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Abstract
This paper introduces an extended Kalman filter (EKF)-based new robust state and parameter estimation for induction motor
(IM) drives. The EKF observer uses a proposed reduced IM model to estimate the rotor angular speed, stator fluxes, and the
load torque including viscous friction term independently from the rotor resistance, rotor, stator, andmagnetizing inductances.
The EKF observer with the reduced IM model uses the rotor angular speed in the measurement equations, whereas the other
existing methods use the stator currents or both the rotor speed and the stator currents. Thus, the estimations of the state
and parameters in the EKF observer are carried out according to speed error. The stator flux-based IM model used in the
EKF observer designed in this paper does not include the stator currents as the state. Thus, due to the use of the proposed
reduced IM model in the EKF observer, the design stages of the observer and the computation time are reduced. The average
execution time of each iteration for the EKF observer which uses the proposed reduced IM model has been measured as
2.1µs in real-time experiments. The estimation performance of the proposed EKF observer has been first implemented and
tested in simulations and then tested in real-time experiments. The experimental results are obtained by the dSPACE DS1104
controller board, connector panel, and ControlDesk software. When the simulation and experimental results obtained from a
wide speed range are considered, the validity of the EKF observer which uses the reduced IM model is quite satisfactory.

Keywords Induction motors drive · Extended Kalman filter · DTC · Robust estimation

1 Introduction

Induction motors (IMs) are widely used in industrial appli-
cations and electrical vehicles that require high-performance
variable speed and/or torque control because of their charac-
teristic advantages such as high durability, reliability, and low
cost. The dynamic performances of IM drives have remark-
ably improved with the introduction of vector control-based
methods such as the direct torque control (DTC) and the
field-oriented control (FOC) systems. Thus, IM drives have
become suitable for the industrial applications and electric
vehicles that require exact control. Nevertheless, the control
performance of the IM drive depends directly on the per-
formance of the estimation algorithms. The performances of
estimation algorithms are affected by changes in both elec-
trical and mechanical parameters of the IM. When the IM
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runs, the stator and rotor resistances (Rs and Rr ) change
with temperature and frequency (skin effect) [1,2]. In addi-
tion, the magnetizing inductance (Lm) hence stator and rotor
inductances (Ls and Lr ) depends on the flux level changes
in the field-weakening region of the IM. Also, changes in
load torque can be described as mechanical uncertainties [3].
In order to obtain a reliable and correct knowledge of the
flux angle and magnitude utilized in vector-based IM control
methods such as FOC and DTC, these changing electrical
parameters or mechanical uncertainties in the IMmodel need
to be exactly known, estimated as online, or eliminated. To
achieve higher estimation accuracy, numerous determinis-
tic and stochastic-based observers and estimators algorithms
for different state and/or parameter estimations are proposed
in the literature [4]. Open-loop estimators [5,6], artificial
neural network (ANN) [7], extended Luenberger observer
[8,9], full-order observer (FOO) [10], adaptive flux observer,
[11], sliding-mode observer (SMO) [12,13], model reference
adaptive system (MRAS) [14,15], extended Kalman filters
(EKF) [3,16–18], and unscented Kalman Filter [19,20] are
main methods reported.
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When the studies employing deterministic based methods
for state or parameter estimation are examined, in [8], sta-
tor currents (isα and isβ ) and stator fluxes (ϕsα and ϕsβ ) are
estimated using a Luenberger observer. In [10] estimation of
the stator fluxes is performed by a FOO, where the stator
current errors are fed-back to the FOO to improve the esti-
mation of the stator fluxes. However, in [8,10] the changes
in motor parameters are ignored. In [12], the stator fluxes
and rotor/stator resistance estimations are realized with the
adaptive SMO. In [15], the estimations of Rr and Lm are real-
ized by an MRAS utilizing the rotor fluxes provided by two
SMOs. The results of the study show that the estimations of
rotor resistance and magnetizing inductance are dependent
on each other. Therefore, for better estimation performance
a decoupling method is proposed, which is designed in [21].
In [22] are presented estimations of the rotor speed, the stator
resistance, and the inverse rotor time constant by an MRAS-
based ANN. In [23] estimation of the rotor time constant of
IM is realized by the least-squares method.

Contrary to the other model-based estimation methods,
EKF observes offer a stochastic approach in order to esti-
mate the states and parameters of IM taking into account
the system and measurement noises. Therefore, the EKF is
a high-performance observer algorithm for estimations of
states and/or parameters for noisy nonlinear systems [24]. In
addition, the EKF is applicable to any IM at a wide speed
range from very low to high speeds. Many researchers are
focused on using an EKF observer for the state and param-
eter estimations. When EKF observer-based studies in the
literature are examined, estimation of the stator fluxes and
stator currents are presented in [16], where the changes in
motor parameters are neglected. As well as the isα and isβ
and ϕsα and ϕsβ , Rr and Rs estimations are also presented in
[25]. The authors of [25] state that the proposed EKF algo-
rithm requires the correct magnetizing inductance value in
the field-weakening region. [26] introduces a reduced-order
EKF algorithm utilizing rotor flux-based motor model for
estimations of the rotor flux, rotor resistance, and magnetiz-
ing inductance. In [3], the measurement matrix of the motor
model used in the EKF observer is expanded by the mea-
sured rotor speed in addition to the measured stator currents,
in order to make better the estimation performance of the
rotor fluxes, rotor velocity (ωm), stator currents, magnetiz-
ing inductance, rotor resistance, and load torque. However,
expanding the measurement matrix of the motor model used
in the EKF has been increased execution time and design
complexity. Moreover, there are other EKF-based studies
concentrating on the increase in the number of estimated
states and parameters, which are called bi-input EKF in [27–
29]. In spite of increasing the number of states/parameters,
these studies are required two different IM models in a sin-
gle EKF. Therefore, their computational burden and memory
requirement increase for the microprocessor together with

making the design, as well as the tuning process difficult
regarding the number of noise covariance matrices’ elements
to be tuned, can be classified as their disadvantages.

Themain contribution of this study is introducing anEKF-
based estimator with a low computation burden that is not
affected by changes in the Rr , Ls , Lr , and Lm , in order to
estimate the ωm , ϕsα , ϕsβ , and τl . For this aim:

• The reduced IM model is constructed for the EKF
observer by using the stator fluxes and the equation of
motion from the traditional stator flux-based IM model
equations.

• In contrast to the previous studies [16–18,25], the pro-
posed reduced model does not use the stator current
equations of the conventional IM model. Therefore, the
reducedmodel used EKF observer is not included the Rr ,
Lm , Ls , and Lr parameters of IM.

• Since the reduced IM model used by the proposed EKF-
based estimator does not include Rr , Lm , Ls , and Lr from
the motor parameters, the estimation performance of the
EKF algorithm is not affected by changes in the Rr , Lm ,
Ls , and Lr .

• In contrast to the previous studies that use the stator cur-
rents [17,25] and the stator currents and rotor speed [3]
in the measurement equations, the proposed EKF-based
algorithm uses only the rotor angular velocity.

• The average execution time of each iteration for the pro-
posed EKF observer which uses the reduced IM model
has been measured as 2.1μs.

The operation of matrix inversion that is necessary for the
previous EKF algorithms utilizing the stator currents [17,25]
and the rotor speed and the stator currents [3] in the measure-
ment equation is translated in the inverse of a real number
in the proposed EKF. Therefore, the EKF observer using the
proposed reduced IM model does not require matrix inver-
sion. Likewise, the size of themeasurement and system noise
covariance matrices required to be determined for the EKF
observer is reduced due to the use of the reduced IM model.
Thus, in the EKF observer where matrix multiplications are
made intensively, the element-based multiplication opera-
tions are also decreased. To confirm the performance of the
EKF observer in DTC-based IM drive, challenging scenarios
are produced under variations of the Rr , Lm , and τl in a wide
speed range including field-weakening zone and zero speed
in the simulations. Simulation results obtained from EKF
and DTC system show very high performance for both the
estimation and the control. Finally, the correctness and the
effectiveness of the EKF-based estimator are demonstrated
by experimental results under variations in ωm , τl , and Rs in
a wide speed range.

The rest of this paper is organized as follows: Section 2
derives the mathematical model of IM. Section 3 gives the
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design stages of the EKF observer. Section 4 demonstrates
the simulation results of the DTC-based drive system and
EKF observer. Section 5 shows the hardware configuration.
Section 6 presents the real-time experimental results of the
EKF observer. Finally, Sect. 7 gives the conclusion.

2 Mathematical model of IM

The continuous-time differential expressions of the stator
flux-based IM model in the stator stationary axis (αβ− axis)
and the equation of motion can be expressed in the following
equations: [18,29]

disα
dt

= −
(
Rs

Lσ

+ Rr Ls

Lr Lσ

)
isα − ppωmisβ

+ Rr

Lr Lσ

ϕsα + ppωm

Lσ

ϕsβ + vsα

Lσ

(1)
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= −
(
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Lr Lσ
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+ Rr

Lr Lσ

ϕsβ − ppωm

Lσ

ϕsα + vsβ

Lσ
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dϕsα

dt
= −Rsisα + vsα (3)

dϕsβ

dt
= −Rsisβ + vsβ (4)

dωm

dt
= 3

2

pp
Jt

(ϕsαisβ − ϕsβ isα)

− Bt

Jt
ωm − τl

Jt
(5)

where vsα and vsβ are the stator voltages, pp is the pole pairs,
Lσ = Ls − L2

m/Lr is the stator transient inductance, Bt and
Jt are total viscous friction and inertia term of both load and
motor, respectively. The continuous-time stator flux-based
IM model in the stator stationary axis can be expressed in
the following general form:

ẋt = f(xt ,ut ) + wt

= A(xt )xt + But + wt (6a)

zt = h(xt ) + vt (Measurement Equation)

= Hxt + vt (6b)

where f is the nonlinear function of states and inputs, and
xt and ut are the state and the control input vector, respec-
tively. wt and vt are the process and measurement noises,
respectively. h is the function of outputs. A, B, and H are
the system matrix, the input matrix, and the measurement
matrix, respectively.

The IM model, the general form of which is given in
equation (6a), can be discretized by using the forward Euler
approximation shown in (7).

ẋt ≈ xk+1 − xk
T

(7)

3 Extended Kalman filter observer

In order to simultaneously estimate ϕsα , ϕsβ , ωm , and τl , the
reduced IMmodel given the discretized state equations in (8)
and (9) is constructed for the EKF observer by using (3)–(5)
from the traditional stator flux-based IM model equations.
Since the model used in the EKF observer does not include
the stator current equations (see (1) and (2)) of the conven-
tional IM model, it is defined as the reduced-order motor
model. Because EKF observer uses directly measured cur-
rent information instead of stator current states given in (1)
and (2), it is made independent from Ls , Lr , Lm , and Rr

parameters of IM. In the reduced IM model used in the EKF
observer, τl is considered a constant state, and the viscous
friction term, Btωm , is included in τ̂l .

⎡
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[
ωm,k

]
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]
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The general equations of the EKF observer used for the
estimations of ϕsα , ϕsβ , ωm , and τl are as below:

1- Linearization:

Fk+1|k = ∂f(xk,uk)
∂x

|x=xk (10)

2- Time update:

x̂−
k+1 = f(x̂k,uk+1) (11)

P−
k+1 = Fk+1|kPkFT

k+1|k + Qk (12)

3- Measurement update:

Kk+1 = P−
k+1H

T
[
HP−

k+1H
T + Rk

]−1
(13)

x̂k+1 = x̂−
k+1 + Kk+1(zk+1 − Hx̂−

k+1) (14)
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Pk+1 = (I − Kk+1H)P−
k+1 (15)

whereFk+1|k is the function to linearize the nonlinear model;
Kk+1 is the Kalman gain; P−

k+1 and Pk+1 are the priori and
the posteriori covariance matrices, respectively; Qk and Rk

are the covariance matrices of the system noise and output
noise, respectively.

The EKF algorithm used for state and parameter estima-
tions of IM in this study is initialized with x̂0|0 = 0 and
P = P0, where P0 is the initial estimation error covariance.

Because the term of HP−
k+1H

T +Rk in (13) is scalar, the
proposed EKF algorithm does not require matrix inversion.

The operation of matrix inversion that is necessary for the
previous EKF algorithms utilizing the stator currents [17,25]
and the rotor speed and the stator currents [3] in the measure-
ment equation is translated in the inverse of a real number in
the proposed EKF. In addition, the size of the matrices in the
EKFalgorithm is reduced by the use of the proposed reduced-
order IM model. Thus, in the EKF algorithm where matrix
multiplications are made intensively, the element-basedmul-
tiplication operations are also decreased.

The stability analysis of an EKF observer was previously
studied by [30] with the presumption that nonlinear system
knowledge is known. In addition, the stability analysis for
EKF using the IM model is studied by [31] in detail.

4 Simulation results

Simulation studies are arranged in two parts to demonstrate
the effectiveness of EKF using the proposed reduced IM
model that is independent of the Rr , Ls , Lr , and Lm parame-
ters of the IM. In the first part, while the open-loop estimation
performance of the EKF observer is performed, in the sec-
ond part, the closed-loop estimation performance of the EKF
observer is presented. The diagram for the DTC-based IM
drive is given in Figure 1. The IM has the parameters given in
Table 1. In Figure 1, the switching table and the sector selec-
tor are built as in [32]. θ̂r f is the sector position of the stator
flux. The IM drive system, as the speed controller, employs
a traditional PID controller. Also, the flux reference |ϕs |r
shown in Figure 1 decreases with increasing speed reference
in the field-weakening region on account of the voltage limit,
also leading to increase in the magnetizing inductance [27].
Also, there is a switch (S1) changing the operation mode:
S1 allows to test of the EKF observer in open loop or closed
loop.

The relations between flux, speed, andmagnetizing induc-
tance are mathematically expressed as in equations (16) and
(17).

Fig. 1 DTC-based induction motor drive
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Table 1 Parameters of the IM

Rs [
] Rr [
] Lls [H] Llr [H] Lm [H]

3.03 2.53 0.0116 0.0174 0.135

P[kW] nm [r/min] f [Hz] τl [N.m] pp

2.2 950 50 20 3

Fig. 2 References for the performance tests of the EKF observer and
speed-sensored drive system

|ϕs |r = nb
nrm

|ϕs |rrated for nrm > nb (16)

Lm = |ϕs |rrated
|ϕs |r Lmn for nrm > nb (17)

where Lmn is the constant value of Lm obtained from the
parameter experiments of IM for nrm ≤ nb, nb is the base
value of velocity and taken as 1000 r/min in simulations.

In order to test the open-loop or closed-loop performance
of the EKF estimator which uses a reduced IM model, the
scenarios including parameter variations shown in Figure 2
are generated. In the scenarios given with Figure 2;

• The IM is operated in zero (0 r/min), low (50 r/min),
rated speed (950 or −950 r/min), and field weakening
zone (1500 or −1500 r/min) which is known as the high-
speed zone above the rated speed.

Fig. 3 Open-loop estimation performance for EKF observer

• The load torque applied to the IM is changed linearly
or step-wise between 20 N.m and −15 N.m at different
speed zones.

• The Rr is changed between the Rrn and 2 × Rrn , which
is the nominal value of the rotor resistance, in zero speed
(t = 10 s) and field weakening zone (t = 18 s).

• The Lm is changed between the Lmn and 1.5 × Lmn

with the decreasing stator flux reference in the field-
weakening region.

In order to obtain both open-loop and closed-loop esti-
mation performances from the proposed EKF observer in
simulations, the sampling time (T ) is taken as 100 μs and
covariance matrices (Q, P, and R) used in the observer are
determined by trial and error, as below:

Q = diag
{
10−15 10−15 10−7 10−6

}
P0 = diag {10 10 10 10}
R =

{
10−3

}

To test the open-loop and closed-loop estimation perfor-
mances of the EKF observer:
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Fig. 4 Open-loop estimation errors for the EKF observer

• Firstly, the information required for the DTC-based IM
drive, such as rotor mechanical speed and rotor position,
is obtained from the IMmodel, and thus the performance
in the open-loop mode of EKF can be demonstrated.
The open-loop simulation results of the EKF observer
are given in Figures 3 and 4.

• Secondly, the information required for the DTC-based
IM drive, such as rotor mechanical speed and rotor posi-
tion, is obtained from the EKF observer which uses the
proposed reduced IM model, and thus the closed-loop
estimation performance of EKF can be demonstrated.
The closed-loop simulation results of the EKF observer
are given in Figures 5 and 6.

When the estimation results, demonstrated in Figures 3–6,
of the EKF algorithm are examined, the following inferences
can be made:

• The EKF observer is capable to estimate as both open
loop and closed loop in a wide speed region including
field weakening zone and zero speed under different load
torques.

• In spite of the initial values of the estimatedωm , ϕsα , ϕsβ ,
and τl by the EKF are selected as zero, the whole of the
estimations abruptly converges to reference values.

• Since the reduced IM model does not include Rr , Ls ,
Lr , and Lm , the performance of the EKF observer is not
affected by their changes.

Fig. 5 The estimation and control performance of the EKF observer
and speed-sensored drive system

Fig. 6 Estimation and tracking errors of the EKF observer and speed-
sensored drive system
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Fig. 7 Experimental setup for
the real-time experiments

In summary, the simulation results approve the perfor-
mance of the proposed EKF observer which uses the reduced
IMmodel for a wide speed region including field-weakening
zone and very low speed, under parameter variations.

5 Hardware configuration

To indicate the real-time performance of the proposed EKF-
based estimator, the experimental test setup demonstrated in
Figure 7 is used. In the experimental tests, an IM (squirrel-
cage) of 3-phase is used, the specifications of which are given
in Table. 1. In order to test the EKF observer which uses
reduced IM under load torque variations, a Foucault brake
able to provide max 30 N.m load is used. Variations in load
torque apply to the motor are generated by changes in the
rotor angular speed ωm (nm r/min) of the IM or manually by
a step-like variable DC source. An encoder of 5000 lines/rev
is used to confirm estimation of nm . A torque transducer of
50 N.m to approve estimation of τl is used; the measured
torque information is not used by the estimation algorithm.
To actualize the EKF observer which uses a reduced IM
model derived in C / C ++ language in MATLAB S-function
block is used PC-based dSPACE DS1104 controller board,
connector panel, and ControlDesk software. The dSPACE
DS1104 controller board has capable of processing floating-
point operations at a rate of 250 MHz. Only the real-time

open-loop performances of the EKF observer are tested in
this paper, due to the nonexistence of the inverter module.
However, for a realistic assessment, the IM is driven by anAC
drive providing the pulse-width modulated voltages shown
in Figure 8 and also the currents. The AC drive is had a field
weakening feature in the constant power region, that is, in
the speed region above the rated speed.

6 Real-time experiments

The estimation performance of the proposed EKF observer
which realizes the estimations of the ϕsα , ϕsβ , and τl in this
paper is tested with different scenarios such as ωm and τl
reversals, τl variations, the transition of speed, in the field-
weakening zone studies, and Rs variations. For this purpose,
the following compelling scenarios are produced.

• Performance of the EKF observer under ωm and τl rever-
sal at the nominal speed.

• Performance of the EKF observer under different torque
at the nominal speeds.

• Performance of the EKF observer in the field weakening
zone.

• Performance the EKF observer at the different speeds
including the low speed.

• Performance of theEKFobserver under the Rs variations.

Fig. 8 vsα and vsβ supplied to
the induction motor through ac
drive [17]
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Fig. 9 Estimation results for the velocity and load torque reversals

In order to obtain high estimation performances from the
proposed EKF observer in real-time experiments, covariance
matrices used in the observer are determined by trial and
error, as below:

Q = diag
{
10−13 10−13 10−14 50−14

}
P0 = diag {10 10 10 10}
R =

{
10−9

}

6.1 Real-time performance of the EKF observer
under speed and load torque reversals

In this scenario, the proposed EKF observer is tested under
ωm and τl reversals. To this end, while the motor is rotating
at rated speed (950 r/min) with the torque of 20 N.m, the
velocity and hence the load torque are linearly reversed by
theAC drive at 5.5 s. Then, while the IM is operating at−950
r/min with the torque of −20 N.m, velocity and load torque
are reversed at 23.3 s. The estimation results for this scenario
are displayed in Figure 9. The obtained results represent that
the whole of estimations right away converges to the mea-
sured ones. The change that occurs in τl in Figure 9 is on

Fig. 10 Estimation results for different load torque at rated speed

account of the conventional speed–torque characteristics of
the Foucault brake [28].

6.2 Real-time performance of the EKF observer
under different load torque at the nominal
speeds

In this scenario, the estimation results present the perfor-
mance of the EKFobserver under τl variations at high speeds.
Estimation results are demonstrated in Figure 10. Firstly,
when the motor is running at 998 r/min, the τl is increased
from 1N.m to 8.5 N.m at 5.2 s and the IM’s speed goes down
to 982 r/min. Next, the τl is increased from8.5N.m to 18N.m
at 25.5 s. As a results, the IM speed decreased to 955.5 r/min.
Finally, the τl is reduced from 18 N.m to 1 N.m and the IM
velocity goes back up to 998 r/min. The performance of the
EKF observer, which is tested with the stepwise-generated
changes in the load torque, is quite high.

6.3 Real-time performance of the EKF observer in
the field weakening zone

In this scenario, the performance of the EKF observer is
tested in the field weakening zone. To this end, while the
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Fig. 11 Estimation results for the field weakening zone

motor is running at 987 r/min with the load torque of 6 N.m,
the velocity is increased to 1498 r/min by the AC drive at 12
s. Next, the velocity is linearly reversed at 28.2 s. Finally,
while the motor is running at −1498 r/min, the velocity
is decreased to −987 r/min. The estimation results of the
proposed estimation algorithm including the field weaken-
ing region performance are demonstrated in Figure 11. It is
known that rotor resistance changeswith rotor/slip frequency
(skin effect) [33]. In addition, the magnetizing inductance is
changed due to the flux level in the field weakening region
[34,35]. In the field weakening region, the values of Rr

and Lm naturally change with operating conditions. The
EKF observer has high performance in the field weaken-
ing zone because it has a model independent from Rr and
Lm .

6.4 Real-time performance of the EKF observer at
the different speeds including the low speed

This scenario demonstrates the performance of the EKF
observer in the course of the transition from very low speed
to nominal speed. To this end, while the motor is operated
at 65 r/min with the τl of 3 N.m, firstly, the velocity is lin-

Fig. 12 Estimation results for the different speed regions

early increased to 460 r/min at 10 s. Later the speed rumps
up from 460 to 960 r/min at 24 s. As a result, the motor is
also almost linearly loaded to 10 and 15 N.m, respectively.
The estimation results obtained from the EKF observer in
this scenario are shown in Figure 12. Even though the τl is
described as a constant parameter in the proposed reduced
motor model, in order to test the EKF observer, an almost
linear τl is applied to the IM during the transition. Despite
this stringent scenario, the proposed EKF observer satis-
factorily estimates the ωm , ϕsα , ϕsβ , and τl without being
affected by the rotor frequency-dependent rotor resistance
changes [33].

6.5 Real-time performance of the EKF observer
under the stator resistance variations

The last test examining Rs changes is performed at 87 r/min,
and the performances of the EKF observer under Rs changes
are shown in Figure 13. In this scenario, the stator resistance
is first increased to Rsn +1.5
 at 7 s and then to Rsn +2.5


at 13 s. Finally, it is reduced to Rsn at 19 s. The proposed
EKF observer in this paper estimates other states and param-
eters according to the error between the measured velocity
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Fig. 13 Estimation results for Rs variations at the very low speed

and the estimated velocity. The equation of motion used in
the observer requires the stator fluxes and load torque infor-
mation that can be obtained either by measurement or by
estimating. Due to the fact that the IM model includes the
Rs parameter, it is possible for the observer performance to
be affected by temperature and frequency changes. There-
fore, as it can be from Figure 13 since the proposed EKF
observer accepts that Rs is equal to 3.03 
, there is a dc
bias between the estimated and measured load torque for
Rs variations. This dc bias emerges at the estimated load
torque due to the fact that the proposed EKF observer opti-
mizes the error between estimated and measured speed. As it
can be seen from Figure 13, the proposed EKF algorithm is
affected by Rs changes at low speeds. To achieve high esti-
mation performance, Rs changes should be updated in the
EKF observer.

When the results given in Figures 9–13 are examined,
the performance of the proposed algorithm for estimations
of ωm , τl , ϕsα , and ϕsβ is quite high. The experimental
setup shown in Figure 7 for the real-time tests of the pro-
posed EKF observer is not suitable for the measurement of
ϕsα , and ϕsβ . But, estimation of the stator fluxes is indi-
rectly confirmed by the equation of motion used for the
rotor velocity estimation because the equation of motion

includes the stator current, rotor speed, and load torque
together with the stator fluxes. The proposed estimation algo-
rithm has high performance in the field weakening zone
because it has an observer model independent from Rr , Lr ,
Ls , and Lm . In summary, the obtained real-time results from
different scenarios demonstrate the applicability of the esti-
mator.

In addition to the estimation performance of the EKF
observer, the computational time of the estimation algorithm
is also measured. The average execution times of each iter-
ation for the proposed estimation algorithm are measured as
2.1μs. This time (2.1μs) is quite small compared to previ-
ous studies using isα , isβ [25] and isα , isβ with ωm [3] in
the measurement equation for state and parameter estima-
tions.

7 Conclusion

In this paper, ωm , ϕsα , ϕsβ , and τl estimations are realized by
the EKF observer which uses a reduced IM model that does
not include Rr Lr , Ls , and Lm . The proposed EKF observer
estimates using the rotor angular velocity, as opposed to
the previous studies that use the stator current components
and the stator current components with rotor angular speed
in the measurement equation. The proposed EKF observer
which uses a reduced motor model presents an easier design
and lower computational burden than the previous studies
[3,26]. The estimation performance of the proposed EKF
observer is tested with real-time experiments and simula-
tions for wide ranges of speeds. When the experimental and
simulation results are considered, the performance of the pro-
posed estimation algorithm in a wide speed range including
the field weakening zone and very low speed is quite sat-
isfactory. On the other hand, the proposed EKF algorithm
is especially affected by Rs changes at low speeds. There-
fore, to achieve high estimation performance, Rs changes
should be updated in the EKF observer. In addition, in future
studies, it is planned to accelerate the torque response by
feed-forward control of the estimated load torque to the con-
trol system.
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