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Abstract

Modern power systems are witnessing a noticeable increase in the integration of low-inertia renewable sources which require
robust control schemes to damp out low-frequency oscillations emerged by this expansion. This paper proposes a reinforcement
learning (RL)-based controller using a deep deterministic policy gradient (DDPG) algorithm to damp inter-area oscillations.
The learning process of the controller is enhanced using a discrete reward-function which is selected to be a reciprocal function
of the input error. To allow the agent to drive the total error lower and lower, both the absolute error and integral of error
are included in the observation state vector. A two-area system with a solar plant integrated is used as the test system. The
controller obtains its global input signal from PMU devices in wide-area measurement systems using frequency information.
A comprehensive analysis is presented using several analytical control tools including time-domain simulation, pole-zero plot,
mode shape, frequency response, and participation factor map. Furthermore, a package of programs has been developed for this
study using MATLAB and Simulink. The communication latency is also included in the design of the controller considering
constant and variable practical values of latency. The proposed controller demonstrates its effectiveness in damping inter-area

oscillation and improving the system stability.
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1 Introduction

With the rapid expansion in the size of interconnected power
systems, high penetration of renewable energy, and inte-
gration of low-inertia sources and flexible loads, inter-area
oscillations problem becomes one of the major concerns in
the stability of power systems. It reduces the maximum trans-
fer capability of transmission lines and involves many parts of
the power system contributing to this instability [1, 2]. Such
an interconnected system requires effective control strate-
gies to damp out inter-area oscillations and enhance power
system security. Wide-area measurement system (WAMS)
provides controllers with global information obtained from
phasor measurement units (PMUs) with time-stamped and
high sampling rates.
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The control techniques used in power systems can be
divided into model-based and model-free approaches. In the
model-based systems, the controller is represented by the
mathematical equations of the model. Design of a model-
based controllers for complex systems with uncertainties
requires physical model and structure detail which is a chal-
lenging task for interconnected systems with large state
and action spaces [1]. On the other hand, a model-free
controller is an intelligent system with parameters opti-
mized by mapping and learning from its input—output data.
Model-free controllers do not require internal knowledge or
mathematical equations of the model because it is based on
measurements and information collected online. For this rea-
son, model-free controllers can be employed to solve control
problems in large-scale complex power systems. Advanced
sensors in a smart grid produce big data and useful infor-
mation that can be utilized to build intelligent agents to
control shortcomings in the system [3]. In the design of these
controllers, it is possible to include many scenarios and oper-
ation conditions to gain experience from the data and make
decisions. Machine learning (ML)-based controller is the
state-of-the-art technique for model-free controllers. ML can
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be classified into three branches: supervised, unsupervised,
and reinforcement learning (RL). The first two techniques are
mainly used for clustering and labeling static data, respec-
tively, whereas the latter is used in dynamic environments.
The aim of RL is to generate actions based on state obser-
vations and received rewards through continuous interaction
with the environment [4, 5].

On the applications of RL in power systems, there are sev-
eral excellent recent works presented in [1, 6]-[12]. These
researches proposed intelligent controllers based on the RL
approach to solve low-frequency oscillations, in particu-
lar inter-area oscillations. Reference [1] proposes a robust
WAMS controller based on policy gradient learning to adjust
the field voltages of multiple synchronous generators. Sev-
eral remote and local measurements are taken for the reward
function including speed deviation, sustaining relative speed
changes, and voltage phase angles difference of remote buses.
The controller’s design is complex; it requires multiple coor-
dinated controllers with several local and remote signals per
each to solve a single problem which is inter-area oscillations.
In addition, the study focuses on the side of synchronous
generators while there are two solar plants integrated to the
two-area system with no damping control-scheme shown.
Reference [6] proposes a multi-band power system stabi-
lizer using deep reinforcement learning, and the controller
parameters are tuned using the proximal policy optimiza-
tion (PPO) technique. However, the system is considered
to involve only conventional generators, and the controllers
input signals are local measurements including rotor angle,
active power, and voltage magnitude. Some other recent stud-
ies proposed an RL approach to solve load frequency control
[13]-[16], whereas [3, 17]—-[21] listed the most recent studies
in power system control using RL. Among all these studies, a
few studies worked on inter-area oscillations in systems that
are integrated with renewable energy sources (RESs). Low-
inertia resources decrease damping in the system and hence
increase instability, complexity, and uncertainty.

This paper presents a reinforcement learning control to
damp out inter-area oscillations using DDPG approach. The
controller is installed at the no-inertia side where a solar plant
is installed with remote-signal input obtained from WAMS.
A two-area system is used as the test system with all PSSs
removed to show the contribution of the proposed controller
in damping the oscillations. The system is comprehensively
analyzed and simulated considering time latency by using a
set of programs developed for this purpose. The paper tack-
les the low-frequency oscillation using the combination of
the state-of-the-art technologies of WAMS, machine learn-
ing, and green energy represented by a photovoltaic plant
without the need of additional damping controllers such as
stabilizers. In addition, the proposed controller uses two
error signals to quickly correct the given action. Since the
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controller uses global measurement that might witness com-
munication delay, the controller includes a wide practical
range of latency in its design. All the programs, codes, algo-
rithms, and figures were created by the author for this study.

The rest of this paper is organized as follows. Section II
describes the control scheme of the RL agent. The problem
statement is presented in Section III whereas the RL setup is
introduced in Section IV. Section V and VI describe the test
system and the programs developed for this study, respec-
tively. The results and discussion are given in Section VII,
and finally, the conclusion is presented in Section VIII.

1.1 Reinforcement-leaning control scheme

In conventional feedback control, designers usually use adap-
tive or optimal control. The main difference between these
two techniques is the way the controller’s parameters are
tuned: online or offline. Adaptive control tunes the unknown
parameters using online real-time measurements but they are
not optimized [22]. Optimal control, on the other hand, is an
offline control with parameters optimized using a mathemat-
ical equation but it requires modeling the dynamic system.
Reinforcement learning (RL) is a machine learning approach
to learn the behavior of a system from the plant’s input—output
data to design an adaptive-optimized controller. The method
does not require modeling the plant, and the controller’s
parameters are tuned through a data learning process.

RL has two main components: agent and environment.
Agent is the controller to be designed. Environment is the
whole system excluding the controller, in other words, it is
the system plant. There are two directed signals connect-
ing the agent and environment forming a closed loop: (1) an
outgoing signal from the agent to the environment which rep-
resents the controller action (2) another two outgoing signals
from the environment to the agent which takes the output of
the plant as observation states (feedback signal) adding to it
a reward function signal. The reward signal is used to rein-
force the goodness of the agent’s action over time. Inside the
agent block, we observe two components: actor and critic.
These are two neural networks we want to optimize their
parameters (weights and biases) to gain maximum learned
information about the behavior of the plant. Figure 1 visual-
izes this description, while Fig. 2 shows the same description
implemented in Simulink.

The agent uses an algorithm or technique to make the final
policy for the controller. One of the popular algorithms in
RL agent is deep deterministic policy gradient (DDPG). It is
a model-free, actor-critic, off-policy-based approach that is
known for its working space in both continuous and discrete
action domain. In the DDPG algorithm, two models are used:
actor and critic. In the actor model, the state is taken as the
input whereas the action is the output of the model. Given a
state, the actor proposes an action for the agent. Sometimes,
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we call the agent a learner, a decision maker, or simply a
controller. In the critic model, both the state and action are
used as the input signal, whereas Q-value is the output of
the network. This Q-value is used to predicts whether the
action proposed by the actor is good or bad depending on the
sign and value of Q-value. Policy maker or behavior-function
are two different names used for the actor-function. Policy
evaluator or Q-function are also two different terms used for
the critic function.

1.2 Problem statement

The problem in this research can be stated as follows:

e Damp inter-area oscillations by adding a stabilizing signal
to the active control loop of the solar plant. Use information

from WAMS that alarms us about this oscillation when it
occurs.

e We are given the environment X that represents the entire
system excluding the controller. X includes the state s; and
communication delay 7.

e Our target is to find an agent with a policy 7 and action a,
that adjusts the control loop to damp down these oscilla-
tions.

1.3 RL setup
1.3.1 RL agent setup

To effectively damp inter-area oscillations, an RL-based con-
troller is proposed in this study with a remote signal obtained
from wide-area measurements system. Since the agent’s
action is a function of its input, certain measurements are
selected as observation states in order to maximize the RL’s
knowledge on these oscillations once occurred. Based on the
definition of inter-area oscillation where a group of machines
in one area swings against another groups of machines in
another area, a sum of measurements from each areais chosen
to form a center-of-inertia difference between areas. The sig-
nal used for this concept is the machine frequency obtained
from PMU owing to its key indicator and sensitivity to such
changes in the system. Figure 3 shows the Simulink setup
of the entire system including the RL agent with two inputs
(observation and reward) in addition to the termination action
for the episodes shown as “isdone”. In the following sections,
we will discuss the agent’s input signal, actor-critic networks,
and the plant.

1.3.2 Observation signal

In control system, we observe a feedback signal from the
output of plant to the input reference. Similarly, to design
an RL controller, we use a vector of states as an observation
signal from the output of the plant (here, the center of inertia
difference of frequency deviations) to the input forming an
error input-signal as shown in Fig. 3. In addition to this error,
we use the integral of error to add memory to the error over

»@ »error observations
Reference
generate observations
— »observation
»>error
reward | »{reward action|—»action ~ frCOI
exceeds bounds frCOl
calculate reward > isdone Plant
RL Agent
+»frCOl stopf e+

stop simulation

Fig. 3 Control scheme of agent-environment using Simulink
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observations

Fig.4 Observation signal

time and drive the total error under the curve lower and lower
as shown in Fig. 4.

1.3.3 Reward function

One of the main challenges in training an RL agent is its
learning speed which usually lasts for several hours to gain
experience from the data and make a good policy for the
agent. To reduce the training time, one way is to focus is on
the reward function. The agent needs a well-defined reward
function so that it accelerates the convergence speed of learn-
ing. From Fig. 3 which shows a tracking control scheme in the
form of agent-environment coupling, we can give the agent
areward value reciprocal to the absolute error. The lower the
error, the higher the reward value, and vice-versa. By doing
so, we try to minimize the error and let the agent learn to
track the reference and drive this error to the minimum. In
this study, a discrete reciprocal reward-function with 0.1 step
is used for the absolute error between O and 1. If the error
is beyond this value, we use a penalty with a negative value
(-10). If the error is zero or very close to zero, we add a small
value to the error to avoid division by zero. The function is
plotted and shown in Fig. 5 which shows how the reward
value reduces as the error increases.

102 ' '

10'F 1

Reward Value

100 : : ‘ :
0 0.2 0.4 0.6 0.8 1
Controller Input Error

Fig.5 Reward function
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Fig.6 Actor network (left) and critic network (right)

1.3.4 Actor-critic network

To create a DDPG agent and approximate the average long-
term reward, two deep neural networks are designed for the
actor and critic models. Number of neurons and hidden layers
are chosen empirically and experimentally with all having 50
neurons and fully-connected layers as shown in Fig. 6. The
actor has state vectors composed of the error and integral of
error with three hidden layers. The critic network takes the
input and output of the actor as its two inputs and it consists
of five hidden layers. To increase the learning process, all
layers, except the actor output, are normalized to the range
of [0 1] using the rectified linear activation function "relu".
The actor output is connected to both the environment block
and critic network and is normalized to the range of [—1 1]
with a hyperbolic tangent activation function "tanh". The
two networks are weighted initially with a nonzero small
matrix.

1.3.5 Training settings

The agent is trained using the following settings. The action
signal is saturated by the generator capacity measured in pu.
The sampling time for this training is chosen to be 0.5 s over
10 s simulation time. To get the same training results when
the program is simulated in the next time, a reset function is
used namely “rng” with zero value in MATLAB. Maximum
episode value is chosen based on the ratio of simulation time
to sampling time rounded to the nearest integer value which is
20 episodes in this study. This is also the maximum steps per
episode. The training is stopped after 1475 s when the episode
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Fig.8 PV control loops

reward reaches a value with a satisfied damping which is
evaluated to be 20 for the reward function defined in this
study. Other training setting is the discount factor which is a
value in the range of [0 1] used to describe the importance
of future rewards to the current value. The discount factor
for this work is set to 0.995. Another important factor in
training an RL is the noise variance and its decay rate which

are selected to be 0.3 and 0.001, respectively. The noise is
added to the input data to reduce overfitting— that is, to reduce
memorizing the given dataset by the network especially when
the data sample is small. As a result, the error generalization
and mapping process are improved.
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1.3.6 Environment setup

The agent is designed to control a problem in the environ-
ment (plant) which is inter-area oscillations. In this study,
our environment is the power system excluding the agent.
Since our agent is designed in Simulink, we use the same
platform to model the power system based on the programs
developed in [2]. In this paper, the detailed sixth-order model
of the generator is employed and the machines are equipped
with excitor and turbine systems as shown in Fig. 7. The
mathematical model of the system represented by differential
algebraic equations (DAEs) are presented in [23] with calcu-
lation of the initial conditions of all variables and states. The
PV plant is modeled based on the two-control-loops model
introduced by WECC Renewable Energy Modeling Task
Force [24]-[26] as shown in Fig. 8. This model is widely-used
by researchers and is added to the libraries of most profes-
sional software for dynamic analysis of large-scale power
systems. Loads are modeled using a combination of constant
power, constant voltage, and constant impedance. A refer-
ence is necessary to be assigned for all phase angles in the
system which can be achieved by subtracting speeds from
either one of the machine’s speed or the center of inertia
of all machines [27]. For the linearization, it is required to
highlight the input and output signals of the system which
are chosen to be the voltage reference and actual bus voltage
of machine 1, respectively.

Figure 9 shows the overall RL agent-environment lay-
out with internal connections and detail structure of neural
networks representing the actor (red) and critic (green).
The nodes\edges of the two networks are displayed in cir-
cles\lines, respectively, with the activation functions (tanh
and relu).

1.4 Test system

A two-area test system with a PV plant installed at one side
is used to train and verify the proposed agent. The controller

is installed at the solar plant [2] to add additional damping
amount to the active power loop and damp out the oscilla-
tions. The original data for this test system is obtained from
[28]. The PSSs are removed from the system to observe the
impact of the controller on damping the oscillations and fil-
ter out other effects. A total of 400/900 pu active power is
planned by the original study to flow through the tie-line. The
total generation from the synchronous machines in Area 1 is
reduced by 200/900 pu and is compensated by the solar plant
in the same area. The power flow remained unchanged with
this change. The single line diagram of the system with the
PV integrated to the grid is shown in Fig. 10.

1.5 Development of MATLAB \ Simulink programs

To investigate the problem, integrate the PV plant, design the
controller, simulate the system in time-domain and small-
signal analysis, a set of programs and tools were developed
by the author using MATLAB\Simulink. The block diagram
for the base program (plant) is shown in Fig. 7 where each part
of the system including the synchronous machines, excitors,
turbines, and solar plant, is distinguished and given a different
color. The other parts of the system including the controller,
reward function, state vector and the tracking reference are
visualized in Fig. 3. The programs can be used for further
studies to be fully available as open-source programs for
educational and research purposes.

2 Results and discussion

To get insight into the problem, the system with and without
controller is analyzed using time-domain simulation, modal
analysis, participation factor, and frequency response analy-
sis. The mathematical equations and theoretical background
of these subjects can be found in [27]-[29] and therefore, are
not discussed here in this paper. Time-domain simulation is

400 MW
7
6 9 10 1
| 25 km 110km 110km 25 km I
I 10 km 10 km |
Area 12 13 Area
One 8 8 Two
1 2 ‘ 38 ‘ ] 3
’ PMU PMU PMU
f1 ) | §2 Control signal fa
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e - (DataCenetr) (4~~~ """~~~ ""---"T----T--—- .

Fig.9 A two-area test system
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used to analyze the dynamic behavior of the system repre- G1-2 (area 1)

sented by a set of differential algebraic equations at each time
step. In addition, the system is linearized around an operating
point to compute the damping ratios, frequencies, eigenval-
ues, right and left eigenvectors of all modes, and the system’s
A, B, C, and D matrices.

The results obtained from modal analysis reveal the pres-
ence of undamped inter-area oscillations in the system.
Figure 11 shows the simulation plots for the machine fre-
quencies, where generators 1-2 in Area 1 swing as one
oscillatory group against generators 3—4 in Area 2 evidenced
from the ~ 180° degree out-of-phase (opposite direction)
between the two areas. The oscillations are also confirmed
from the modal analysis study. Table 1 lists the modes with
the lowest damping ratios and their corresponding frequen-
cies and eigenvalues. As it can be noted, there is a mode with
a negative damping ratio (an indicator of unstable system)
and this mode has a frequency of 0.60935 Hz which is in
the range of inter-area frequencies lying between 0.1 and 0.8
[27]-[29]. This mode is the main cause of instability and
inter-area oscillations in the system owing to involving all
rotating parts of the system across the tie-line.

The mode-shape graphs for the modes listed in Table 1 are
plotted and shown in Fig. 12. From these figures, we observe

60.3 swing against

G3-4 (area 2)

[}
.O
N}

Ee0.1
>
o
<
$ 60
o
[
'S

59.9

59.8

59.7

0 5 10 15
Time (sec.)

Fig. 11 Time-domain simulation of the system without controller

two types of oscillations in the system: inter-area oscillations
shown in Fig. 12a and inter-plant local oscillations displayed
in Fig. 12 b—c. The first mode-shape shows how the gener-
ators in one area swing against the other two generators in
the other area (see the directions of the arrows). The other
two mode-shapes reveal another type of oscillations known
among generators in one area which has less influence on the

@ Springer



4220

Electrical Engineering (2022) 104:4213-4225

Table 1 Modal analysis results—without controller

Damping ratio (%) Frequency (Hz) Mode

—0.0091393 0.60935 0.034993 + 3.8287i
0.066865 1.1327 —0.47695 + 7.1171i
0.085341 1.0879 — 0.58546 + 6.8352i

overall insatiability and can be damped out by local PSSs.
Mode-shapes reveal another observation— which is also con-
firmed by the time-domain simulation in Fig. 11: generators
in Area 2 have more impact on the inter-area mode com-
pared to generators in Area 1. This can be concluded from
the lengths of the arrows in Fig. 1 and the heights of oscilla-
tions in Fig. 11.

The pole-zero map of the system is displayed in Fig. 13
detecting an unstable mode with positive real part of the
eigenvalue (0.034993 + 3.8287i). Figure 14a—c show the
results obtained from the frequency response analysis includ-
ing Bode, Nyquist, and Nichols plots. All these plots show a
sudden sharp change in the gain and phase diagrams which is
an indicator of instability in the system. Stable systems show
smooth plots over a wide-range of frequencies. Nyquist plot
shows this instability state in another form through observing
the critical point (-1, 0) which is encircled by the diagram.
Furthermore, Nichols plot confirms this instability condition
through looking at the critical point which passes over the
point (1807, 0).

Another useful analysis-tool is the participation factor
map obtained from the right and left eigenvectors of the lin-
earized system shown in Fig. 15. This map visualizes the role
of state variables in the system affecting the modes, and we
are more interested in the oscillatory modes. The most influ-
ential state-variables that contribute to the oscillations are
the electromechanical state variables—that is, rotor angle and
machine speed. As expected from other analyses, generators

Mode : 0.034993+3.8287i
Damping ratio (%) : -0.91393
Frequency (Hz.) : 0.60935

Mode : -0.58546+6.8352i
Damping ratio (%) :
Frequency (Hz.) : 1.1327
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Fig. 13 Pole-zero map of the system without controller

3—4 in Area 2 participate more into the inter-area modes (see
the yellow and green colors in the southwest side of Fig. 15).
Note that each oscillatory mode comes with a complex con-
jugate number representing the eigenvalues. For this reason,
each two consecutive rows in Fig. 15 are identical except for
non-oscillatory modes that have 100% damping ratios. The
color bar on the right of the figure shows how these partic-
ipation factors change gradually over the normalized range
[0 1]. The map is developed in a way that by moving over any
position on the map, all necessary information is displayed
including the eigenvalue, damping ratio, frequency, and the
relationship between each state on x— axis and each mode
on y— axis.

The above discussion was for the system without con-
troller. Now, we want to discuss training the controller and the
results obtained from the design of controller. For this train-
ing, a three-phase fault-disturbance is applied to the system
for the period t = 1-2 s to generate some extreme oscillations
in the system. Since the overshoot is higher at the begin-
ning of the fault, only a 10 s simulation-window is selected

Mode : -0.47695+7.1171i
Damping ratio (%) : 6.6865
Frequency (Hz.) : 1.1327

6.6865

0 o2 90 005 0 004
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0.05
180 0 180 0 180 0
210 330 210 330 210 330
240 300 240 300 240 300
270 270 270

Fig. 12 Mode-shape plots of the inter-area mode (left), local mode 1 (middle), and local mode 2 (right)
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for training the agent. Figure 16 shows the training results
for this design with the episode reward labeled on y—axis
against the episode number on x—axis. In this figure, the
episode reward is plotted in blue, the average reward in red,
and the episode Q-value in yellow. The training starts with
a low episode-reward around a value of 3, then by exploring
for more possible rewards, the average reward drives higher
especially around the episode number 160 when a noticeable
increase in rewards emerges. The training stops when the
reward reaches a value where no improvement is obtained
and this occurs around a value of 20.

Note that the training starts with a high exploration space
to choose actions for the agent that explore more unknown
parts of the environment. As the training continues and
episode reward increases, the agent tries to exploit the envi-
ronment for the rewards that are already known to the agent.
This can be observed from Fig. 16 where the variation space
for the episode reward (the blue vertical lines) is high at the
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Table 2 Modal analysis results—with controller and delay

Delay Damping ratio Frequency Mode
(%) (Hz)
025s 11.3 0.5730 —0.406 +
3.58i
0.15-0.35 s 9.63 0.6000 —0.36 +
3.75i

beginning of training but it decreases as time goes on. Con-
necting to the problem in this study, a high reward value
provides a high damping of oscillation and vice versa.

When the episode reward stops improving, it refers to
reaching the maximum possible amount of damping for the
controller. Comparing to some recent studies [1], the pro-
posed reward function is effective to achieve its maximum
learning from online data within a relatively short time. For
instance, the later study required over 4000-episodes for the
agent to increase its reward to the maximum for the same
test system. While training time is not pointed out in [1], the
proposed agent requires only ~ 200 episodes with a training
time of 1315.7 s to maximize the information gained from
interaction with the environment.

After the training stopped, the system with the designed
controller is simulated using the same analytical tools we
used for the case without controller. To incorporate the com-
munication latency, two realistic scenarios are considered:
(1) constant time delay of 0.25 s (2) variable time delay in
the range of 0.15-0.35 s as shown in Fig. 17. This delay
domain covers practical values for the majority of com-
munication links including fiber-optic cables, microwave
links, power line carriers, and telephone lines. The results
obtained from modal analysis show that the inter-area mode
is well-damped and moved to the stable region with the char-
acteristics listed in Table 2. The controller with constant
latency shows slightly better damping (11.3%) than the vari-
able delay (9.63%) which is expected since the variable delay
goes up to 350 ms, whereas the lower limit is set to 150 ms
and not zero. Figure 18a—d show some results obtained from
the time-domain simulation, pole-zero map, and frequency
response analysis. Figure 19a—b exhibit the simulation results
when variable delay is used.

When the episode reward stops improving, it refers to
reaching the maximum possible amount of damping for the
controller. Comparing to some recent studies [1], the pro-
posed reward function is effective to achieve its maximum
learning from online data within a relatively short time. For
instance, the later study required over 4000-episodes for the
agent to increase its reward to the maximum for the same
test system. While training time is not pointed out in [1], the
proposed agent requires only ~ 200 episodes with a training
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time of 1315.7 s to maximize the information gained from
interaction with the environment.

After the training stopped, the system with the designed
controller is simulated using the same analytical tools we
used for the case without controller. To incorporate the com-
munication latency, two realistic scenarios are considered:
(1) constant time delay of 0.25 s (2) variable time delay in
the range of 0.15-0.35 s as shown in Fig. 17. This delay
domain covers practical values for the majority of com-
munication links including fiber-optic cables, microwave
links, power line carriers, and telephone lines. The results
obtained from modal analysis show that the inter-area mode
is well-damped and moved to the stable region with the char-
acteristics listed in Table 2. The controller with constant
latency shows slightly better damping (11.3%) than the vari-
able delay (9.63%) which is expected since the variable delay
goes up to 350 ms whereas the lower limit is set to 150 ms
and not zero. Figure 18a—d show some results obtained from
the time-domain simulation, pole-zero map, and frequency
response analysis. Figure 19a—b exhibit the simulation results
when variable delay is used.

It is worth mentioning that the frequency of inter-area
mode stays almost around the same value for the cases: (1)
without controller, 0.60935 Hz (2) with controller—constant
delay, 0.573 Hz, and (3) with controller—and variable delay,
0.6 Hz. In the design of controller, the objective is to damp
the oscillations by shifting the real parts of the eigenvalues

to the far-left side apart from the imaginary axis of the com-
plex plane. In other words, the mode frequencies remained
unchanged.

There are several applications of the proposed control
strategy. Improving power system stability through damping
inter-area oscillations is one of these applications demon-
strated by this study. Inter-area oscillations problem causes
instability if not damped well. The control system used to
solve this problem requires global information because the
oscillation occurs due to interactions and swinging among
generators in one area against generators in another area
connected through weak tie-lines. In addition to damping
inter-area oscillations, the proposed agent can be used to
reduce local interaction among generators in one area. This
can be achieved by using auxiliary control component in a
solar plant without even the need of a power system stabilizer.

3 Conclusion

This paper proposed a reinforcement-learning-based con-
troller for a solar plant connected to a weak tie-line in a
two-area system to damp inter-area oscillations. Deep deter-
ministic policy gradient (DDPG) technique was used as the
algorithm for training the agent. The reward function used as
an input to the controller was a discrete reciprocal function of
the error signal. Deep neural networks are used for the actor
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8 ose 0.44 032 022 014 0@ 7 it will be computationally expensive and time consuming to
o 2 redesign, train, and test the agent.
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