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Abstract
Optimal reactive power flow (ORPF) is of great importance for the electrical reliability and economic operation of modern
power systems. The integration of distributed generations (DGs) and two-terminal high voltage direct current (HVDC)
systems into electrical networks has further complicated the ORPF problem. Due to the high computational complexity of
the ORPF problem, a powerful and robust optimization algorithm is required to solve it. This paper proposes a powerful
metaheuristic algorithm namely fitness-distance balance-based adaptive gaining-sharing knowledge (FDBAGSK). In the
performance evaluation, 39 IEEE CEC benchmark functions are used to compare FDBAGSK with the original AGSK
algorithm. Moreover, the proposed algorithm is applied to perform the ORPF task in modified IEEE 30- and IEEE 57-
bus test systems. The effectiveness of the FDBAGSK method was tested for the optimization of three non-convex objectives:
active power loss, voltage deviation and voltage stability index. The ORPF results obtained from the FDBAGSK algorithm
are compared with other optimization algorithms in the literature. Given that all results are together, it has been observed that
FDBAGSK is an effective method that can be used in solving global optimization and constrained real-world engineering
problems.
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1 Introduction

Optimal reactive power flow (ORPF) is a nonlinear, non-
convex, and high-dimensional complex optimization prob-
lem. The main aim of the ORPF is to minimize a chosen
objective function via optimal adjustment of control vari-
ables such as the voltage of generation buses, reactive power
of capacitor banks, tap setting of transformers, etc. while sat-
isfying various equality and inequality constraints [1]. Active
power loss, voltage deviation, and voltage stability index are
widely-used objective functions in the ORPF problem. The
main reason behind it is that achieving these objectivesmeans
operating the electrical networks in an economical and stable
manner [2, 3].

In today’s world, ORPF has become one of the most
important power system problems due to its critical role
in the power industry. Power system researchers have used
various optimization algorithms to deal with complex con-
straints and obtain feasible solutions to the non-linear ORPF
problem. Ayan and Kılıç [4] used the artificial bee colony
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(ABC) algorithm to produce high-quality solutions to the
ORPFproblem. The success of theABC inminimizing active
power loss was evaluated using IEEE 30- and IEEE 118-bus
test systems. The numerical results demonstrated that the
ABC was able to achieve effective solutions for the ORPF
problem. Yalçın and Arifoğlu [5] applied the genetic algo-
rithm (GA) to the optimization of the ORPF problem in an
IEEE 14-bus power system. Given that numerical results
are together, it is observed that GA was more successful in
solving the ORPF problem compared to its competitors. In
another study, Moghadam and Seifi [6] dedicated on opti-
mal reactive power planning problem. In this direction, the
authors utilized the teaching–learning-based optimization
(TLBO) method based on fuzzy logic to minimize power
loss. The IEEE 30-bus test system results showed that the
proposed algorithm can be a powerful alternative for solving
the ORPF problem. Sulaiman et al. [7] investigated the best
settings of control variables for reactive power flow problem.
The authors applied the grey wolf optimizer (GWO) to solve
the regarding problem. The efficiency of the algorithm has
been tested in IEEE 30- and IEEE 118-bus power systems,
and theGWOhas outperformed othermetaheuristics in terms
of convergence speed and solution accuracy. Mehdinejad
et al. [8] proposed the hybrid particle swarm optimization-
imperialist competitive algorithm (PSO-ICA) for effective
management of reactive power. The simulation results of
IEEE 57- and IEEE 118-bus power systems demonstrated
that the proposed hybrid approach had the ability to produce
better-quality solutions than the ICAandPSO.Lenin et al. [9]
used the hybrid tabu search-simulated annealing (HTSSA)
algorithm to solve the ORPF problem. The effectiveness of
HTSSA was evaluated in the IEEE-30 bus test system. The
simulation results demonstrated that theHTSSAsignificantly
reduced the active power loss. Mei et al. [10] applied the
moth-flame optimization (MFO) algorithm to optimize the
control variables of the ORPF problem. The performance of
the algorithm has been tested in large-scale power systems,
and it has been observed that the solution quality is better
than its competitors. Sakr et al. [11] presented the differential
evolution-based optimal reactive power optimization. The
authors investigated the success of the proposedmodified dif-
ferential evolution algorithm (MDEA) in optimizing power
loss and enhancing the voltage profile. Medani et al. [12]
used the whale optimization algorithm (WOA) to optimize
the control variables of the ORPF problem. The numerical
results of the IEEE 14-, IEEE 30-, and Algerian 114-bus
test systems revealed that the WOA is an efficient and robust
method for solving the power systemplanning problemunder
study. Shaheen et al. [13] developed the hybrid improved
marine predators algorithm and particle swarm optimization
(IMPAPSO) method for the solution of the reactive power
planning problem. The effectiveness of the proposed algo-
rithm has been tested on IEEE 30-, IEEE 57- and IEEE

118-bus test systems. From the results, it has been seen
that the convergence performance of the hybrid algorithm
is superior to its competitors. Fadel et al. [14] employed
the backtracking search algorithm (BSA) to find a feasible
solutionORPFproblem incorporatingDGs andHVDC trans-
mission systems. The effectiveness of the BSA was tested
on modified IEEE 30- and 57-bus test systems with differ-
ent cases. The simulation results showed that the power loss
achieved by BSA was lower than its competitors in all test
cases.

Based on the literature review, it can be said that the studies
regarding the solution to the ORPF problem are a hot topic of
interest to researchers. However, most of these studies inves-
tigated the classical ORPF. Contrary to the literature, the
present research has centered on solving the AC/DC-ORPF
problem in power systems that aremodeled closest to the real
world with the integration of DGs and HVDC systems. It is
clear that power system researchers have applied a huge num-
ber of optimization algorithms to solve the ORPF problem.
However, the obtained results have not been of the desired
quality due to the drawbacks of optimizationmethods such as
premature convergence and getting stuck in the local optima.
From this point of view, a powerful and robust optimization
algorithm is needed to provide results that improve upon the
preceding ones. In this direction, this paper proposes a new
metaheuristic algorithm, namely fitness-distance balance-
based adaptive gaining-sharing knowledge (FDBAGSK).

A comprehensive scientific study has been carried out to
test and verify the effectiveness of the proposed FDBAGSK
algorithm. Firstly, it has been evaluated on 39 benchmark
functions from CEC 2017 and CEC 2020, two of the most
up-to-date test suites in the literature. The exploration,
exploitation, and balanced search capabilities of the algo-
rithm have been investigated by using unimodal, multimodal,
hybrid, and composition-type problems in the relevant test
suites. The data obtained from the experimental studies
have been statistically analyzed using the Friedman and
Wilcoxon tests. In addition, the convergence performance of
the developed FDBAGSK has been validated by examining
the boxplot graphs including the solution distribution span.
After that, the developed FDBAGSK algorithm has been
applied to the solution of nonlinear ORPF problem incor-
porating DGs and HVDC systems. Simulation studies have
been performed on modified IEEE 30- and IEEE 57-bus test
systems for optimization of power loss, voltage deviation,
and voltage stability enhancement objectives.

The main contributions of this study can be listed as fol-
lows:

• A novel optimizer named fitness-distance balance-based
adaptive gaining-sharing knowledge (FDBAGSK) is pro-
posed.
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• The exploration, exploitation, andbalanced search abilities
of the proposed FDBAGSK are tested by unimodal, multi-
modal, hybrid, and composition-type benchmark functions
on CEC 2017 and CEC 2020 test suites. Furthermore, the
convergence performance of the algorithm in 30, 50, and
100-dimensional search spaces was investigated.

• The practicability of FDBAGSK is evaluated for the opti-
mization of the ORPF problem incorporating DGs and
HVDC systems.

• The effectiveness of the proposed algorithm has been ver-
ified by Wilcoxon and Friedman statistical tests.

The remainder of the paper is organized as follows:

• Section 2 presents the mathematical model of the ORPF
incorporating DGs and HVDC systems.

• Section 3 was prepared to introduce the design steps
of the proposed FDBAGSK algorithm. In this direction,
the fitness-distance balance (FDB) selection method, the
basics of the original AGSK algorithm, and the proposed
FDBAGSK algorithm are given, respectively.

• Section4 describes the experimental settings. It gives
detailed information about the standards that were con-
sidered in executing the experimental studies and the
benchmark problems used to test the performance of the
algorithms.

• Section5 gives the findings and analysis results from the
experimental studies.

• Section6 presents the conclusions of the study.

2 Mathematical model of ORPF problem
incorporating DGs and HVDC systems

The optimal reactive power flow (ORPF) is a well-known
power system problem in the field of the economical and
reliable operation of electrical networks. The optimization
of the ORPF problem is formulated as the minimizing cho-
sen objective function such as active power loss, voltage
deviation, and voltage stability index via adjustment of the
control variables subject to various equality and inequality
constraints [15, 16]. The mathematical model of the ORPF
optimization problem is given in Eq. (1) [14, 17].

minimize Fobj(M , P)

subject to g(M , P) � 0
h(M , P) ≤ 0

(1)

where Fobj is the objective function, M and P represent the
state and control variables, g(M , P) and h(M , P) are the
equality and inequality constraints, respectively. This study

has focused on the formulation and solution of the AC/DC-
ORPF problem involving DGs and HVDC systems.

2.1 State variables

The state variables of the AC/DC-ORPF problem incorpo-
rating DGs and HVDC systems are given in Eq. (2) [14].

M �
[
MAC , MDC

]

MAC � [
PT HG1 , QT HG1 . . . QT HGNT HG , VL1 . . . VLNPQ

]

MDC � [
tr , ti , αr , γi , vdr , vdi

]
(2)

where QT HG1 represents reactive power of thermal genera-
tors, PT HG1 is the active power of the swing generator, VL

shows the voltage value of the load buses. NT HG and N PQ
are the number of thermal generators and load buses. tr and
ti display the tap ratio of transformers at the rectifier and
inverter sides, respectively. The excitation angle of the rec-
tifier and inverter are symbolized by αr and γi . vdr and vdi
represent the DC voltage of the rectifier and inverter termi-
nals, respectively.

2.2 Control variables

The control variables of the ORPF problem incorporating
DGs and HVDC systems can be listed as follows [14]:

P �
[
PAC , PDC

]

PAC � [
PT HG2 . . . PT HGNT HG , VT HG1 . . . VT HGNT HG ,

T1 . . . TNT , PDG1 . . . PDGNDG , locDG1 . . . locDGNDG

]

PDC � [Pr , Pi , Qr , Qi , id ]
(3)

where PT HG represents the thermal generator active power
(except for the swing generator), VT HG is the voltage value
of the generator buses, and T indicates the tap ratio of trans-
formers. PDG and locDG show the active power output and
location of the DG, respectively. NT HG, NT , and NDG
represent number of thermal generators, transformers, and
distributed generations, respectively. Pr , Pi , Qr , and Qi

are the active and reactive power output of the rectifier and
inverter, and id is the direct current.

2.3 Objective functions

In this study, active power loss, voltage deviation and L-
index objective functions are optimized. The mathematical
model of objective functions is explained in the following
subsections.
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2.3.1 Active power loss

The active power loss objective function can be formulated
as given in Eq. (4) [14].

(4)

Fobj (M , P) � Fobj1 � Ploss

�
NT HG∑
k�1

PT HGk +
NDG∑
k�1

PDGk −
Nbus∑
k�1

PLk

where PT HGk is the generator active power at bus k, PDGk

represents the active power of the distributed generator con-
nected to the k-th bus, PLk denotes load demand at bus k, and
Nbus represents the total bus number.

2.3.2 Voltage deviation

In modern power systems, the bus voltage deviation is con-
sidered one of the most important security indices. Because
a small change in voltage can affect the entire system and
cause a power outage [18, 19]. The voltage deviation objec-
tive function can be written as follows [20]:

Fobj(M , P) � Fobj2 � VD �
N PQ∑
i�1

|V Li − 1| (5)

where V D represents the voltage deviation value, N PQ is
the number of load buses, and V Li shows i-th load bus volt-
age.

2.3.3 Enhancement of voltage stability

Voltage stability is amajor problem inmodern power systems
and usually results from a change in power system config-
uration, increased load on the load buses, or a disturbance
in the power systems. The L-index value of the load buses
is a powerful indicator of voltage stability [20]. The L-index
parameter is expected to take values between 0 and 1, with 0
defining a no-load case, and 1 defining voltage collapse. For
modern power systems, a lower L-index value corresponds
to a more stable status [21, 22].

L j �
∣∣∣∣∣1 −

NT HG∑
i�1

Fji
Vi
Vj

∣∣∣∣∣ j � 1, 2, . . . , N PQ (6)

Fji � −[YLL ]
−1[YLG] (7)

where L j is the L-index value of the j-th load bus, and YLL
and YLG sub-matrices are calculated from the bus admittance
matrix (YBUS) after separating the load and generator buses,
as defined in Eq. (8) [18, 23].

[
IL
IG

]
� [YBUS]

[
VL

VG

]
�

[
YLL YLG
YGL YGG

][
VL

VG

]
(8)

Themaximumvalue of theL-index is defined as the objec-
tive function (Eq. 9) [20]:

Fobj (M , P) � Fobj3 � min(Lmax ) � min
(
max

(
L j

))
(9)

2.4 Equality constraints

This sub-section introduces the equality constraints of the
AC/DC-ORPF optimization problem.

2.4.1 AC system equality constraints

The AC bus model including DGs and HVDC systems is
shown in Fig. 1. The active and reactive power equations of
the k-th AC bus can be defined as follows [14]:

PT HGk + PDGk − PLk − PDk − Pk � 0 (10)

QT HGk + QCk − QLk − QDk − Qk � 0 (11)

where PT HGk , PDGk , PLk , PDk , and Pk are defined as an
active power of the thermal generator, distributed genera-
tion, load bus, DC link, and k-th bus; QT HGk , QCk , QLk ,
QDk , and Qk are defined as reactive power of the thermal
generator, shunt compensator, load bus, DC link, and k-th
bus, respectively.

The active and reactive power transferred from the k-th
bus to the AC system can be defined as follows [20, 22]:

Pk � vk

Nbus∑
j�1

v j
[
Gkj cos(δk − δ j ) + Bkj sin(δk − δ j

]
(12)

Qk � vk

Nbus∑
j�1

v j
[
Gkj sin(δk − δ j ) − Bkj cos(δk − δ j

]
(13)

where vk and v j denote the voltage magnitude at bus k and j,
respectively. Gkj and Bkj are conductance and susceptance,
δk and δ j depict the voltage angle of k-th and j-th bus, respec-
tively.

If the rectifier and inverter losses are ignored, the power
equations of the rectifier and inverter attached to the AC bus
can be written as follows [14, 20]:

PDk � Pr (14)

QDk � Qr (15)
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Fig. 1 AC bus model
incorporating DGs and HVDC
transmission systems

PDk � −Pi (16)

QDk � Qi (17)

2.4.2 DC system equality constraints

The schematic diagram of the two-terminal HVDC transmis-
sion system is depicted in Fig. 2. In the figure, vr , vi , ir , and
ii denote the AC voltage values and currents of the rectifier
and inverter, respectively. δr , δi , ξr , and ξi show the phase
and AC current angles at the rectifier and inverter side [20,
22]. The equations of the rectifier side can be formulated as
follows [24–26]:

vdor � ktrvr ⇒ k � 3
√
2

π
(18)

vdr � vdor cosα − rcr id ⇒ rcr � 3xcr
π

(19)

Pr � vdr id (20)

φr � cos−1(vdr/vdor ) (21)

Qr � |Pr tanφr | (22)

where vdor denotes the rectifier open circuit DC voltage
value. rcr and φr are the commutating resistance and phase
angle at the rectifier side, respectively.

The inverter side equations can be written as follows
[24–26]:

vdoi � ktivi ⇒ k � 3
√
2

π
(23)

vdi � vdoi cosγ − rci id ⇒ rci � 3xci
π

(24)

Pi � vdi id (25)

φi � cos−1(vdi/vdoi ) (26)

Qi � |Pi tanφi | (27)

wherevdoi denotes the inverter open circuitDCvoltage value.
rci and φi are the commutating resistance and phase angle at
the inverter side, respectively. The equivalent circuit of a two-
terminal HVDC transmission system is illustrated in Fig. 3.
Considering the DC-link resistance, the voltage balance of
the DC system can be written as follows [14]:

vdr − vdi − rdcid � 0 (28)

2.5 Inequality constraints

In this sub-section, inequality constraints of the AC/DC-
ORPF problem are given.

2.5.1 AC system inequality constraints

AC system inequality constraints can be formulated by Eqs.
(29-34).

Pmin
T HGi ≤ PT HGi ≤ Pmax

T HGi∀i ∈ NT HG (29)

Pmin
DGi ≤ PDGi ≤ Pmax

DGi∀i ∈ NDG (30)

Qmin
T HGi ≤ QT HGi ≤ Qmax

T HGi∀i ∈ NT HG (31)
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Fig. 2 Two-terminal HVDC
transmission system

Fig. 3 Two-terminal HVDC system equivalent model

Vmin
T HGi ≤ VT HGi ≤ Vmax

T HGi∀i ∈ NT HG (32)

Vmin
Li ≤ VLi ≤ Vmax

Li ∀i ∈ N PQ (33)

Tmin
i ≤ Ti ≤ Tmax

i ∀i ∈ NT (34)

2.5.2 DC system inequality constraints

DC system inequality constraints are given in Eqs. (35–41).

imin
d ≤ id ≤ imax

d (35)

Pmin
Dk ≤ PDk ≤ Pmax

Dk k � i , r (36)

Qmin
Dk ≤ QDk ≤ Qmax

Dk k � i , r (37)

tmin
k ≤ tk ≤ tmax

k k � i , r (38)

vmin
dk ≤ vdk ≤ vmax

dk k � i , r (39)

αmin
r ≤ αr ≤ αmax

r (40)

γmin
i ≤ γi ≤ γmax

i (41)

The fitness function of the AC/DC-ORPF problem incor-
porating DGs and HVDC systems can be formulated as in
Eq. (42). In that equation, Fobj (M , P) represents the objec-
tive function that include active power loss (Fobj1), voltage
deviation (Fobj2), and voltage stability enhancement (Fobj3).

J f i tness � Fobj (M , P) + Penalty

Penalty � λ1

(
PT HG1 − PT HG1

lim
)2

+ λ2

NT HG∑
i�1

(QT HGi − QT HGi
lim)

2

+ λ3

N PQ∑
i�1

(VLi − VLi )
2 + λ4

(
tr − tr

lim
)2

+ λ5

(
ti − ti

lim
)2

+ λ6

(
αr − αr

lim
)2

+ λ7

(
γi − γi

lim
)2

+ λ8

(
vdr − vdr

lim
)2

+ λ9

(
vdi − vdi

lim
)2

(42)

whereλ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8, andλ9 are penalty factor
terms. If the value of the state variables is lower or higher
than the limit values, the value of these variables is set to the
limit. Constraint violation states are given in the following
equations:

Plim
T HG1

�
{
Pmin
T HG1

Pmax
T HG1

i f PT HG1 < Pmin
T HG1

i f PT HG1 > Pmax
T HG1

(43)

Qlim
T HGi �

{
Qmin

T HGi
Qmax

T HGi

i f QT HGi < Qmin
T HGi

i f QT HGi > Qmax
T HGi

(44)

V lim
Li �

{
Vmin
Li

V max
Li

i f VLi < Vmin
Li

i f VLi > Vmax
Li

(45)

t limr �
{
tmin
r

tmax
r

i f tr < tmin
r

i f tr > tmax
r

(46)

t limi �
{
tmin
i
tmax
i

i f tr < tmin
r

i f tr > tmax
r

(47)

αlim
r �

{
αmin
r

αmax
r

i f αr < αmin
r

i f αr > αmax
r

(48)

γ lim
i �

{
γmin
i
tmax
r

i f γi < γmin
i

i f γi > γmax
i

(49)

vlimdr �
{

vmin
dr

vmax
dr

i f vdr < vmin
dr

i f vdr > vmax
dr

(50)

vlimdi �
{

vmin
di
tmax
r

i f vdi < vmin
di

i f vdi > vmax
di

(51)
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3 Method

Although MHS algorithms differ from each other in sev-
eral ways, there are two search tasks common to all of them
[27–30]. The first task is exploitation, which refers to the
ability to perform a neighborhood search around a reference
location. This task, also known as fine-tuning, can be eas-
ily fulfilled by MHS algorithms because there are simple
and effective mathematical methods that are well known for
searching around a reference location [31, 32]. The second
task is exploration, which refers to the algorithm’s ability
to efficiently research the entire search space. In contrast to
exploitation, exploration is challenging because there are an
unlimited number of solutions to be investigated in search
space. Exploration is a process performed to eliminate local
solution traps and plays a major role in determining the algo-
rithm search performance [33–35]. The existence of many
local solution traps in complex search spaces causes MHS
algorithms to get caught in local solution traps while per-
forming their exploration tasks and thus leads to premature
convergence [36]. To overcome these problems, the MHS
algorithm must have strong exploration and balanced search
capability. The present study has centered on improving the
exploration and balanced search capabilities of the AGSK
algorithm,which suffers frompremature convergence. In this
direction, the guide selection strategy of theAGSKalgorithm
was redesigned using the FDB selection method. Thus, the
FDBAGSK algorithm, which has the ability to effectively
explore the search space and converge to the global optimum
successfully, was developed. The next sub-sections introduce
the FDB selectionmethod, optimizationmodel of the AGSK,
and the proposed FDBAGSK algorithm.

3.1 Fitness-distance balance (FDB) selectionmethod

Fitness-distance balance (FDB) [37] is an effective and pow-
erful selectionmethod developed byKahraman et al. in 2020.
The fundamentals of FDB method are based on the selec-
tion of guides with high potential to improve the quality of
the search process. Although FDB is relatively similar to
the greedy selection method, the most important feature that
distinguishes FDB from the greedy approach is that the solu-
tion candidates are selected according to their scores. The
FDB method considers two criteria to calculate the scores
of the solution candidates: the fitness value and the distance
to the best solution (xbest ) in the population [37, 38]. This
ensures that the solution candidate with the high fitness value
is selected and also prevents the selection of a solution can-
didate that is very close to the xbest [33]. In order to calculate
the FDB scores of solution candidates in a P-population, the
following steps should be applied [37, 39]:

Step 1: Assume that xi (i � 1, 2, . . . , k) represents indi-
vidual in population P. Accordingly, the population includes

k individuals (solution candidates) and each individual xi
is represented by xi j � [xi1, xi2, . . . , xin], where n is the
design variables number and fi (i � 1, 2, . . . , k) is the fit-
ness value. In light of these definitions, P and FV vectors are
created as shown in Eq. (52).

P ≡
⎡
⎢⎣
x11 · · · x1n
...

. . .
...

xk1 · · · xkn

⎤
⎥⎦
kxn

, FV �

⎡
⎢⎢⎢⎢⎢⎣

f1
.

.

.

fk

⎤
⎥⎥⎥⎥⎥⎦
kx1

(52)

Step 2: The Euclidean distance value between i-th indi-
vidual (xi ) and xbest is calculated by Eq. (53), where xbest
refers to the individual with the best fitness value.

k
i�1∀xi 	� xbest , Dx , i

�
√(

xi[1] − xbest[1]
)2 + (

xi[2] − xbest[2]
)2 + . . . +

(
xi[n] − xbest[n]

)2
(53)

Step 3: The distance vector Dx is represented by Eq. (54).

Dx ≡

⎡
⎢⎢⎢⎢⎢⎣

d1
.

.

.

dk

⎤
⎥⎥⎥⎥⎥⎦
kx1

(54)

Step 4: The FDB selection method evaluates individuals
according to their scores. The score value is calculated using
the normalized fitness value (normFV ) and normalized dis-
tance value (normDx ) of individuals. Normalized values are
used in order to prohibit the dominance of fitness and dis-
tance values in the score calculation. The weight coefficient
(w) determines the effect of FV and Dx in the FDB score
calculation of the individuals. In this study, the effects of fit-
ness anddistance values on score calculationwere considered
equal (w � 0.5).

k
i�1∀xi , Sx[i] � w ∗ normFVx[i] + (1 − w) ∗ normDx[i]

(55)

Step 5:The score vector of the populationP is represented
by Eq. (56).

Sx ≡

⎡
⎢⎢⎢⎢⎢⎣

s1
.

.

.

sk

⎤
⎥⎥⎥⎥⎥⎦
kx1

(56)
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In the FDB selection method, individuals that will guide
the search process are chosen based on the Sx vector shown
in Eq. (56). For detailed information about the FDB selection
method, please review Ref. [37].

3.2 Overview of AGSK algorithm

Adaptive gaining-sharing knowledge (AGSK) [40] is a pow-
erfulmetaheuristic algorithmdevelopedbyMohamedet al. in
2020. The AGSK has been developed to provide an effective
algorithm that can solve difficult optimization problems with
rapid convergence and high solution accuracy by enhanc-
ing the search capability of the gaining-sharing knowledge
(GSK) [41] algorithm. The strength of the AGSK is in
its dynamic adaptation of the knowledge factor (k f ) and
knowledge ratio (kr ). The AGSK algorithm was created by
combining the GSK with the adaptive procedure. The basics
of the GSK algorithm and the adaptive procedure are intro-
duced in the following subsections.

3.2.1 Gaining-sharing knowledge algorithm

GSK is a population-based algorithm inspired by the behav-
ior of people to acquire and share knowledge throughout their
lives. It is based on two crucial stages: junior gaining-sharing
knowledge and senior gaining-sharing knowledge [41].

As given in Algorithm 1 (please see lines 6–14), the
GSK optimization process consists of three steps: selection,
search, and update. In the selection step, the individuals who
will guide the search process are identified. The GSK algo-
rithm uses sequential, random, and greedy selection methods
to identify guide solution candidates. In the second step of

the search-process lifecycle, the search for a global optimum
is carried out through exploration and exploitation operators.
Finally, the populationP is updated based on the fitness value
of the individuals.

As in other metaheuristic algorithms, GSK uses the initial
population P to start the optimization process. The P is cre-
ated based on k solution candidates called individuals and n
design parameters. TheFV vector represents the fitness value
of the individuals, and it is created as given in Eq. (52). For
the junior and senior gaining-sharing knowledge stages, the
dimension of design variables (n) is calculated by Eq. (57)
[40, 41].

nGained_Shared_Junior � n ∗
(
1 − FEs

maxFEs

)K

(57)

nGained_Shared_Senior � n − nGained_Shared_Junior

where FEs and maxFEs are the current and maximum
function evaluation scores, respectively. The dimension of
the design parameter to be updated using the junior stage
initially takes its maximum value, and over time, the number
of dimensions to be updated using the senior stage increases.
The speed of learning and sharing knowledge increases at
some points in the human lifetime and decreases at others.
This dynamic process is simulated by setting the information
rate K in Eq. (57). Due to the heterogeneous distribution of
the population, parameter K takes a random value in the
range [0–1] for half of the population individuals and an
integer value in the range [1–20] for the other half [40, 41].

123



Electrical Engineering (2023) 105:3121–3160 3129

In the junior gaining-sharing knowledge stage, knowledge
resources are limited, so each individual tends to obtain infor-
mation only from the closest family members and relatives.

Individuals are updated via the following steps [40, 41]:
Step 1: Individuals are ranked in descending order accord-

ing to fitness values as shown in Eq. (58). In that equation,
xbest and xworst represent the individuals with the best and
worst fitness values, respectively.

P �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
best
...

xi−1

xi
xi+1
...

xworst

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
kxn

(58)

Step 2: The xi−1 (closest better) and xi+1 (closest worse)
are identified for each individual (xi , i � 1, 2, . . . , k) using

Eq. (58). Knowledge is shared with a randomly selected indi-
vidual xr from the population. The pseudo-code of the junior
gaining-sharing knowledge phase is given in Algorithm 2.

At the senior gaining-sharing knowledge stage, individ-
uals have excellent capability to gain and share knowledge
from their wide networks of friends, social media, and books.
This stage examines the effects of individuals classified as
the best and worst on the other individuals. Thus, individuals
are updated via the following steps [41]:

Step 1: The population is divided into three categories
considering the rank given in Eq. (58). Accordingly, the first
100p% individuals are in the best-category, the last 100p%
individuals are in the worst-category, and the other individ-
uals k−(2×100p%) are in the better/middle category.

Step 2: For each xi , two random vectors (xpbest and
xpworst ) are selected for gaining knowledge. Then, xm is
then selected from the better/middle individual category for
sharing knowledge. The percentage of the best and worst cat-
egories is determined by p,with its value in the range of [0,1].
p was considered as a 0.1. The pseudo-code of the senior
gaining-sharing knowledge phase is presented in Algorithm
3.

123



3130 Electrical Engineering (2023) 105:3121–3160

3.2.2 Adaptive procedure

The search performance of the AGSK is directly related to
the success of the junior and senior gaining-sharing knowl-
edge stages, where exploration and exploitation tasks are
fulfilled. The knowledge factor (k f ) and knowledge ratio (kr )
are accountable for managing the junior and senior gaining-
sharing phases during the search process. For this, the k f

and kr parameters should be dynamically adjusted to meet
the requirements of the search process. k f determining the
total knowledge number to be transferred from others to the
i-th individual and kr denoting the ratio between the present
and acquired experience. The value of k f is greater than 1
and that of kr is between 0 and 1 [40]. The pseudo-code of
the adaptation scheme is presented in Algorithm 4.

In the AGSK algorithm, an adaptive process is used to
determine the ideal value of the k f and kr parameters. The
predetermined parameter settings for the pool vectors in
AGSK were k f � [0.1 1 0.5 1] and kr � [0.2 0.1 0.9 0.9].
As shown in Algorithm 4 line 5, when the condition FEs >

0.1∗maxFEs is satisfied, the Kw_P probability parameter is

updated using Eq. (61). According to the probability param-
eter, the k f and kr values are assigned from the parameter
pool for each individual [41].

wps �
p∑

i�1

f
(
xnewi

) − f
(
xoldi

)
(59)

�ps � max

(
0.05,

wps

sum(wps)

)
(60)

Kw_Pg+1 � (1 − c)Kw_Pg + c�ps (61)

where wps represents the sum of the differences between
the old and new fitness values for each individual belonging
to the parameter setting. f is the fitness function, xnewi and
xoldi are defined as new and old individuals, respectively. p
is the number of individuals belonging to the parameter set-

ting.�ps represents the improvement rate for each parameter
setting, and c is the learning rate.

The population size is updated in every generation to
increase the search performance of the AGSK. The popu-
lation size is reduced gradually using Eq. (62).
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Table 1 Mathematical model of the proposed FDBAGSK

Cases Explanation Mathematical model of FDBAGSK variants

Case-1 In the senior gaining-sharing knowledge phase, xFDB is used
instead of the xm vector

xnewi j � xi + k f
[(
xpbest − xpworst

)
+ (xFDB − xi )

]
(63)

xnewi j � xi + k f
[(
xpbest − xpworst

)
+ (xi − xFDB)

]
(64)

Case-2 In the senior gaining-sharing knowledge phase, xFDB is used
instead of the xpworst vector

xnewi j � xi + k f
[(
xpbest − xFDB

)
+ (xFDB − xi )

]
(65)

xnewi j � xi + k f
[(
xpbest − xFDB

)
+ (xi − xFDB)

]
(66)

Case-3 In the junior gaining-sharing knowledge phase, xRFDB was
used instead of xi+1 vector, and xFDB was used instead of xr
vector

xnewi j � xi + k f
[
(xi−1 − xRFDB) + (xFDB − xi )

]
(67)

xnewi j � xi + k f
[
(xi−1 − xRFDB) + (xi − xFDB)

]
(68)

Case-4 In the junior gaining-sharing knowledge phase, xRFDB was
used instead of xi−1 vector, and xFDB was used instead of xr
vector

xnewi j � xi + k f [(xRFDB − xi+1) + (xFDB − xi )] (69)

xnewi j � xi + k f [(xRFDB − xi+1) + (xi − xFDB)] (70)

Case-5 In the junior gaining-sharing knowledge phase, xFDB is used
instead of the xr vector

xnewi j � xi + k f
[
(xi−1 − xi+1) + (xFDB − xi )

]
(71)

xnewi j � xi + k f
[
(xi−1 − xi+1) + (xi − xFDB)

]
(72)

kg+1 � round

[(
popsi zemin − popsi zeinit

maxFEs

)
FEs

+ popsi zeinit

]
(62)

where kg+1 is the population size in the next generation. The
initial value of the population size is popsi zeinit � 40 ∗ n,
and the minimum value is popsi zemin � 12 [41].

3.3 Proposed FDBAGSK algorithm

This sub-section introduces the design steps of the proposed
FDBAGSK algorithm. First, the FDBAGSK variants created
by applying the FDBmethod and their mathematical models
are introduced. Subsequently, the pseudo-code of the pro-
posed method is given.

The strength of the AGSK algorithm is that it provides
adaptive settings for the knowledge factor (k f ) and knowl-
edge ratio (kr ) control parameters. However, the results of
experimental studies conducted in 30/50/100 dimensions
using unimodal, multimodal, hybrid, and composition type
problems in the CEC 2017 and CEC 2020 test suites revealed
that the AGSK converged prematurely, and its exploitation-
exploration balance was insufficient. The poor exploration of
the algorithm was the main reason for its premature conver-
gence, especially in multimodal-type problems containing
many local solution traps. The AGSK was insufficient to
provide the balance of exploration and exploitation required
to successfully research the complex search spaces of
hybrid and composition type problems. To eliminate these
problems, we decided to strengthen the exploration and

balanced search capabilities of the algorithm using the FDB
selection method. To this end, the guide selection strategy in
the AGSKwas re-designed using the FDB selection method.

The FDBAGSK variants (Case-1,…, Case-5) created by
applying the FDB-based guide mechanism are given in Table
1. In the Case-1 and Case-2 variants, the FDB method was
applied to the senior gaining-sharing knowledge stage. The
Case-1 variant was designed by using the xFDB instead of the
xm solution candidate in the i-th solution candidate update
equations specified in Algorithm 3, lines 5 and 7. In Case-
2, the xpworst solution candidate in the same equations was
replaced by the xFDB solution candidate determined via the
FDB method. Case-3, Case-4, and Case-5 are FDBAGSK
variants in which the FDB method was applied to the junior
gaining-sharing knowledge stage of the AGSK algorithm. In
these three variants, the solution candidate update equations
given in Algorithm 2, lines 5 and 7 were revised. Case-3
was designed using xRFDB instead of the solution candidate
xi+1, and xFDB instead of the solution candidate xr . In Case-
4, it was suggested that two different solution candidates
should be selected by FDB-based methods. Here, whereas
the xi−1 solution candidate was selected by the FDB roulette
method (xRFDB), the xr solution candidate was identified
by the FDB (xFDB). The other FDB variant (Case-5) was
designed using xFDB instead of xr in the junior gaining-
sharing knowledge phase. The above-mentioned xFDB and
xRFDB refer to the solution candidates selected by the greedy
method (i.e., the solution candidates with the highest scores)
and the roulette method, according to the score value given
in Eq. (56), respectively. The pseudo-code of the FDBAGSK
optimization method is given in Algorithm 5.
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4 Experimental settings

Comprehensive experimental studies were carried out to
test and validate the search performance of the AGSK and
FDBAGSK variants. Different problem types and complex
search spaces were considered to scrutinize the exploita-
tion, exploration, and balanced search capabilities of MHS
algorithms. In order to objectively compare the search per-
formance of MHS algorithms, the following conditions were
applied.

• The effectiveness of the algorithms is tested on 39 bench-
mark functions of CEC 2017 and CEC 2020 test suites.

• For a fair comparison, all MHS algorithms use
1000*Dimension maximum function evaluations
(maxFEs) as search process termination criteria.

• The search performance of the algorithmswas tested using
different problem types: unimodal, multimodal, hybrid,
and composition problems.

• Experiments were carried out in 30, 50, and 100 dimen-
sions to examine the behavior of the optimization algo-
rithms in low/middle/high-dimensional search spaces.

• 51 independent runs were conducted to obtain robust data
for statistical analysis. Nonparametric pairwise Wilcoxon
[42] and Friedman [43] tests were used for statistical anal-
ysis. The Wilcoxon test was done at a 5% significance
level.

• All experimental studies were done using MATLAB
R2016a on an Intel(R) Core (TM) i5-1135G7@2.40 GHz
X64-processor with a 16 GB RAM computer.

Table 2 provides information about the CEC test suites
used in the experimental studies.

5 Results and analysis

This section gives the results of two experimental studies in
the field of optimization. The first subsection analyses the
search performance of FDBAGSK in CEC global optimiza-
tion problems. The second sub-section presents the simula-
tion results of the nonlinear ORPF optimization problem.

5.1 Determining the best FDBAGSK version
on global optimization problems

This sub-section presents a comparative analysis of the orig-
inal AGSK and the FDBAGSK variants on the CEC 2017
and CEC 2020 benchmark problems.

5.1.1 Statistical analysis

In the experimental studies, 39 benchmark test functions
were used to test and validate the search performance of
six algorithms (AGSK and five FDBAGSK variants). For
detailed information on the FDBAGSK variants, please
review sub-Sect. 3.3. Proposed FDBAGSK algorithm. Each
test function was run 51 times in order to obtain statistically
robust data. Additionally, the experiments were performed
in 30, 50, and 100 dimensions to analyze the convergence
performance of the algorithms depending on the dimension
change. Using the nonparametric Friedman and Wilcoxon
tests, 35,802 (39*6*51*3) data items were statistically
analyzed.

A comparative analysis of the FDBAGSK versions (Case-
1,…,Case-5) and the baseAGSKwas performed, and the best
FDB-based version was determined by using the Friedman
test. Table 3 presents the Friedman test results of the AGSK
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Table 2 Benchmark suites used
in the experimental studies Title Number of test functions Function types Search range Dimension

CEC 2017 [44] 29 Unimodal [− 100, 100] 30, 50 and 100

Multimodal

Hybrid

CEC 2020 [45] 10 Composition

Table 3 Friedman test ranking of
AGSK and FDBAGSK variants Algorithms Dimension � 30 Dimension � 50 Dimension � 100 Mean

rank
CEC
2017

CEC
2020

CEC
2017

CEC
2020

CEC
2017

CEC
2020

Case-1 2.87 2.93 2.73 2.71 2.98 2.78 2.83

Case-2 3.45 3.35 3.41 3.12 3.32 2.94 3.26

Case-3 3.35 3.35 3.44 3.59 3.40 3.54 3.44

Case-4 3.35 3.34 3.54 3.77 3.44 3.73 3.52

Case-5 3.70 3.62 3.72 3.53 3.51 3.70 3.63

AGSK 4.25 4.37 4.13 4.25 4.33 4.28 4.26

Bold values show the best Friedman score

and FDBAGSK variants. In order to determine the best
FDBAGSK variant, thirty-six experiments were carried out
in 30, 50, and 100 dimensions. The Friedman ranking of com-
petitive algorithms was determined based on theMean Rank
index, which considers the average of all experiments and is
presented in the last column of Table 3. As can be seen clearly
from the table, the FDB-based algorithms outperformed the
original AGSK in all experiments. Admittedly, among the
FDBAGSK variants, Case-1 is the most successful.

Wilcoxon pairwise comparison test results for the orig-
inal AGSK and the FDBAGSK variants are given in
Table 4. The results showed that the FDBAGSK variants
exhibited a better search performance than the AGSK algo-
rithm for all dimensions in both benchmark test suites. The
performance of the Case-1 (20/9/0) and Case-4 (20/8/1) vari-
ants on the CEC 2017 test problems for 30 dimensions was
pretty close. Moreover, for the experiments in the same test
suite, the search performance of Case-1 (17/11/1) and Case-
2 (21/6/2) was better than their competitors in the 50 and
100 dimensions, respectively. For the experiments in the
CEC2020 test suite, the performance of the Case-1 (8/2/0) in
30 and 50 dimensions and the Case-2 (8/2/0) variant in 100
dimensions was better compared to its competitors. Given
that all results are together, it is observed that the FDB-based
variants outperformed the original AGSK algorithm in all
experiments.

Table 5 discusses the search performance of the algorithms
for unimodal, multimodal, hybrid, and composition bench-
mark functions in both the CEC 2017 and CEC 2020 test
suites. In Table 5, the best Friedman rank obtained for each

experiment is marked in bold. The results given in the rele-
vant table clearly show that the FDBAGSK variants achieved
a better ranking than the basic AGSK algorithm in all experi-
ments. A plus point is that the AGSK algorithm gave a worse
search performance than its competitors in the four different
problem types. This indicates that the main handicap of the
AGSK algorithm is the premature convergence problem. The
underlying reason behind it can be attributed to the inability
of the AGSK algorithm to effectively imitate the process in
nature. In order to eliminate this problem, the use of the FDB
selection method is a feasible solution, as it was designed
with reference to nature. The results given in Table 5, clearly
show that the search performance of the FDBAGSK versions
improved by the FDB method.

Table 6 gives the error statistics for the AGSK and the
FDBAGSK variants in the 30-, 50-, and 100-dimensional
experiments. In the relevant table, each cell includes mean
and standard deviation values, respectively. For each test
function, the best value obtained in the regarding dimension
is marked in bold. Additionally, the data were interpreted
with the box plots prepared to facilitate an understanding
of the search performance of the algorithms. The box plots
show the minimum, maximum, and mean/standard deviation
error values achieved by the algorithms for 51 independent
runs. Figures 4 and 5 illustrate box plots in 30, 50, and 100
dimensions for unimodal, multimodal, hybrid, and composi-
tion type benchmark functions selected from the CEC 2017
and CEC 2020 test suites.

Figure 4 illustrates the box-plot graphs in 30/50/100
dimensions for the F1 unimodal, F5 multimodal, F18 hybrid,
and F21 composition-type test functions of the CEC 2017
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Table 4 Wilcoxon pairwise
comparison results for AGSK
and FDBAGSK variants

vs. AGSK + / � /- Dimension � 30 Dimension � 50 Dimension � 100

CEC 2017 CEC 2020 CEC 2017 CEC 2020 CEC 2017 CEC 2020

Case-1 20/9/0 8/2/0 17/11/1 8/2/0 18/5/6 7/2/1

Case-2 15/11/3 5/5/0 13/14/2 6/4/0 21/6/2 8/2/0

Case-3 15/14/0 6/4/0 14/14/1 3/7/0 15/13/1 4/5/1

Case-4 20/8/1 5/5/0 12/15/2 3/7/0 19/9/1 5/4/1

Case-5 15/12/2 5/5/0 12/15/2 5/4/1 15/12/2 3/6/1

Table 5 Friedman ranking of
AGSK and FDBAGSK variants
for unimodal, multimodal,
hybrid, and composition
problems

Function type AGSK Case-1 Case-2 Case-3 Case-4 Case-5

CEC 2017 Unimodal D � 30 4.06 3.25 3.06 3.48 3.59 3.56

D � 50 4.28 3.32 3.48 3.19 3.48 3.25

D � 100 4.71 2.87 3.50 3.18 3.73 3.00

Multimodal D � 30 4.41 2.20 3.39 3.29 3.72 3.98

D � 50 4.48 2.09 3.32 3.38 3.73 4.00

D � 100 4.48 2.06 3.35 3.41 3.76 3.94

Hybrid D � 30 4.12 3.08 3.48 3.30 3.24 3.78

D � 50 3.92 3.09 3.43 3.50 3.44 3.62

D � 100 4.25 3.05 3.12 3.55 3.31 3.73

Composition D � 30 4.15 3.01 3.60 3.49 3.24 3.52

D � 50 4.03 2.64 3.42 3.52 3.59 3.80

D � 100 4.16 3.45 3.46 3.35 3.35 3.23

CEC 2020 Unimodal D � 30 5.51 4.45 2.18 2.86 2.57 3.43

D � 50 5.90 4.20 3.67 2.45 2.71 2.08

D � 100 5.86 4.12 4.06 2.06 3.43 1.47

Multimodal D � 30 4.10 2.61 2.66 3.59 3.80 4.24

D � 50 4.10 2.49 2.42 3.71 4.20 4.07

D � 100 3.96 2.58 2.14 4.14 3.98 4.20

Hybrid D � 30 4.06 2.63 3.82 3.46 3.52 3.52

D � 50 4.12 2.16 3.41 3.87 3.84 3.59

D � 100 4.36 1.20 3.17 3.83 3.96 4.48

Composition D � 30 4.59 3.08 3.99 3.20 2.97 3.16

D � 50 4.00 3.01 3.35 3.59 3.63 3.42

D � 100 4.01 4.12 3.17 3.16 3.36 3.18

Bold values show the best Friedman score

benchmark suite. The F1 test function box-plot graphs
(Fig. 4a–c) display that the FDBAGSK variants were supe-
rior to the base algorithm in convergence to the minimum
error value in all dimensions. The results clearly show the
impact of the FDB method on the exploitation ability of the
FDB-based AGSK variants. The box-plots in Fig. 4d–f show
that Case-1 was able to conduct a stable search in all dimen-
sions and had an overwhelming advantage over the AGSK
algorithm in convergence to the minimum error value. In
the F5 multimodal problem, the AGSK suffered a premature
convergence. The superior performance of Case-1 proved

that the FDB selection method had remarkably advanced the
exploration ability of the AGSK. For hybrid and composi-
tion type problems, convergence to the minimum error value
depends on the balanced search capability of the algorithm.
The box-plots of the F18 and F21 box-plot problems indicate
that the balanced search capability of the AGSK was insuf-
ficient. In contrast, the FDBAGSK variants showed a stable
search performance for all dimensions.

Figure 5 shows box-plot graphs for different problem
types selected from the CEC 2020 test suite to investigate the
exploration, exploitation, and balanced search performance
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Fig. 4 Box-plot graphs for unimodal, multimodal, hybrid, and composition benchmark functions of the CEC 2017 test suite
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Fig. 5 Box-plot graphs for unimodal, multimodal, hybrid, and composition benchmark functions of the CEC 2020 test suite
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of the AGSK and the FDBAGSK variants. The exploitation
capability of the FDBAGSK variants in the unimodal (F1)
problem type, designed to test the exploitation ability of algo-
rithms, was superior to that of the base algorithm. Solving
the multimodal (F3) problem including many local solution
traps requires a strong exploration ability.Accordingly,Case-
1 and Case-2 variants managed to converge to the minimum
error value in all dimensions with their powerful exploration
capability. In hybrid (F8) and composition (F10) problem
types, the convergence rate depends on the algorithm suc-
cessfully balancing exploration and exploitation. The graphs
in Fig. 5g–l display that the balanced search ability of the
FDB-based Case-1 variant was stronger than that of its com-
petitors.

5.1.2 Convergence analysis

In this section, the convergence performance of the AGSK
and FDBAGSK variants is examined. The convergence abil-
ity of the algorithms was evaluated on the unimodal (F1),
multimodal (F9), hybrid (F16), and composition (F29) type
test functions of the CEC 2017 benchmark suite. Figure 6
shows the convergence curves of the algorithms for the dif-
ferent problem types in 30, 50, and 100 dimensions.

The unimodal F1 function curves in Fig. 6a–c demonstrate
that the algorithms were successful in solving the unimodal
problem type designed to investigate the exploitation abil-
ity. The FDBAGSK variants were superior to the AGSK in
fulfilling the task of exploitation. Because the multimodal
F9 problem contains many local solution traps, an algorithm
must have a powerful exploration ability in order to solve
this problem. The convergence curves in Fig. 6d–f show
that the AGSK algorithm gets stuck in the local optimum
and therefore had a premature convergence problem. When
the convergence curves for the F9 multimodal problem were
analyzed in depth, it was observed that the FDBAGSK vari-
ants outperformed AGSK in terms of solution accuracy. This
can be explained by the fact that the FDB selection method
improves the exploration capability of the AGSK algo-
rithm. Effective exploration of the search spaces in hybrid
and composition type problems depends on the powerful
exploration–exploitation balance. The convergence curves
in Fig. 6g–l depict that the AGSK method had difficulty in
achieving the exploration–exploitation balance. On the other
hand, the FDB-based AGSK variants outperformed the base
AGSK algorithm in optimizing F16 hybrid and F29 compo-
sition problems for 30, 50, and 100 dimensions.

As a result, the convergence graphs in Fig. 6 illustrate that
the AGSK algorithm was deficient in fulfilling the explo-
ration and exploration tasks. The AGSK could not converge
to a global optimum due to the premature convergence prob-
lem. On the other hand, the convergence performance of the
FDBAGSK variants was remarkable. The FDB-based AGSK

variants outperformed the base algorithm in different search
spaces and challenging benchmark problems.The underlying
reason for the superiority of the FDBAGSK variants was the
efficient design of the selection phase of theAGSK algorithm
with the FDB method, thereby empowering exploration and
exploitation operators.

5.1.3 Algorithm complexity

Algorithm complexity provides researcherswith information
about the usability and functionality of an algorithm. This
subcategory presents the algorithm complexity knowledge
of the FDBAGSK variants. The IEEE CEC 2014 definition
document [46] was referenced to calculate algorithm com-
plexity. Accordingly, the three parameters T0, T1, and T2
were used in the algorithm complexity calculation. T0 cor-
responds to the calculation time of the algorithm for a test
program defined in CEC 2014. T1 signifies the time taken
for the algorithm to calculate the F18 test problem once, as
one of the CEC 2014 benchmark problems. T2 represents
the mean time taken to calculate the same test problem five
times. In light of these definitions, the algorithm complexity
was calculated using the (T 2 − T 1)/T 0 formula.

The algorithm complexity of the AGSK and FDBAGSK
variants (Case-1,…,Case-5) on 30/50/100 dimensions are
presented in Table 7. As it can be seen from the table, the
algorithm complexity of the AGSK and the FDBAGSK vari-
ants is very close in all dimensions. The stable performance
of the FDBAGSK versions in terms of algorithm complex-
ity, despite the increase in search space dimensions, is an
indication that they could be powerful alternatives for high-
dimensional optimization problems. In addition, although the
FDBselectionmethod added extra computational procedures
in the search-process lifecycle, the fact that the algorithm
complexity of the FDBAGSK variants had only slightly
increased compared to the base algorithm was impressive.

Figure 7 visualizes the numerical results given in Table 7.
It is clear from the figure that the FDB selection method had
only slightly increased the algorithm complexity. In general,
algorithm complexity was low for all algorithms. The algo-
rithmcomplexity for both theAGSKandFDBAGSKvariants
was slightly affected by search space dimension changes.

The experimental studies in Sect. 5.1 investigated the
influence of the FDB selection method on the AGSK search
performance for different problem types in the CEC 2017
and CEC 2020 benchmark test suites. The results showed
that the FDB-basedAGSKvariantswere able to eliminate the
premature convergence problem and yielded a better search
performance compared to the AGSK algorithm. In addition,
when the FDBAGSK variants were evaluated among them-
selves, Case-1was determined as themost successful variant.
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Fig. 6 Convergence curves of AGSK and FDBAGSK variants for the CEC 2017 benchmark suite unimodal, multimodal, hybrid, and composition
function types
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Fig. 7 Algorithm complexity for AGSK and FDBAGSK variants

Case-1 will be referred to as FDBAGSK in the following sec-
tions. The next sub-section is concerned with optimizing the
ORPF problem.

5.2 Application of the proposed FDBAGSK algorithm
to the solution of the AC/DC-ORPF problem

In this sub-section, the proposed FDBAGSK and AGSK
algorithms were applied to solve the AC/DC-ORPF prob-
lem incorporating multi-DGs and HVDC systems. Power
flowcalculationswere performedviaMATPOWER6.0. [47].
As a rule of thumb, the maximum number of iterations and
population size were accepted as 200 and 30, respectively.
Algorithms were run 20 times for each simulation case and
the best, worst, mean, and standard deviation values were
recorded.

Table 8 presents a summary of the IEEE 30- and 57-bus
test system configurations including the bus, branch, gen-
erator, transformer, and shunt capacitor. The total active and
reactive power load demands of the IEEE 30- bus test system
were 2.834 and 1.262 p.u. at the 100 MVA base, respec-
tively. The total active and reactive power load demands of
the IEEE 57- bus test system were 12.508 and 3.364 p.u. at
the 100 MVA base, respectively. Table 9 gives the limit val-
ues of the state variables for the AC/DC-ORPF problem and
Table 10 presents the minimum and maximum limits of the
AC and DC control variables. The schematic diagram given
in Fig. 8 illustrates the implementation steps of the proposed
FDBAGSK method for the AC/DC-ORPF problem.

The effectiveness of the proposed FDBAGSKmethod has
been evaluated on modified IEEE 30- and 57-bus power sys-
tems incorporating DGs and HVDC systems. In this regard,
twelve different test cases were optimized given in Table 11.

5.2.1 Modified IEEE-30 bus test system

In this subcategory, seven test cases are studied to solve the
ORPF problem in the modified IEEE 30-bus test systemwith
DGs and HVDC transmission links.

Case-1: Minimization of active power loss with HVDC
at (2–14) In Case-1, the active power loss minimization
has been studied with two-terminal HVDC located between
buses 2 and 14 of the modified IEEE 30-bus test system.
Table 12 gives the simulation results of FDBAGSK and
AGSK algorithms. Accordingly, the power loss values
obtained from the proposed FDBAGSK and AGSK algo-
rithms are 11.4208 MW and 11.5165 MW respectively.
The objective function value of the proposed algorithm is
0.8379% lower than that of the AGSK. Figure 9a depicts the
variation of power loss with respect to the number of itera-
tions for regarding test case. As can be seen from the figure,
FDBAGSK successfully performed the exploitation task in
the last stages of the optimization process and achieved a
better value compared to AGSK. Figure 9b demonstrates that
the load bus voltages obtained by all optimization algorithms
were within acceptable limits (0.95–1.05 p.u).

Case-2: Minimization of active power loss with HVDC
at (2–16) Case-2 optimizes the active power loss of the IEEE
30-bus test system modified with a two-terminal HVDC
between buses 2 and 16. The simulation results of Case-2
are reported in Table 12. From the numerical results, it is
observed that the proposed method was more successful in
minimizing active power loss compared to the AGSK. To put
it more clearly, the proposed FDBAGSK offered the mini-
mum power loss value of 11.0921 MW, which is lower by
0.2248% than theAGSK simulation result. An in-depth anal-
ysis of the convergence curves given in Fig. 10a gave that
although for Case-2 the algorithms yielded similar perfor-
mances in terms of convergence speed, the proposed method
was superior to the AGSK in terms of convergence accuracy.
The graph given in Fig. 10b was drawn to visualize the volt-
age profile of the load buses for the present case. The relevant

Table 7 Algorithm complexity
Dimension T0 T1 AGSK Case-1 Case-2 Case-3 Case-4 Case-5

D � 30 0.0835 0.7196 10.8256 11.2007 11.6684 12.4257 12.3683 11.3258

D � 50 1.2782 15.9880 16.8325 17.5389 18.4981 18.5160 16.8157

D � 100 3.9926 65.9463 67.4490 70.0552 70.4011 70.1947 67.1269
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Table 8 Configuration of the test systems

Characteristics IEEE 30-bus test system IEEE 57-bus test system

Number Details Number Details

Buses 30 [48] 57 [49]

Branches 41 [48] 80 [49]

Thermal generators 5 Buses: 2, 5, 8, 11 and 13 6 Buses: 2, 3,6, 8, 9 and 12

Swing generator 1 Buses:1 1 Buses:1

Transformers 4 Branches: 11, 12, 15 and 36 17 Branches:19, 20, 31, 35, 36, 37, 41, 46, 54, 58, 59,
65, 66, 71, 73, 76 and 80

Shunt capacitors 2 Buses: 10 and 24 3 Buses: 18, 25 and 53

Table 9 Minimum and maximum
limits of state variables [14] Variables (MAC ) MAC

min M AC
max Variables (MDC ) MDC

min MDC
max

IEEE 30- bus test system

PT HG1 (MW) 0 360.2 tr 0.90 1.10

QT HG1 (MVAr) − 100 100

QT HG2 (MVAr) − 40 50 ti 0.90 1.10

QT HG5 (MVAr) − 40 40

QT HG8 (MVAr) − 10 40 αr (°) 9.74 22.91

QT HG11 (MVAr) − 6 24 γi (
◦) 8.59 22.91

QT HG13 (MVAr) − 6 24 vdr (p.u) 1.00 1.50

VL1 . . . VLNPQ (p.u.) 0.95 1.05 vdi (p.u.) 1.00 1.50

IEEE 57-bus test system

PT HG1 (MW) 20 50 tr 0.90 1.10

QT HG1 (MVAr) − 100 100

QT HG2 (MVAr) − 17 50 ti 0.90 1.10

QT HG3 (MVAr) − 10 60

QT HG6 (MVAr) − 8 25

QT HG8 (MVAr) − 140 200 αr (°) 5.00 30.00

QT HG9 (MVAr) − 3 9 γi (
◦) 10.00 30.00

QT HG12 (MVAr) − 150 155 vdr (p.u.) 1.00 1.40

VL1 . . . VLNPQ (p.u.) 0.94 1.06 vdi (p.u.) 1.00 1.40

figure showed that all algorithms are successful in keeping
the load bus voltages within acceptable limits.

Case-3:Minimization of active power losswith 3-DGs In this
case, minimization of active power loss in an IEEE 30-bus
power system including three DG units are studied. Addi-
tionally, the allocations, i.e., both the location and sizing of
the DG units are optimized. According to the comparative
simulation results given in Table 12, the objective function
values obtained by the FDBAGSK and AGSK methods are
9.2984 MW and 9.3182 MW, respectively. The simulation
results indicated that the proposed FDBAGSK provided a
0.2124% decrease in active power loss compared to the
AGSK. Figure 11a illustrates the convergence curves of the

FDBAGSK and AGSK algorithms for Case-3. As it can be
seen from the figure, FDBAGSK exhibited a robust and sta-
ble search performance. The voltage profile given in Fig. 11b
shows that the voltage constraint is satisfied for all load buses.

Case-4: Minimization of active power loss with both 3-DGs
and HVDC at (2–14) The optimization algorithms have been
run minimization of active power loss in a modified IEEE
30-bus test system incorporating HVDC systems and DG
units. The obtained solutions are given in Table 12. From
the numeric results, it can be seen that FDBAGSK achieved
a lower power loss 8.7366 MW than AGSK (8.8093 MW).
Quantitatively, the proposed algorithm provided a 0.8252%
reduction in the objective function value. It is evident that
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Table 10 Minimum and
maximum limits of control
variables [14]

Variables (PAC ) PAC
min P AC

max Variables (PDC ) PDC
min PDC

max

IEEE 30- bus test sytem

PT HG2 (MW) 0 140 Pr (p.u.) 0.1 1.50

VT HG1 (p.u.) 1.00 1.15

VT HG2 (p.u.) 1.00 1.15 Pi (p.u.) 0.1 1.50

VT HG5 (p.u.) 1.00 1.15

VT HG8 (p.u.) 1.00 1.15 Qr (p.u.) 0.001 0.75

VT HG11 (p.u.) 1.00 1.15

VT HG13 (p.u.) 1.00 1.15 Qi (p.u.) 0.001 0.75

T1… TNT (p.u.) 0.90 1.10 id 0.1 1.00

PDG1… PDGNDG (MW) 0 10

locDG1… locDGNDG 1 29

IEEE 57-bus test system

Variables (PAC ) PAC
min P AC

max Variables (PDC ) PDC
min PDC

max

PT HG2 (MW) 15 90 Pr (p.u.) 0.1 1.50

PT HG3 (MW) 10 500

PT HG6 (MW) 10 50 Pi (p.u.) 0.1 1.50

PT HG8 (MW) 12 50

PT HG9 (MW) 10 360 Qr (p.u.) 0.001 0.75

PT HG12 (MW) 5 550

VT HG1 (p.u.) 0.9 1.1 Qi (p.u.) 0.001 0.75

VT HG2 (p.u.) 0.9 1.1

VT HG3 (p.u.) 0.9 1.1 id 0.05 1.00

VT HG6 (p.u.) 0.9 1.1

VT HG8 (p.u.) 0.9 1.1

VT HG9 (p.u.) 0.9 1.1

VT HG12 (p.u.) 0.9 1.1

T1… TNT (p.u.) 0.9 1.1

PDG1… PDGNDG (MW) 0 30

locDG1… locDGNDG 1 56

the proposed FDBAGSK is very effective in optimizing the
system. Figure 12a and b illustrates the convergence curves
of the optimization algorithms for Case-4 and the voltage
profile of the load buses obtained as a result of the simu-
lation, respectively. The convergence curves show that the
proposed FDBAGSK exhibited a better search performance
than the AGSK in terms of convergence speed and accuracy.
In addition, Fig. 12b demonstrates that the voltage values of
the load buses were within the specified limits.

Case-5: Minimization of active power loss with both 3-DGs
and HVDC at (2–16) This case optimizes the active power
loss in the IEEE 30-bus power system inclusion of DGs and
HVDC. The size and location of DGs are considered as con-
trol variables. HVDC is integrated between buses 2 and 16
of the power system. The FDBAGSK and AGSK algorithms
are applied to obtain the ORPF solutions, and the results are

presented in Table 12. The simulation result obtained from
the proposed algorithm is 8.2344 MW, which was 0.0570%
lower than the result of the AGSK algorithm. Figure 13a
shows the fitness value obtained by the algorithms depend-
ing on the number of iterations. The relevant figure shows that
the proposed algorithm reaches the best value faster than the
original AGSK algorithm. The voltage profile graph given in
Fig. 13b confirms that the voltage value of the load buses is
within the specified limits.

Case-6: Minimization of voltage deviation with both 3-DGs
and HVDC at (2–16) In Case-6, the ORPF control variables
are optimized considering the voltage deviation objective
function. The present test case also handles the optimal place-
ment of DGs. The HVDC is located between buses 2 and 16
of the IEEE-30 bus test system. From Table 12, it is seen
that the voltage deviation value obtained by FDBAGSK is
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Control variables

Calculate objective functions and penalty factors using Eq. (42)Fitness function 
value

Control variables Control variables

Calculate DC state variables

Power flow (MATPOWER 6.0 software package)

State variables

Send to fitness function 
value to FDBAGSK 

algorithm

Fig. 8 AC/DC-ORPF problem optimization process

Table 11 Simulation test cases
Study cases IEEE 30-bus test system

Ploss V D L − index 3-DGs HVDC at (2–14) HVDC at (2–16)

Case-1 ✓ – – – ✓ –

Case-2 ✓ – – – – ✓

Case-3 ✓ – – ✓ – –

Case-4 ✓ – – ✓ ✓ –

Case-5 ✓ – – ✓ – ✓

Case-6 – ✓ – ✓ – ✓

Case-7 – – ✓ ✓ – ✓

Study cases IEEE 57-bus test system

Ploss V D L − index 3-DGs HVDC at (8–9)

Case-8 ✓ – – – ✓

Case-9 ✓ – – ✓ –

Case-10 ✓ – – ✓ ✓

Case-11 – ✓ – ✓ ✓

Case-12 – – ✓ ✓ ✓
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(a) (b)

Fig. 9 Case-1: a Convergence curve of optimization algorithms, b Voltage profile of load buses

(a) (b)

Fig. 10 Case-2: a Convergence curve of optimization algorithms, b voltage profile of load buses

0.1539 p.u. The objective function value is 0.5814% lower
compared to the AGSK simulation result. The optimization
results demonstrate the superiority of FDBAGSK compared
to the originalAGSK in terms of solution quality. The conver-
gence performance of the algorithms is illustrated in Fig. 14a.
As can be seen from the figure, the proposed algorithm has
lower objective function values than AGSK at the begin-
ning of the optimization process. Although the algorithms
showed competitive performance in the between 140 and
180 iterations, FDBAGSK reached a better value at the end
of the optimization process. The voltage profile in Fig. 14b

demonstrates that the optimization algorithms are success-
ful in keeping the load bus voltage magnitudes within the
specified limits.

Case-7: Minimization of voltage stability index with both 3-
DGs andHVDC at (2–16) This case aims to optimize the volt-
age stability index (L-index). In this direction, FDBAGSK
and AGSK are applied to perform the ORPF task in the
modified power system including DGs and HVDC (between
2 and 16 buses). Optimized control parameters and corre-
sponding objective function values are reported in Table
12. As can be seen from the table, the FDBAGSK result is
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(a) (b)

Fig. 11 Case-3: a Convergence curve of optimization algorithms, b voltage profile of load buses

(a) (b)

Fig. 12 Case-4: a Convergence curve of optimization algorithms, b voltage profile of load buses

0.0832 p.u., which is 2.5761% lower than that of the AGSK
method. Figure 15a compares the convergence curves of the
optimization algorithms. As shown in the figure, the pro-
posed algorithm converges to the optimal solution faster than
AGSK. Figure 15b reveals that the voltage values of the PQ
buses are within the specified limitations.

5.2.2 Modified IEEE 57-bus test system

In this segment of the simulation, the effectiveness of the
optimization algorithms is evaluated on the modified IEEE
57-bus power system for five test cases.

Case-8:Minimization of active power losswithHVDCat (8–9)
Case-8 aims to reduce the active power loss of the modi-
fied IEEE 57-bus power system. For the present case, the
HVDC transmission line has been added between buses 8
and 9 of the power system. Table 13 gives the optimization
results achieved by FDBAGSK and basic AGSK algorithms.
Accordingly, active power loss is reduced from 14.8919MW
to 13.4340 MW by using the proposed algorithm. In other
words, FDBAGSK achieved a 9.7898% lower objective
function value than the AGSK algorithm. Figure 16a illus-
trates the convergence curves of the algorithms. It can be seen
from the figure that the proposed method is superior to the
original AGSK in terms of solution quality and convergence
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(a) (b)

Fig. 13 Case-5: a Convergence curve of optimization algorithms, b Voltage profile of load buses

(a) (b)

Fig. 14 Case-6: a Convergence curve of optimization algorithms, b voltage profile of load buses

speed. Figure 16b demonstrates that the voltage values of the
load buses are within the specified limits (0.94–1.06 p.u).

Case-9: Minimization of active power loss with 3-DGs
The objective function of this case is the minimization of
active power loss considering DGs. In the present case, the
location and rating of DGs are chosen as control variables.
The optimized control parameters and the corresponding
power loss values are summarized in Table 13. As it is evi-
dent, FDBAGSK can reach the objective function value of
9.5561 MW, which is lower by 7.1023% compared to that
of the AGSK. From the optimization results, it is observed
that the solution quality of the proposed algorithm is better
than the AGSK. Figure 17a shows the evolution of the fitness

value obtained by the algorithms depending on the number
of iterations. We can notice from the figure, the FDBAGSK
algorithm provides superiority over the basic AGSK in terms
of both convergence speed and solution accuracy. As shown
in Fig. 17b, all algorithms successfully satisfy the load bus
voltage constraint.

Case-10: Minimization of active power loss with both 3-DGs
andHVDC at (8–9) This case aims to perform the ORPF task
by minimizing active power loss. To this end, FDBAGSK
and AGSK algorithms are applied to the solution of ORPF in
the IEEE 57-bus test system incorporating DGs and HVDC
(between buses 8 and 9). Table 13 summarizes the optimiza-
tion results. As shown in Table 13, the FDBAGSK algorithm
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(a) (b)

Fig. 15 Case-7: a Convergence curves of optimization algorithms, b Voltage profile of load buses

has acquired the best objective function value of 8.2632MW,
and the objective function value is 9.0513MW in the AGSK.
The proposed algorithm reduces the active power loss by
8.7070% compared to AGSK. Figure 18a displays the con-
vergence characteristics of metaheuristic optimizers. As it
can be seen from the figure, the developed FDBAGSK algo-
rithm has a smooth curve with rapid convergence. Figure 18b
shows that all load bus voltagemagnitudes arewithin the lim-
its at the end of the optimization process.

Case-11: Minimization of voltage deviation with both 3 DGs
and HVDC at (8–9) The present test case has centered on the
voltage deviation minimization of the modified IEEE 57-bus
test system involving DGs and a two-terminal HVDC link
between buses 8 and 9. The optimized control variables and
attained voltage deviation results are given in Table 12. The
minimum voltage deviation value achieved by FDBAGSK is
0.6006 p.u. Quantitatively, the simulation result of the pro-
posed algorithm is lower by 21.1500% than that of theAGSK
algorithm. The variations of voltage deviation values over the
iterations are depicted in Fig. 19a. It is seen that the proposed
algorithm is advantageous over the original AGSK algorithm
with its fast convergence and solution quality. Figure 19b
shows the load bus voltages corresponding to the optimized
control variables. It can be seen from the figure that the load
bus voltages are within the limits (0.94–1.06 p.u.). In other
words, the load bus voltage inequality constraint has been
successfully satisfied.

Case-12: Minimization of voltage stability index with both 3
DGs and HVDC at (2–16) Case-12 focuses on the optimiza-
tion of the voltage stability index (L-index) in a modified
IEEE57-bus power system includingHVDCbetweenbuses 2

and 16. Moreover, the present test case considers the optimal
allocation of DGs. The optimal settings of control variables
and regardfulL-index values are given inTable 13. The objec-
tive function values of the FDBAGSK and AGSK algorithms
are 0.1266p.u. and 0.1310 p.u., respectively. The result of the
proposed algorithm is 3.3587% lower than that of the AGSK
algorithm. From the optimization results, it is observed that
the proposed algorithm attains the best competitive solution
for the present case. Figure 20a depicts the convergence char-
acteristics of the optimization algorithms. It is seen that using
the proposed FDBAGSK rapid convergence performance is
obtained. Figure 20b gives that the ORPF solutions obtained
with the FDBAGSK and AGSK algorithms successfully met
the load bus voltage constraint.

5.2.3 Statistical analysis and literature comparison

This subcategory presents the statistical analysis results and a
literature comparison. In order to obtain sufficient and robust
evidence for the statistical analysis, the algorithms are run 20
times for all test cases. Table 14 presents theminimum,mean,
maximum, and standard deviation values of the simulation
results obtained from 20 independent runs. As it can be seen
from the table, the proposed FDBAGSK algorithm achieved
the best objective function value for all ORPF cases. Based
on the mean value index, it can be said that the proposed
algorithm exhibited a stable and robust search performance.

Table 15 gives the results of the optimization algo-
rithms used in the present study and of the LP[50],
GA[51], ABC[52], SGA[53], BGA[53], and BSA[14] meth-
ods recently reported in the literature. The lack of compara-
tive results for some test cases can be explained by the fact
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(a) (b)

Fig. 16 Case-8: a Convergence curve of optimization algorithms, b voltage profile of load buses

(a) (b)

Fig. 17 Case-9: a Convergence curve of optimization algorithms, b voltage profile of load buses

that simulation studies are unique to this study. In the rele-
vant table, the best result for each test case is highlighted in
bold. Considering the experimental results obtained from the
comparison of the proposed algorithm with state-of-the-art
methods, it is seen that the developed FDBAGSK algorithm
provides superior results in solution quality and robustness.

6 Conclusions

In this study, design changes were made in the search strate-
gies of the AGSK algorithm using the FDB method and
thus, the FDBAGSK was developed as a novel hybrid algo-
rithm. The search performance of the proposed algorithm

was tested by comprehensive experimental studies. In the
first stage, the performance of the proposed FDBAGSK
algorithm was evaluated using 39 benchmark functions in
the CEC 2017 and CEC 2020 test suites. Unimodal, mul-
timodal, hybrid, and composition type test problems were
used and the convergence accuracy of the algorithm in dif-
ferent sized search spaces was examined. Non-parametric
Friedman and Wilcoxon test methods were applied to inter-
pret the results obtained from the experimental studies and
to unequivocally reveal the search performance of the algo-
rithms. Statistical analysis results showed that the proposed
FDBAGSK algorithm exhibits a more stable and robust
search performance compared to its competitors. Moreover,
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(a) (b)

Fig. 18 Case-10: a Convergence curve of optimization algorithms, b Voltage profile of load buses

(a) (b)

Fig. 19 Case-11: a Convergence curve of optimization algorithms, b voltage profile of load buses

the computational complexity of the AGSK and FDBAGSK
algorithms were highly similar and reasonable. Although the
FDB selection method added new computational processes
to the FDBAGSK search-process lifecycle, the reasonable
complexity achieved by the proposed algorithm is an impor-
tant indicator of its usability and functionality.

The second phase of experimental studies was carried out
to evaluate the search performance of the FDBAGSK on con-
strained real-world engineering problems. In this direction,
the proposed algorithm was applied to the solution of the
AC/DC-ORPF problem incorporating DGs and HVDC sys-
tems. The practicability of the FDBAGSK is investigated on

modified IEEE 30- and IEEE 57-bus test systems for themin-
imization of non-convex objective functions. The simulation
results obtained from the FDBAGSK method for the dif-
ferent test cases were compared to the results of well-known
optimization algorithms in the literature. From the numerical
results, it is observed that the proposed algorithm achieved
the best results for the optimization of the AC/DC-ORPF
problem.

Source codes of the FDBAGSK algorithm (proposed
method) can be accessed at this link: https://www.
mathworks.com/matlabcentral/fileexchange/129154-fdb-
agsk?s_tid=srchtitle.
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(a) (b)

Fig. 20 Case-12: a Convergence curves of algorithms, b voltage profile of load buses

Table 14 Simulation results
obtained from 20 independent
runs

Methods IEEE 30-bus test system

Case-1 Case-2 Case-3 Case-4 Case-5 Case-6 Case-7

FDBAGSK

Min 11.4208 11.0921 9.2984 8.7366 8.2344 0.1539 0.0832

Mean 12.0379 11.6414 9.4229 10.1059 8.2766 0.2495 0.1433

Max 14.3864 12.9122 9.5521 13.6128 8.3650 0.5407 0.3794

Std 0.7591 0.5999 0.0688 1.1609 0.0319 0.1206 0.0740

AGSK

Min 11.5165 11.1171 9.3182 8.8093 8.2391 0.1548 0.0854

Mean 12.1538 12.5290 9.4248 10.2461 8.2739 0.2947 0.1436

Max 14.2305 20.1886 9.5283 12.9387 8.3943 0.7886 0.3860

Std 0.6253 2.5484 0.0578 0.9910 0.0348 0.1776 0.0745

Methods IEEE 57-bus test system

Case-8 Case-9 Case-10 Case-11 Case-12

FDBAGSK

Min 13.4340 9.5561 8.2632 0.6006 0.1266

Mean 17.0629 11.3552 10.0639 1.052 0.2580

Max 19.4729 13.8341 12.2768 1.5083 0.7655

Std 1.4734 1.0795 0.9755 0.2848 0.1729

AGSK

Min 14.8919 10.2867 9.0513 0.7617 0.1310

Mean 17.5297 12.3759 10.4778 1.3096 0.4181

Max 20.5611 16.2046 11.8339 2.6985 1.3138

Std 1.6504 1.7442 0.8927 0.4616 0.2968
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Table 15 Comparison with results in the literature

IEEE 30-bus test system

Methods Case-1 Methods Case-2 Methods Case-3 Methods Case-4

LP [50] 28.41 MW LP [50] 12.01 MW SGA [53] 14.1317 MW ABC [52] 8.9172 MW

GA [51] 12.40 MW GA [51] 12.01 MW BGA [53] 13.9888 MW BSA [14] 8.8525 MW

ABC [52] 11.6783 MW ABC [52] 11.4767 MW ABC [52] 9.4248 MW AGSK 8.8093 MW

BSA [14] 11.5339 MW BSA [14] 11.2483 MW BSA [14] 9.3039 MW FDBAGSK 8.7366 MW

AGSK 11.5165 MW AGSK 11.1171 MW AGSK 9.3182 MW

FDBAGSK 11.4208 MW FDBAGSK 11.0921 MW FDBAGSK 9.2984 MW

Methods Case-5 Methods Case-6 Methods Case-7

ABC [52] 8.8032 MW AGSK 0.1548 p.u AGSK 0.0854 p.u

AGSK 8.2391 MW FDBAGSK 0.1539 p.u FDBAGSK 0.0832 p.u

FDBAGSK 8.2344 MW

BSA [14] 8.2080 MW

IEEE 57-bus test system

Methods Case-8 Methods Case-9 Methods Case-10 Methods Case-11

GA [14] 14.2370 MW GA [14] 13.8188 MW AGSK 9.0513 MW AGSK 0.7614 p.u

BSA [14] 14.0607 MW BSA [14] 11.8235 MW GA [14] 9.0152 MW FDBAGSK 0.6006 p.u

AGSK 14.8919 MW AGSK 10.2867 MW BSA [14] 8.4060 MW

FDBAGSK 13.4340 MW FDBAGSK 9.5561 MW FDBAGSK 8.2632 MW

Methods Case-12

AGSK 0.1310 p.u

FDBAGSK 0.1266 p.u

Bold values show the best objective function value
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