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Abstract
The large-scale wind power grid connection will change the power distribution between the original system tide and syn-
chronousmachine, and the interaction betweenwind turbine and synchronousmachine affects the system’s damping oscillation
characteristics. Traditional synchronous generators’ extra damping control provides an important means for DFIG to improve
system damping characteristics. Different types of PSS have different suppression effects on low-frequency oscillations. In
this paper, four types of IEEE PSS models are built in DIGSILENT/PowerFactory to study the suppression effects of DFIG
additional different types of PSS on low-frequency oscillations of power systems, and the suppression effect of four types of
PSS on system low-frequency oscillation after connecting to the DFIG reactive power control loop is compared and analyzed
from two perspectives: eigenvalue and time-domain simulation. The MRAC control principle is used to improve PSS4B, and
the total least squares-estimation of signal parameters via rotational invariance technique identification method is used to
obtain the system transfer function, and the controller parameters are calculated in real time using the adaptive law based on
the gradient approach. Finally, the MRAC–PSS4B is connected to the DFIG rotor-side controller’s reactive power control
loop, and the improvement effect of the designed MRAC–PSS4B controller on the power system’s low-frequency oscillation
characteristics under different contact line transmission power is confirmed.

Keywords Model reference adaptive control (MRAC) · Doubly fed induction generator (DFIG) · Power system stabilizer
(PSS) · Low-frequency oscillation · Total least squares-estimation of signal parameters via rotational invariance techniques
(TLS-ERPRITs)

1 Introduction

With large-scale wind farms connected to the power system,
the penetration of wind energy in modern power systems is
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increasing, and the impact on system stability is more com-
plex [1]. Due to the inherent volatility and randomness of
wind energy and the inability to predict and control it artifi-
cially and accurately, large-scale wind turbines connected to
the grid have a negative impact on the stability of the system
with small disturbances [2].

The additional damping control of traditional synchronous
generators provides an important means for wind turbines
to improve system damping characteristics. Different types
of PSS have different suppression effects on low-frequency
oscillations. Low-frequency oscillations may lead to insta-
bility in the power system and, in addition, a reduction in the
ability to transmit power. Power system stabilizers (PSSs)
have the potential to improve system damping and enhance
system stability by introducing a stabilizing signal into the
excitation system [3]. The reference [4] evaluates PSS2B and
PSS4B in terms of their relative performance in handling a
wide range of system problems. The reference [5] explores
the capacity of PSS3B to offer phase compensation over a
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large frequency range, while the frequency domain response
of the PSS is explored to validate its filtering features by eval-
uating alternative structural configurations. The results reveal
that, like the PSS2B, the PSS3B may give great compensa-
tion, but it has certain limitations in its filtering characteristics
that must be considered while utilizing it.

The current research on PSS can be divided into sev-
eral categories, such as parameter tuning, controller design,
etc. The reference [6] develops a control constraint-based
PID–PSS using a nature-inspired search optimization tech-
nique, namely the search and rescue algorithm (SAR), to
suppress low-frequency oscillations of the power system
under various operating states. In addition, a multi-objective
function has been developed to improve the operating effec-
tiveness of the proposed PID–PSS under a wide range of
operating states. The literature [7] describes a predictive opti-
mal adaptivePSS (POA–PSS),which is capable of improving
oscillations in single-machine infinite-bus (SMIB) power
systems. By utilizing an optimal predictive algorithm that is
responsive to changes in system inputs, the POA–PSS pro-
vides optimal design parameters for classic PSS systems.
There are four types of PSS models studied in the litera-
ture [8]: conventional PSS (CPSS), single neuron-based PSS
(SNPSS), adaptive PSS (APSS), and multifrequency PSS
(MBPSS). Optimal PSS design parameters are determined
using steep descent parameter optimization algorithms. The
article in reference [9] proposes a nonlinear power system
stabilizer that utilizes cooperative control theory. The stud-
ies on the effects of different types of PSS on power system
low-frequency oscillation suppression in the above litera-
ture are all based on synchronous machine-attached PSS.
With the integration of large-scale wind power into mod-
ern power systems, the impact of wind power on power
systems is increasing, so research on DFIG to suppress low-
frequency oscillations in power systems is getting hotter
and hotter, and a large number of scholars have conducted
research on the improvement of DFIG control methods and
additional PSS. In the reference [10], the effect of wind
power on the stability of small disturbances is elucidated
in terms of the contribution of wind power to power sys-
tem oscillations and the contribution of damped oscillations.
According to reference [11], if power oscillation dampers
(PODs) and PSS are installed on DFIG and synchronous
generators, a coordinated control method can be used to
improve their work performance. The literature [12] pro-
poses that the shaft system oscillations occurring in doubly
fed asynchronous motor (DFIG)-based wind power systems
may lead to low-frequency oscillations in the grid, thus
weakening the dynamic stability of the power system, and
investigates the shaft system oscillation damping control of
DFIG-based systems. Considering the dynamic properties
of the phase-locked loop, reference [13] demonstrates the
impact of the interaction between the DFIG and the grid on

the low-frequency oscillations of the system. Particle swarm
optimization is used to characterize the design of controller
for a DFIG powered by a wind turbine in reference [14]. The
open-loop subsystem formulas ofDFIGwith PODand power
systems are derived in the literature [15] to describe their
relationships. The reference [16] designs a two-input adap-
tive IEEE multiband PSS4B for power system oscillation
damping control. Two additional loops based on MRAC are
added to the PSS4B design. The designed PSS is applied to a
4-machine system. The simulation results show that the con-
troller can present a robust and superior response effect. The
reference [17] provides a robust composite broad-area con-
trol for dampening inter-region oscillations in a DFIG wind
energy system. In the reference [18], state-space equations
are given that include theDFIG–PSS transfer function. Using
these equations, the functional feature sensitivity model can
be expressed, and the eigenvalue increments are used to cal-
culate the transfer function increments in an iterative way.
The literature [19] clarifies that the addition of an appropriate
power system stabilizer to a double-fed induction genera-
tor may significantly improve wind farm damping to the
grid without diminishing the quality of the voltage control
offered (DFIG–PSS). In the literature [20], a two-channel
auxiliary damping controller coordinating DFIG and PSS to
suppress inter-area power oscillations is proposed; a dynamic
performance index for measuring conventional synchronous
generators and DFIG during damping control is proposed;
and a design method for PSS and a two-channel auxiliary
damping controller with an objective function as the sum of
weighted performance index and inter-area modal damping
requirement constraints is proposed. In reference [21], the
parameter adjustment problem of PSS is transformed into
a multi-objective function optimization problem based on
eigenvalues, and an improved version of non-dominated sort-
ing genetic algorithms (NSGA-II) is presented to deal with
this problem.

TheMRACmethod is applied in this paper to improve the
application of PSS. Reference [22] investigated the adjust-
ment mechanism of MRAC by applying the stability theory
that contains the gradient function and the Lyapunov func-
tion. Reference [23] compared MRAC with cascaded PID
controllers as a way to evaluate the performance of MRAC
control. In the reference [24], the PSS is designed using the
MRAC approach and virtual impedance (VI) control tactic,
and the controller is retrofitted to the DFIG control loop for
suppressing low-frequency oscillations in the power system.

After grid-connected wind power, low-frequency oscilla-
tion modes are introduced to the system, and more literature
have investigated the DFIG with PSS attached to suppress
low-frequency oscillations, but there is less research on dif-
ferent types of PSS linked to the DFIG. Based on this
background, the following is a summary of the major contri-
butions of this work:
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Fig. 1 DFIG control strategy and grid integration diagram

(a) An examination of the impacts of DFIG with various
types of PSS on the low-frequency oscillations of power
systems is presented;

(b) Optimization of PSS4B control is performed using the
MRAC method;

(c) The MRAC is modeled according to the TLS-ESPRIT
approach along with regional pole assignment;

(d) To solve the adaptive law, the gradient method is
employed;

(e) The eigenvalue analysis and time-domain simula-
tion approach are utilized to evaluate the effects of
enhancing the stability when DFIG is equipped with
MRAC–PSS4B.

2 DFIG additional different types of PSS
analysis

2.1 DFIGmodel and power system stability analysis
method

2.1.1 DFIG mathematical model

Figure 1 depicts the WTG system’s controller model. There
are three components thatmake up themechanical controller:
a model of aerodynamics, a model of mechanical drive, and
a model of pitch angle. An electrical controller is composed
of two models: the DFIG and the converter.

Referring to Fig. 1, theDFIG scheme is described. The sta-
tor terminal is directly connected to the local AC power grid,
whereas the slip-ring terminal of the rotor is incorporated into
the same grid via a dual power converter and transformer. The
respective names of the two converters are rotor-side con-
verter (RSC) and grid-side converter (GSC). There are four
models included in the wind generator model. These include
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Fig. 2 Block diagram of RSC with additional MRAC–PSS-VI

a model of wind speed, a wind turbine, a mechanical drive,
and a model of the DFIG with its control system.

RSC can be represented in Fig. 2; the equation is as fol-
lows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

� Ps_ ref − Ps

iqr_ ref � Kp1
(
Ps_ ref − Ps

)
+ Ki1x1

dx2
dt

� iqr_ ref − iqr � (
Ps_ ref − Ps

)
+ Ki1x1 − iqr

dx3
dt

� vs_ ref − vs

idr_ ref � Kp3
(
vs_ ref − vs

)
+ Ki3x3

dx4
dt

� idr_ ref − idr � Kp3
(
vs_ ref − vs

)
+ Ki3x3 − idr

vqr � Kp2
(
Kp1�P + Ki1x1 − iqr

)
+ Ki2x2 + srωsLmids

+srωsL rriqr

vdr � Kp2
(
Kp3�P + Ki3x1 − idr

)
+ Ki2x4 − srωsLmiqs

−srωsL rriqr
(1)

where the proportional and integral active power control
coefficients are represented by Kp1 and K i1, respectively;
Kp2 and K i2 denote the RSC current control proportional
and integral coefficients; Kp3 and K i3 are the voltage control
proportional and integral coefficients; x1, x2, x3, and x4 are
the intermediate variables in this equation.

In this case, the stator and rotor windings are assumed
to be three-phase sinusoidal and symmetrical. The voltage
between the stator and rotor in a rotating reference frame
with a random dq-axis and a speed of ωs is represented as
follows:
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where ids, iqs and idr, iqr are stator and rotor currents in dq-
axis; vds, vqs and vdr, vqr are stator and rotor voltages in dq-
axis; xm is the magnetizing reactance; rs and xs are the stator
resistance and reactance; rr and xr are the rotor resistance
and reactance, and ωm is the rotor speed.

The stator output active and reactive power delivered to
the grid is expressed as:

[P Q]T � [Ps + Pc Qs + Qc] (3)

The stator output power transmitted to the grid is
expressed as follows:

[
Ps
Qs

]

�
[

vds vqs

vqs −vds

][
ids
iqs

]

(4)

[
Pr
Qr

]

�
[

vdr vqr

vqr −vdr

][
idr
iqr

]

(5)

The output power of the grid-side converter is

[
Pc
Qc

]

�
[

vdc vqc

vqc −vdc

][
idc
iqc

]

(6)

Neglecting the power losses at GSC

[

Pc Qc

]T �
[

Pr 0
]T

(7)

Accordingly, the power transmitted to the grid can be sum-
marized as follows:

[

P Q
]T �

[

Ps + Pr Qs

]T
(8)

Modeling the generator as a single shaft

ωm � (Tm − Te)(2Hm)−1 (9)

where ωm is the rotor speed, T e denotes the electrical torque,
and Tm represents the mechanical torque. The inertia of the
rotor is Hm.

After theMRAC–PSS4B is equipped in the RSC loop, the
rotor-side power is provided as follows:

[
P ′
r

Q′
r

]

�
[

vdr vqr + u p

vqr + u p −vdr

][
idr
iqr

]

(10)

Similarly, power transmitted to the grid is shown again as

[

P ′ Q
]T �

[

Ps + P ′
r Qs

]T
(11)

2.1.2 Small-signal stability analysis model

Typically, the Lyapunov linearization approach is employed
to analyze the stability of small signals. In a sufficiently small
motion range, it is demonstrated that the nonlinear system
can exhibit properties similar to those of its linearization. A
power system’s dynamic process can be characterized using
DAEs and linearized as follows:

[
�ẋ
0

]

�
[

∇x f ∇y f
∇x g ∇yg

][
�x
�y

]

� AC

[
�x
�y

]

(12)

where ∇x f � ∂ f (x , y)/∂x is the gradient of the function
f (x , y). Other symbols and x have similar meanings.
Assuming that ∇x f is nonsingular, it can be obtained by

Eq. (12)

�ẋ �
[
∇x f − ∇y f (∇yg)

−1∇x g
]
�x � A�x (13)

where A is the state matrix of the system.
For the system described by the state equation, its small-

signal stability is determined by the eigenvalues of the state
matrix A. The analysis of the matrix A is mainly based on
the calculation results of the eigenvalues. If the real part of
all eigenvalues has a negative real component, the system
is stable at this operating point; otherwise, as long as one
eigenvalue has a positive real component or a double root
with a real component of zero, the system is unstable. This
papermainly studies the low-frequency oscillation of the sys-
tem; thus, the content of simulation analysis mainly gives the
eigenvalue and damping ratio related to the electromechani-
cal oscillation mode of the system.

In order to determine the eigenvalue of A, a small-signal
stability analysis is used. For the complex eigenvalue λ �
σ + j�, the frequency of the related oscillation is f � w/2π ,
and the damping ratio is stated as follows:

ξ � − σ√
σ 2 + ω2

(14)
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Fig. 3 The block diagram of PSS1A

Using the related left and right eigenvectors v and w,
it is feasible to calculate the participating factor pij, which
represents the degree of correlation between state variables
and modes of the i’th state variable of the j’th eigenvalue,
where pi j � wi jv j i/(wT

j v j ). For any eigenvalue λi, the n-
dimensional column vectorswi fulfilling Awi � λiwi (i � 1,
2, . . . , n) is defined the right eigenvector of λi; and the n-
dimensional row vectors vi fulfilling vi A � viλi (i � 1, 2,
. . . , n) is defined the left eigenvector of λi.

2.2 Four typical models of PSS

2.2.1 PSS1A

The basic block diagram of PSS1A is demonstrated in Fig. 3.
It is a single-input PSS with two overrun hysteresis links,
using generator power signal Pe as the input signal. The
structure of PSS1A is simple, easy to set parameters, having
a better stability, but is easy to “anti-tuning phenomenon.”
When the excitation current of a generator increases and the
active power of the unit increases, the PSS will make the
reactive power of the unit decrease. When the excitation
current of the generator decreases and the active power of
the unit decreases, the PSS will make the reactive power of
the unit increase. Therefore, it is necessary to overcome its
anti-tuning phenomenon in order to effectively suppress the
low-frequency oscillations of the power system.

2.2.2 PSS2B

Figure 4 shows the block diagram of PSS2B, which is a dual-
input PSS model proposed for the phenomenon of reactive
power inversion in PSS1A, whose one input signal uses the
generator speedω, and the other input signal uses the genera-
tor electric power Pe.When the active power of the generator
oscillates, the PSS will start to play a role in suppressing the
power system’s low-frequency oscillation. However, PSS2B
has a limited effect on suppressingmultiple oscillationmodes
in a power system at the same time.

1+Tω1

sTω1

1+Tω2

sTω2

1+sT6

1

1+Tω3

sTω3

1+Tω4

sTω4

1+sT7

Ks2

VSI1

VSI1Min

VSI1Max

VSI2

VSI2Min

VSI2Max
Ks1

1+sT9

(1+sT8)M
N

1+sT1

1+sT2 Ks31+sT3

1+sT4

1+sT10

1+sT11VST

VSTMin

VSTMax

+
+

+
-

Fig. 4 The block diagram of PSS2B
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Fig. 5 The block diagram of PSS3B

2.2.3 PSS3B

The PSS3B structure block diagram is shown in Fig. 5, which
is seldom used in China. PSS3B also has two input signals
like PSS2B, but instead of combining the two signals into
one acceleration power like PSS2B, it is equivalent to two
independent PSS working in coordination, which not only
improves the efficiency of PSS but also allows more flexible
parameter setting. However, for slow excitation generators
that require over-phase compensation of more than 90, the
PSS3B cannot provide angular compensation.

2.2.4 PSS4B

The block diagram of the PSS4B is shown in Fig. 6, which
is improved from the PSS2B model. The biggest advan-
tage of the PSS4B model over the other three is that it has
three operating bands: high, medium, and low, which have
non-interfering gain coefficients, center frequency filtering,
phase compensation, and limiting links, which can meet the
damping needs of different oscillation bands and suppress the
low-frequency oscillation problem of a power system more
effectively. The PSS4B model still adopts two input signals,
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Fig. 6 The block diagram of
PSS4B
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respectively: the medium and low-frequency bands use rota-
tional speed as the input signal, and the high-frequency band
uses electric power as the input signal. The speed sensor
classifies the PSS4B into low-frequency bands, intermedi-
ate frequency bands, and high-frequency bands according
to the oscillation frequency of the input signal �ω. The
low-frequency band corresponds to the oscillation frequency
of low-frequency oscillation between units of the intercon-
nected system at 0.04–0.1 Hz, the intermediate frequency
band is 0.1–1 Hz, and the high-frequency band is 1–2.5 Hz.
The PSS4B still provides sufficient damping to suppress
oscillations when ultralow-frequency oscillations occur in
the system, and the three operating bands of themodel ensure
thatmultiple oscillationmodes at different frequencies occur-
ring in the system can be suppressed simultaneously.

The input signals �ωL−I and �ωH of PSS4B can be
obtained from the sensor whose model is shown in Fig. 7.

2.3 Simulation analysis

The purpose of this part was to analyze the improvement
effect of DFIG connected to different types of PSS on the

power system’s low-frequency oscillation. A model of DFIG
with different types of PSS attached is built and simulated
in DIGSILENT/PowerFactory simulation software in this
paper. A brief description of the model is given below, and
the values of some of the system characteristics for a contact
line power of 400 MW are given in Table 1. The purpose
of this part was to analyze the improvement effect of DFIG
connected to different types of PSS on the power system’s
low-frequency oscillation.

According to Table 1, the eigenvalues of the system con-
taining DFIG after the addition of PSS are slightly shifted
to the right for intra-regional oscillation mode 2 and inter-
regional oscillation mode 4, demonstrating that DFIG has
no significant effect on the improvement of system damping
after the addition of traditional PSS1A in the RSC control
loop. The eigenvalues of intra-regional oscillation mode 2
remain virtually constant after addingPSS2B to theRSCcon-
trol loop of DFIG; however, the eigenvalues of inter-regional
oscillationmode 4 showa substantial leftward shift trend, and
system stability is somewhat enhanced. The eigenvalues of
intra-regional oscillation mode 2 do not significantly change
from those of the extra PSS1A and PSS2B after installing
PSS3B in the DFIG RSC control loop, while the eigenvalues
of inter-regional oscillation mode 4 exhibit a strong leftward
shift trend. While, after attaching PSS4B, the eigenvalues of
inter-regional oscillationmode 2 have a lesser left-shift trend,
and the eigenvalues of inter-regional oscillation mode 4 have
amore evident left-shift trend, indicating thatDFIG attaching
PSS4B is more obvious for system resilience enhancement.

In this section, it is assumed that a load fluctuation fault
occurs on the transmission line between buses 6 and 7, with
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Table 1 Partial eigenvalue of
system with DFIG additional
different types of PSS

Mode With PSS1A With PSS3B Participation
factor

Eigenvalue f /Hz ξ /% Eigenvalue f /Hz ξ /%

1 − 0.651 ± j6.547 1.042 9.897 − 0.651 ± j6.546 1.042 9.897 G1, G2

2 − 0.615 ± j6.390 1.017 9.580 − 0.613 ± j6.390 1.017 9.549 G3, G4

3 − 0.368 ± j3.180 0.506 11.521 − 0.330 ± j3.153 0.502 10.414 G1–G4

4 − 0.396 ± j3.359 0.535 11.710 − 0.623 ± j3.252 0.518 18.815 G1–G4, DFIG

Mode With PSS2B With PSS4B Participation
factor

Eigenvalue f /Hz ξ /% Eigenvalue f /Hz ξ /%

1 − 0.651 ± j6.547 1.042 9.896 − 0.651 ± j6.547 1.042 9.827 G1, G2

2 − 0.613 ± j6.389 1.017 9.550 − 0.620 ± j6.393 1.017 9.658 G3, G4

3 − 0.330 ± j3.153 0.502 10.414 − 0.298 ± j3.137 0.499 9.968 G1–G4

4 − 0.601 ± j3.774 0.600 15.723 − 0.697 ± j3.495 0.556 19.564 G1–G4, DFIG
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Fig. 8 Load fluctuation response curve

a fault incidence time of 1 s and a duration of 0.5 s, to
further highlight the system’s efficiency in suppressing low-
frequency oscillations. The simulation lasts 20 s. When a
load fluctuation fault occurs in the system, Fig. 8 shows the
power angle of the generator G2 as well as the voltage and
frequency waveforms of bus 9.

From Fig. 8, it can be seen that when the system is sub-
jected to small disturbances, the RSC control loop of DFIG
with different types of PSS attached to the system has a cer-
tain effect on the improvement of stability. It can be seen from
the power angle curve of G2 that the amplitude of the first
circumferential wave after the system is added to PSS4B is
significantly suppressed compared to the first amplitude after
the PSS is added. From the voltage curve of bus 9, it can be
seen that the voltage dip of bus 9 is the smallest when the
system is subjected to small disturbances after the DFIG is
attached to PSS4B, while the voltage dip after the addition
of other types of PSS is larger. From the frequency curve
of bus 9, it can be seen that the DFIG additional PSS4B
has the most obvious effect on the suppression of frequency
fluctuation in the system when the system is subjected to

small disturbances. Combined with the above analysis, it can
be concluded that the DFIG additional PSS4B type has the
most obvious improvement in the stability of the power sys-
tem with small disturbances, which is consistent with the
eigenvalue analysis above.

3 MRAC–PSS4B controller design

According to the conclusion in Sect. 2, PSS4B has three
operating bands: high, medium, and low, and the three oper-
ating bands have non-interfering gain coefficients, center
frequency filtering, phase compensation, and limiting links,
which can meet the damping needs of different oscillation
bands and suppress the low-frequency oscillation problem of
a power system more effectively. Therefore, in this section,
the PSS4B is selected for improvement based onMRAC con-
trol so that the PSS4B can provide more accurate damping in
the corresponding frequency band, and the DFIG additional
MRAC–PSS4B controller can present a better low-frequency
oscillation suppression effect. To test the performance of
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Fig. 10 General block diagram of MRAC

the designed MRAC–PSS4B controller in the system, the
MRAC–PSS4B model is built in this section, just as Fig. 9
shown. The designed controller is still added to the RSC con-
trol loop and the reactive power control link of DFIG, and
the simulation is verified in the 4-machine, 2-area system.

3.1 Mathematical model of MRAC–PSS4B

By using rotational invariance techniques (TLS-ESPRITs)
and the regional pole assignment approach, a referencemodel
is developed on the basis of the common block diagram of
MRAC. The PID controller is employed to reduce the error
between up and uref by eliminating the trajectory tracking
error due to its positive effect on eliminating the trajectory
tracking error. Parameters in a PID controller can be adjusted
automatically using the adaptive law. The reference model
can be found from the Eq. (17).

3.2 Mathematical model of MRAC

To ensure system stability and convergence, the MRAC
employs Lyapunov’s theory and Barbalat’s lemma. In order
to meet the settling time, rising time, peak time, and over-
shoot criteria, the second-order system is used. On the basis
of the reference model, general adaptive control laws are
established. Dynamic uncertainties and modeling errors are
significantly reduced by MRAC. Figure 10 illustrates the
primaryMRAC block diagram. K1(s) corresponds to the ref-
erence model as shown in Fig. 9.

1. Signal Sampling

2. Construct the Hankel matrix X

3. Singular value decomposition

5. Calculate fk, σk, ζk

4. Matrix Reconfiguration

6. Calculate αk, θk

Fig. 11 The process of TLS-ESPRIT algorithm

3.2.1 Reference model design

As shown in Fig. 11, the TLS-ESPRIT is an improved esti-
mation of signal parameters through rotational invariance
technique (ESPRIT) that is used to estimate signal param-
eters from metrical data.where f k , σk, and ξk stand for the
signal frequency, damping factor, and damping ratio, respec-
tively, αk and θk represent the original amplitude and the
initial phase, respectively.

Based on the oscillation frequency band established by
the TLS-ESPRIT, a 0.2–2.5 HzButterworth bandpass filter is
applied. During the identification process, a 2% disturbance
is provided to simulate the system’s minor disturbance, and
the related eigenvalues are determined by the algorithm. The
system mostly participates in the local oscillation modes of
around 1.1–1.6 Hz. And the damping ratios are low. They all
belong to the primary oscillationmodes, which are the poorly
damped oscillation modes to be inhibited. Additionally, the
system participates in an inter-area mode with a frequency
of around 0.5 Hz and a damping ratio that is a bit larger than
the local mode. By adding a Butterworth bandpass filter with
a frequency range of 0.2–1.7 Hz, these modes serve as the
identification target. Using TLS-ESPRIT for identification
once more, the system’s 4th-order transfer function G(s) is
represented by Eq. (15):

G(s)

� −6.89 × 10−5s4 − 1.1865s3 − 23.5649s2 − 29.564s − 13.5641

s4 + 174532.7s3 + 5964.1s2 + 6638.9s + 138.9645
(15)

For increased stability, a regional pole assignment method
is used to design the controller. According to the designed
controller, the transfer function is as follows:
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Fig. 12 Block of PID controller.WhereKp1,K i1, andKd1 are the param-
eters of the PID controller

K (s) � −1.25s5 − 163.42s4 − 4.45 × 103s3

s6 + 272.23s5 + 2.65 × 104s4 + 1.65 × 106s3

→ −4.96 × 104s2 − 4.32 × 104s − 3.11 × 104

+1.45 × 107s2 + 1.23 × 107s + 2.36 × 105
(16)

Equation (16) shows that the controller’s order is high,
whichmakes it unsuitable for practical application. To reduce
the controller’s order, the balanced truncation model based
on Hankel SVD is employed in this paper. According to the
reduced controller function, it is as follows:

K1(s) � −3.18 × 10−9s − 2.45 × 10−10

s2 + 0.43s + 11.25
(17)

3.2.2 Conventional PID controller

PID controllers are commonly used in control systems due to
their simple construction and excellent robustness. The PID
controller’s performance can be improved by tuning param-
eters, as shown in Fig. 12.

The results caused by the changes inPIDcontroller param-
eters are shown in Table 2. In order to reduce the differential
link’s effect on the system, the differential link’s parameters
are rounded down to an extremely low value.

3.2.3 Adaptive ratio controller

Assuming that the controlled system is a linear time-invariant
system, the output amount is the default state variable, and
the state and output equation is as follows:

{
ẋ(t) �A1x(t) + B1u(t)

y(t) �x(t)
(18)

For the related equation, the reference model is expressed
as:

{
ẋm(t) �Amxm(t) + Bmcm(t)

ym(t) �xm(t)
(19)

where xm(t) is the reference state equation, and c(t) is the
model’s input signal.

The acquired controller transfer function is utilized as the
MRAC reference model to build the MRAC–PSS4B con-
troller, whose structure is depicted in Fig. 9. The adaptive law
is used to resolve the parameters of the controller, whereas
the gradient method is employed to handle the adaptive law.
Using the gradient approach to solve the adaptive law is
briefly presented below.

Assuming that the MRAC control includes an uncertain
parameter θ , define the error in the state variables of the
reference model and the controlled object as:

e � xm − x (20)

In Eq. (24), the error e is designed to converge to zero by
adjusting the parameter θ in MRAC, where a loss function is
introduced:

J � 1

2
e2 (21)

When the error e tends to zero, the loss function J also
tends to zero, and now J obtains the minimum value. Using
the gradient descent algorithm:

�θ � −k
∂ J

∂θ
� −ke

∂e

∂θ

θ̇ � −γ
∂ J

∂θ
� −γ e

∂e

∂θ
(22)

where �θ is the difference between two steps, and k is the
learning step. The second line is obtained after the derivation
of the first line of Eq. (22), γ is the adjustment rate, and
Eq. (22) can be individually referred to as the MIT law.

First, assume the following controller equation: u(t) �
ac(t) + bx(t) , where the parameters a and b are unknown,
this part use the MIT law to determine the values of these
parameters. The two unknown parameters are as follows:

Table 2 The parameter variation
of PID controller Parameter increase Rise time Overshoot Settling time Steady-state error

Kp Decreases Increase Small change Decrease

K i Decreases Increase Increase Highly reduced

Kd Small change Decrease Decrease Small change
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ȧ(t) � −γ e(t)
∂e(t)

∂a

ḃ(t) � −γ e(t)
∂e(t)

∂b
(23)

where e(t) can be solved using Eq. (24)

e(t) � xm(t) − x(t)

ẋm(t) � Amxm(t) + Bmc(t) (24)

Substituting into the controller equation and combining
with Eqs. (18) and (25) can be obtained:

ẋm(t) � Ax(t) + B[ac(t) + bx(t)] (25)

Equation (23) can be solved for x(t) by substituting it into
Eq. (20) and adding a differential operator p

e(t) � xm(t) − Ba

p − A − Bb
c(t) (26)

According to Eq. (23):

∂e(t)

∂a
� − Ba

p − A − Bb
c(t)

∂e(t)

∂b
� − Ba

p − A − Bb
x(t) (27)

In Eq. (27) the parameters A and B are unknown, but they
can be simplified by treating them as first-order inertia links:

∂e(t)

∂a
� − 1

p + Am
c(t)

∂e(t)

∂b
� − 1

p + Am
x(t) (28)

As shown in Eq. (28), the parameters a and b can be cal-
culated according to the MIT law. This section still uses a
conventional PID controller.

3.3 3.3 Simulation analysis

3.3.1 System simulation of tie-line transmission power
variation

In this section, simulation experiments are still conducted
using the 4-machine, 2-area system, where power is set to be
delivered from area 1 to area 2, and the transmission power
of the contact line is adjusted by changing the output of the
generator in area 1. The system’s characteristic values are
examined under three distinct operating conditions:

Case a: The power transmitted on the tie line from region
1 to region 2 is 300 MW;

Case b: The power transmitted on the tie line from region
1 to region 2 is 450 MW;

Case c: The power transmitted on the tie line from region
1 to region 2 is 600 MW.

As shown in Tables 3 and 4, when PSS4B is attached
to the DFIG, the eigenvalues of inter-regional oscillation
mode 3 exhibit a slight leftward shift trend, which improves
the system’s small disturbance stability. The corresponding
eigenvalues of the system’s inter-regional oscillation mode 4
and intra-regional oscillation mode 2 have a large left-shift
trend for the MRAC–PSS4B, and both show a significant
improvement in the damping ratio. Furthermore, the eigen-
values of inter-regional oscillation mode 3 exhibit a small
left-shift trend, which has an improving effect. Under three
different operating conditions (a, b, and c), the damping ratio
of inter-area oscillation mode 4 rises from 16.518, 16.524,
and 16.387 to 20.560, 17.69, and 17.216%, respectively.
The MRAC–PSS4B can further improve the damping char-
acteristics of the system. The damping ratios of inter-area
and intra-area oscillation modes are greatly improved, espe-
cially the damping ratios of inter-area oscillation mode 4
corresponding to different operating conditions, which are
improved by 24.47%, 7.05%, and 5.06%, respectively. It can
be seen that the stability and robustness of the system with
small disturbances have greatly improved.

Figure 13 shows the power angle, voltage, and frequency
response curves of the system under different tie-line powers
with the same conditions as shown in Sect. 2.3, assuming
the same fault happened in the system. As the tie-line power
grows, the power angle of generator G2 gradually increases,
the voltage of bus 9 gradually lowers, and the frequency
gradually decreases. The oscillation amplitude of the curve
increases as the tie-line power increases, as does the time
for the system to reach stability. From the power angle of
the G2 response curves in the three operating conditions,
the DFIG with PSS4B has a damping effect on the sys-
tem oscillation, but the improvement effect on the system
bus frequency and voltage is not satisfactory. As shown in
Fig. 13, after attaching the MRAC–PSS4B controller to the
RSC control loop, the amplitude of the power angle curve
of G1 is further suppressed, the amplitude of the frequency
response curve of bus 9 is obviously suppressed, and the
voltage drop of bus 9 is very small under less interference
conditions. It can be concluded that the system’s additional
MRAC–PSS4B controller has a better damping impact on
oscillations under different tie-line power situations, and the
system’s robustness is greatly increased, which is consistent
with the eigenvalue analysis results.
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Table 3 The eigenvalues of system in different tie-line power condition

Mode Case Without controller With PSS4B Participation factor

λ f /Hz ξ /% λ f /Hz ξ /%

1 a − 0.671 ± j6.550 1.042 10.195 − 0.671 ± j6.550 1.042 10.195 G1, G2

b − 0.643 ± j6.542 1.041 9.790 − 0.643 ± j6.541 1.041 9.775

c − 0.618 ± j6.502 1.035 9.465 − 0.694 ± j6.502 1.034 9.468

2 a − 0.589 ± j6.404 1.019 9.154 − 0.582 ± j6.400 1.019 9.055 G3, G4

b − 0.637 ± j6.386 1.016 9.921 − 0.631 ± j6.381 1.015 9.845

c − 0.704 ± j6.350 1.011 11.021 − 0.695 ± j6.346 1.010 10.879

3 a − 0.295 ± j3.289 0.524 8.919 − 0.279 ± j3.302 0.525 8.432 G1–G4

b − 0.305 ± j3.031 0.482 10.039 − 0.351 ± j3.030 0.482 11.509

c − 0.343 ± j2.314 0.368 14.672 − 0.414 ± j2.349 0.374 17.359

4 a − 0.513 ± j3.063 0.488 16.518 − 0.660 ± j3.799 0.604 17.117 G1–G4, DFIG

b − 0.512 ± j3.056 0.486 16.524 − 0.579 ± j3.771 0.600 15.175

c − 0.503 ± j3.028 0.482 16.387 − 0.563 ± j3.767 0.599 14.783

Table 4 The eigenvalues of
system with MRAC–PSS4B in
different tie-line power condition

Mode Case With MRAC–PSS4B Participation factor

λ f /Hz ξ /%

1 a − 0.704 ± j5.972 0.950 11.708 G1, G2

b − 0.630 ± j6.320 1.006 9.914

c − 0.696 ± j6.261 0.996 11.052

2 a − 0.593 ± j6.345 1.010 9.311 G3, G4

b − 0.846 ± j6.526 1.038 12.857

c − 1.187 ± j5.772 0.918 20.145

3 a − 0.286 ± j3.194 0.508 9.003 GG1–G4

b − 0.313 ± j2.933 0.467 10.617

c − 0.340 ± j2.261 0.360 14.849

4 a − 0.812 ± j3.865 0.615 20.560 G1–G4, DFIG

b − 0.581 ± j3.230 0.514 17.690

c − 0.673 ± j3.853 0.613 17.216

3.3.2 System simulation of DFIG access point changes

In this section, the effect of DFIG additional MRAC–PSS
controller on system stability with small disturbances is
investigated when the DFIG access location is changed. The
effectiveness of the designed controller is verified in the fol-
lowing three cases:

Case d: DFIG access bus 6 in area 1;
Case e: DFIG access transmission line7–8 in area 1;
Case f : DFIG access bus 9 in area 2.
As shown in Tables 5 and 6, different eigenvalues of the

system correspond to the same oscillation mode when the
DFIG is at different access points. As a result, when the tur-
bine access position changes, the systemcharacteristic values
change as well. After connecting the PSS4B to the DFIG,

there is no clear leftward trend in the system’s eigenvalues for
intra-regional oscillationmode 2.When theDFIG is attached
to the PSS4B at different access points, the damping ratio of
the system is affected in both positive and negative ways.
However, when the DFIG connects the MRAC–PSS4B con-
troller to intra-regional oscillationmode 2, the eigenvalues in
the complex plane exhibit a significant leftward shift trend,
and the system’s damping ratio improves significantly. There
is a certain effect on the improvement of the damping ratio of
the system after attaching the PSS4B to the DFIG for inter-
regional oscillationmode 4, but it is not ideal. After attaching
the MRAC–PSS4B at the same position in the DFIG control
loop, the trend of the left shift of the system’s eigenvalues
is significantly better than after adding the PSS4B, as is the
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Fig. 13 Response curves of small disturbances under different working conditions

improvement of the damping ratio for inter-regional oscilla-
tion.

A time-domain simulation analysis was performed in
DIGSILENT/PowerFactory software to validate the damp-
ing impact of adding the MRAC–PSS4B controller in DFIG
for different grid-connected locations of DFIGwind turbines
on the system. Assuming different DFIG locations are linked
to the 4-machine, 2-area system, and the load L2 is config-
ured to have a 5% step at 1 s and 0.5 s later to recover, the
generator G2 power angle curve with bus 9 voltage and fre-
quency response curves is formed, as illustrated in Fig. 14.

According to Fig. 14, the varied access points of the DFIG
wind turbine to the grid have an effect on the power angle
characteristics of the system, and the relative power angle
of the synchronous machine changes when the DFIG wind
turbine is at different access points. The amplitude of the

first pendulum of the power angle curve of generator G2 is
reduced to a certain extent after DFIG is attached to PSS4B,
which improves system stability, but the voltage and fre-
quency response curves of bus 9 show that the DFIG is
attached to PSS4B for the systemvoltage, and frequencyfluc-
tuation improvement effect is relatively weak. The amplitude
of the power angle curve of G1 and the voltage curve of bus 9
are obviously weakened after attaching the MRAC–PSS4B
at the same position in the DFIG control loop, as shown in
Fig. 14, and the stabilization time required for oscillation
is obviously shortened, indicating that the system’s stability
is greatly improved. It can be shown that the RSC control
loop of the MRAC–PSS4B controller retrofitted to the DFIG
greatly enhances system stability at various DFIG access
points and operation situations.
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Table 5 The eigenvalues of the system at different DFIG access locations

Mode Case Without controller With PSS4B Related units

λ f /Hz ξ /% λ f /Hz ξ /%

1 a − 0.652 ± j6.546 1.042 9.908 − 0.649 ± j6.544 1.042 9.861 G1, G2

b − 0.651 ± j6.547 1.042 9.901 − 0.651 ± j6.546 1.042 9.902

c − 0.651 ± j6.547 1.042 9.896 − 0.651 ± j6.547 1.042 9.896

2 a − 0.620 ± j6.393 1.017 9.662 − 0.620 ± j6.392 1.017 9.649 G3, G4

b − 0.621 ± j6.393 1.017 9.661 − 0.618 ± j6.392 1.017 9.621

c − 0.620 ± j6.393 1.017 9.654 − 0.620 ± j6.393 1.017 9.653

3 a − 0.303 ± j3.128 0.498 9.639 − 0.315 ± j2.891 0.476 10.832 G1–G4

b − 0.302 ± j3.133 0.499 9.591 − 0.334 ± j3.036 0.490 10.935

c − 0.299 ± j3.137 0.499 9.500 − 0.295 ± j3.251 0.505 9.037

4 a − 0.807 ± j3.051 0.486 25.571 − 0.919 ± j3.123 0.497 28.230 G1–G4, DFIG

b − 0.791 ± j3.010 0.479 25.419 − 0.886 ± j3.022 0.481 28.134

c − 0.807 ± j3.042 0.484 25.648 − 0.824 ± j3.001 0.478 26.478

Table 6 DFIG additional
MRAC–PSS4B eigenvalues at
different DFIG access locations

Mode Case With MRAC–PSS4B Related units

λ f /Hz ξ /%

1 a − 0.765 ± j6.159 0.981 12.326 G1, G2

b − 0.697 ± j6.234 0.993 11.111

c − 0.691 ± j6.314 1.005 10.879

2 a − 1.021 ± j6.630 1.056 15.220 G3, G4

b − 1.423 ± j6.310 1.005 21.999

c − 1.945 ± j6.208 0.989 29.898

3 a − 0.321 ± j3.048 0.485 10.473 G1–G4

b − 0.310 ± j3.034 0.483 10.164

c − 0.292 ± j3.036 0.483 9.573

4 a − 1.246 ± j3.687 0.586 32.085 G1–G4, DFIG

b − 1.195 ± j3.121 0.497 35.757

c − 1.164 ± j3.259 0.519 33.635

4 Conclusion

The MRAC–PSS4B controller is constructed in DigSI-
LENT/PowerFactory simulation software to address the
low-frequency oscillation problem of wind power systems.
In this paper, a four-machine, two-area system is uti-
lized as a simulation scenario to examine the improvement
impact of comparing DFIG with four different PSS, and the
MRAC–PSS4B controller is built to be put in DFIG’s RSC
control loop. The developed controller’s improved impact
on the system’s low-frequency oscillation is validated using
both time-domain simulation and eigenvalue analysis.

The main conclusions are as follows:

(1) Among the four types of power system stabilizers,
PSS4B is the most successful in increasing the stability
of power systems with minor disruptions.

(2) The installation of MRAC–PSS4B in the DFIG rotor-
side reactive power control loop decreases low-
frequency oscillations in the system and is especially
effective when the power of the contact line changes
and the DFIG access position changes.

(3) The MRAC–PSS4B has a greater influence on damping
in systemswhere the primary participating units contain
DFIG than in systemswhere themain participating units
do not have DFIG.
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Fig. 14 Response curves for different access positions of DFIG
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