49% and 1.08%
which is very high as compared to the proposed method.
Hence, the proposed method is successfully calculating SoC
with less error. A comparative analysis of different methods
is also shown in Fig. 8b.

5 Conclusion

Here, data at different temperature and at different C-Rate
have been gathered to show how reliable and effective the
suggested approach is for making estimations. The proposed
model’s estimation accuracy has been compared to that of
other popular models of varying architectures by the author.
The proposed transformer model achieved the least amount
of inaccuracy of any of the topologies compared in the study.
Table 2 summarizes the various models’ error metrics. From
this paper, it can be concluded that:
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Fig. 3 a Battery current w.r.t.
time, b battery voltage w.r.t.
time, and c voltage w.r.t. SoC
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Fig. 4 aChange in voltage w.r.t discharge capacity with varying temp. bChange in voltage w.r.t discharge capacity with varying C-rate, and c change
in voltage w.r.t SoC (%)

Fig. 5 Change in voltage w.r.t.
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Fig. 6 Change in resistance w.r.t.
temperature
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Fig. 7 Change in resistance w.r.t.
SoC at various temperature
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• Overall, the proposed approach had the lowest error rate
among all the examined topologies.

• The calculated error while prediction of SoC at 293 K is
0.3199% only.

• By using the proposed algorithm, voltage drop has been
reduced.

• It has been observed that the variation of resistance with
SoC is more pronounced at low temperatures

• Variation in resistance at low temperatures exhibits typical
nonlinear properties.

So, the proposed work has effectively estimated the SoC
by varying temperature and for different C-rate. This paper
also considered the effect of temperature and C-rate on resis-
tance. This algorithm reduces the error while estimation of
SoC to less than 1% near about zero and hence increases the
reliability.

Author contributions PK written the manuscript, AKS response to
reviewer and NK guided me.
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