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Abstract
Dissolvedgas analysis (DGA) is a powerful tool tomonitor the condition of a power transformer. Several interpretationmethods
have been proposed, one of the most reliable of which is the graphical Duval triangle method (DTM). The method consists
of several triangles, which still requires expertise for fault identification. The use of computer-based technology has been
implemented in recent years to support transformer fault identification. However, no study has done thorough investigation
on the use of suitable machine learning algorithm for the ML-based implementation of this matter. This study examines
six commonly used machine learning algorithms to support DGA fault identification of power transformer: decision tree,
support vector machine, random forest (RF), neural network, Naïve Bayes, and AdaBoost. Three DGA fault identification
methods for mineral oil insulated transformer were studied, namely DTM1, DTM4, and DTM5. The training and testing
datasets were generated for each DGA method, and trained to each ML algorithm. The tenfold cross validation was used to
evaluate the results using five criteria, namely classification accuracy, area under curve, F1, Precision, and Recall. RF models
demonstrated the best performance in classifying fault codes of most DGA methods. A validation was carried out using
the validation dataset, comparing the selected RF-based models to the graphical DGA fault identification. The combination
method was also implemented in the developed model. The results show that the proposed model is reliable, and especially
useful to be used for fault identification of a large number of transformer populations.

Keywords Dissolved gas analysis · Power transformers · Machine learning · Fault identification

1 Introduction

Fault identification is necessary for fault diagnosis of a power
transformer as it plays an important role in the electrical
power distribution. Dissolved gas analysis is a powerful tool
to diagnose a power transformer through oil measurement.
It is considered as the most reliable technique in detecting
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incipient fault within power transformers [1]. There are sev-
eral DGA interpretation methods that have been proposed
and commonly used, such as the Key Gas Method, Rogers
Ratio,DoenenburgRatio, IECRatio,DuvalTriangleMethod,
and Duval Pentagon Method. Among the existing interpre-
tation methods, Duval Triangle Method provides the most
accurate and consistent analysis [2]. Like previous studies,
research [3] confirmed that Duval Triangle resulted in the
most similar results from the transformer observation. Duval
TriangleMethod, along with the pentagon version, is the best
methods for more detailed faults diagnosis in transformers
[4].

The use of computer-based technology in recent years
has led to significant improvement in transformer condi-
tion assessment and monitoring. A fuzzy logic approach has
been proposed for consistent interpretation of dissolved gas-
in-oil analysis [5]. Support Vector Machine algorithm was
developed and proposed to diagnose fault in power trans-
former in [6, 7]. Random Forest model was proposed to
predict missing interfacial tension parameter in [8]. Neural
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networkwas proposed to diagnose fault in power transformer
based on IEC code in [9]. Multiple machine learning classi-
fier was implemented and compared to predict Health Index
of power transformer in [10]. In recent years, the graphical or
chart-based interpretation has been improved by computer-
based technology [11]. A study of [12] proposed a new fault
diagnostic based on the Duval Triangle which employs the
combination of fuzzy and evidential reasoning techniques.
This study aims to improve the Duval Triangle Method so
that it can produce easy to understand approach and is able
to identify simultaneous faults. A study of [13] developed
Java language based software implementation of the Duval
Triangle 1. A study of [14] proposed the ANFIS-based Duval
Triangle model to for fault diagnosis of power transformer.
The proposed ANFIS model produced higher accuracy com-
pared to the ANN algorithm.

The Machine Learning is useful on power transformer
assessment as it reduces the dependency on personnel exper-
tise, and improve consistency.Moreover, it is useful to assess
a large number of transformers, which consists of hun-
dreds to thousands of transformers data. However there has
been no thorough investigation on the use of the suitable
machine learning algorithm for the ML-based implemen-
tation of Duval Triangle. Previous studies has also done
mostly on Duval Triangle 1, while based on the result in [4],
other Duval Triangle in combination can improve the consis-
tency of the result. Therefore, this study aims to investigate
and compare various popular ML algorithms, and propose
the best performing model to support graphical DGA inter-
pretation. The ML-based Duval Triangle 1, 4, and 5 were
proposed, and the combination method were implemented.
The evaluation of the proposed method was done using the
validation dataset.

2 Methodology

The development of ML-based DTM was initially done by
generating training and testing datasets for DTM1, DTM4,
and DTM5. Subsequently, six ML algorithms were trained,
namely decision tree (DT), support vector machine (SVM),
random forest (RF), neural network (NN),NaïveBayes (NB),
and AdaBoost (AB). To evaluate the performance of the
models, several parameters were used, such as Classifica-
tion Accuracy, Area Under Curve, F1, Precision, and Recall.
Confusion matrices were used to visualize the results. The
developed model with the highest performance would be
selected. In addition, validation dataset, which was obtained
from the previous published articles, was used to evaluate
the proposed ML-based DGA Interpretation to the graphical
one. Finally, a combination method was implemented in the
ML-based DTM1, DTM4, and DTM5. Figure 1 shows the
flowchart of the methodology in this study.
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Fig. 1 Flowchart of the methodology

2.1 Graphical dissolved gas analysis interpretation

Duval triangle method (DTM) is presented in [15] consists
of several triangles. It is still considered the most reliable
method to identify fault within power transformers [1–4, 6,
7]. Most in-service power transformers are still using min-
eral type oil insulation, and the DTM that is suitable for
those transformers are DTM1, DTM4, and DTM5. There-
fore, those three DGA fault identification methods were
investigated in this study.

A. Duval Triangle Method 1

DTM1 uses the percentage of three gasses: CH4, C2H4, and
C2H6. Table 1 shows the seven fault codes of DTM1, which
are PD, D1, D2, T1, T2, T3, and DT. Figure 2 shows the
graphical representation of DTM1.

B. Duval Triangle Method 4

The DTM4 uses the percentage of three gasses: H2, CH4,
and C2H6. Table 2 shows the five fault codes of DTM4.
DTM4 is an addition to the DTM1, and was used to obtain
more information related to faults within low temperature
(PD, T1, or T2) after DTM1 [15]. If the results of DTM1 is
D1, D2, or T3, DTM4 should not be used. Mixture of faults
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Table 1 Fault codes and the description of DTM1

Code Description

PD Corona partial discharges

D1 Electrical discharges of low energy

D2 Electrical discharges of high energy

T1 Thermal faults of temperature T < 300 C

T2 Thermal faults, 300 C < T < 700 C

T3 Thermal faults, T > 700 C

DT Mixtures of electrical and thermal faults

Fig. 2 Duval triangle 1 dissolved gas fault identification

Table 2 Fault code and the description of DTM4

Code Description

PD Corona partial discharges

S Stray gassing of mineral oil (T < 200 C)

C Hot spots with carbonization of paper (T > 300 C)

O Overheating (T < 250 C)

N/D Not determined

can be indicated by the DTM4 and DTM 5 that do not agree.
Figure 3 shows the graphical representation of DTM4.

C. Duval Triangle Method 5

The DTM5 uses the percentage of three gasses: CH4, C2H4,
and C2H6. Table 3 shows the seven fault codes of DTM5.
DTM5 was employed to obtain more information after
DTM1 identified T2 or T3. DTM5 should not be used when
the DTM1 indicated D1 or D2 faults. DTM5 could be used to
confirm the uncertainty of the results of DTM1 and DTM4
[15, 16]. Mixture of faults can be indicated by DTM4 and

Fig. 3 Duval triangle 4 dissolved gas fault identification

Table 3 Fault codes and the description of DTM5

Code Description

PD Corona partial discharges

S Stray gassing of mineral oil (T < 200 C)

C Hot spots with carbonization of paper (T > 300 C)

O Overheating (T < 250 C)

T2 Thermal faults, 300 C < T < 700 C

T3 Thermal faults, T > 700 C

N/D Not determined

Fig. 4 Duval triangle 5 dissolved gas fault identification

DTM 5 that do not agree. Figure 4 shows the graphical rep-
resentation of DTM5.
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2.2 Machine learning algorithms

The use of ML to assist power transformer condition assess-
ment has been reported in several literatures [17–19]. This
study investigates six different machine learning algorithms
to support the graphical dissolved gas analysis fault identifi-
cation method. Those algorithms are Decision Tree, Support
Vector Machine, Random Forest, Neural Network, Naïve
Bayes, and AdaBoost.

A. Decision Tree

Decision tree is one of the most commonly used algorithms
in model building. It has a strong generalization ability and
convenient pruning, and it is fast fitting [20]. In this algo-
rithm, classification is carried out by splitting the data into
nodes by class purity using information gain. Several studies
have implementedDecisionTree into power transformer con-
dition monitoring and diagnostics [20–22]. A study of [21]
presented the use of C4.5 decision tree to predict transformer
fault from gas values of online conditionmonitoring. A study
of [22] implemented decision tree to classify the frequency
response analysis to diagnose fault within transformer wind-
ings. A study of [20] developed the rules of the fuzzy logic
using decision tree algorithm to estimate the degree of poly-
merization in oil-paper insulation system.

B. Support Vector Machine

Many studies have successfully implemented Support Vec-
tor Machine in power transformer condition monitoring and
diagnostics [23–26]. This algorithm transforms the samples
in the original input space to a higher dimensional space, then
searches for the optimal separation hyperplane [23]. SVM
is important because of its linearity and flexibility for large
data setting. It has good generalization properties because it
minimizes the structural misclassification risk in the training
process [25, 26].

C. Random Forest

Random forest classifier is an ensemble learning method
which consists of a set of decision tree that is developed from
a bootstrap sample from the training data. This algorithm
consists of a collection of tree-structured classifiers with
independent identically distributed randomvectors. Each tree
casts a unit vote for choosing the most popular class at input
[27]. An ensemble of the classifiers is given, and the training
data are drawn randomly from the distribution of the random
vector and the margin function is defined. Random forests
do not overfit as more trees are added and produce a limiting
value for the generalization error [27]. Several studies has

proposed the successful use of Random Forest classifier [10,
28, 29].

D. Neural Network

Neural Network is one of the most widely used algorithms
to build predictive models. This algorithm was inspired by
the functionality of human brain which consists of neu-
rons to process information in parallel [30]. This approach
can reveal highly nonlinear input–output relationships and
acquire knowledge directly from the training data through a
learning process [31].

E. Naïve Bayes

This algorithm uses Bayes’ rule with assumption that the
attributes are conditionally independent given the class.
Naïve Bayes uses the information in the sample to estimate
the posterior probabilityP(y|x) for each class y given anobject
x. Classification is done once such estimates are obtained
[32].

F. AdaBoost

Adaptive Boosting (AdaBoost) is an approach to improve
the prediction accuracy in machine learning by combining
many relatively weak and inaccurate rules [33]. Several stud-
ies implementing AdaBoost in power transformer condition
monitoring and diagnostics are [34, 35].

The performance evaluation of each model is described in
the following section.

2.3 Evaluation

To evaluate the performance of the proposed method, several
parameters were compared.

• Classification accuracy (CA) This CA value is the accu-
racy of the classification compared to the target category.
The highest CA is 1, and the lowest is 0. CA of 1 means
that all of the classification results correspond to the actual
category. CA was calculated using (1).

CA = tp + tn

(tp + tn + fp + fn)
(1)

• Precision This value measures the ratio of correctly pre-
dicted positive observations (tp) to the total predicted
positive observations (tp + fp). Precision was calculated
using (2).

Precision = tp

(tp + fp)
(2)
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Table 4 Number of samples for DTM1 training data

Fault type n Fault type n

PD 26 T2 48

D1 520 T3 108

D2 400 DT 270

T1 30

Total 1402

• Recall This measures the ratio of correctly predicted posi-
tive observations (tp) to the entire observations in the actual
class (tp + fn). Recall was calculated using (3).

Recall = tp

(tp + fn)
(3)

• F1 This value shows the weighted average of Recall and
Precision. The best value of F1 is 1, and theworst is 0. Typ-
ically, the highest F1 possible is desired. F1 was calculated
using (4).

F1 = 2 ∗ (Precision ∗ Recall)

(Precision + Recall)
(4)

• Area under curve (AUC)AUCvalue is themeasure of clas-
sifier ability to differentiate between classes. The higher
the value, the better the model performance in classifying
different classes.

• ConfusionMatrix This table visualizes the performance of
the proposed model to do classification. In this paper, each
row represents the actual class from graphical DTM, and
each column represents the predicted class fromML-based
DTM.

2.4 Datasets

Two types of datasets were used in this study. The first one
was the DGA fault identification training datasets, which
were generated to train and test the ML-based DTM. The
second was the validation datasets, which was used to evalu-
ate the proposed model and compare the fault identification
results to the graphical DTM.

A. DGA Fault Identification Training Datasets

To train the ML-based DTM model, three training datasets
were developed. Table 4 shows a total of 1402data forDTM1,
and the number of samples for each fault type. There were
seven fault types as the target class in this dataset. Three
features were used as input parameters, which are %CH4
(percentage of CH4),%C2H2, and%C2H4. The calculations

Table 5 Number of samples for DTM4 training data

Fault type n Fault type n

PD 26 O 215

S 610 N/D 301

C 403

Total 1555

Table 6 Number of samples for DTM5 training data

Fault type n Fault type n

PD 26 T2 91

S 126 T3 444

C 268 N/D 325

O 168

Total 1448

of the gas percentage are shown in Eqs. 1–3. These calcula-
tions were also carried out with DTM4 and DTM5 dataset,
using different gasses combinations.

%CH4 = CH4(ppm) × 100%

CH4(ppm) + C2H2(ppm) + C2H4(ppm)

(5)

%C2H2 = C2H2(ppm) × 100%

CH4(ppm) + C2H2(ppm) + C2H4(ppm)

(6)

%C2H4 = C2H4(ppm) × 100%

CH4(ppm) + C2H2(ppm) + C2H4(ppm)

(7)

Table 5 shows a total of 1555 data for DTM1, and the
number of samples for each fault type. Therewerefive classes
of fault types as the target in this dataset. Three features
were used as input parameters, which are %CH4, %C2H4,
and %C2H6. The calculations of the gas percentage were
the same with the previously shown in Eqs. 5–7, but using
different gasses combinations.

Table 6 shows a total of 1448 data forDTM5, and the num-
ber of samples for each fault type. There were seven classes
of fault types as the target in this dataset. Three features that
were used as input parameters are%CH4,%H2, and%C2H6.

B. Validation Dataset

As many as 1017 transformer dissolved gas data from previ-
ous studies [2, 4–7, 9, 19, 25, 36–72] were gathered and used
to evaluate the proposed methods. All of the data contained
the concentration of dissolved gas in mineral oil insulation of
transformermain tank, with five gasses in ppm (parts permil-
lion). These data were used to validate the proposed model
and compared to the result of graphical DTM.
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Fig. 5 Classification accuracy comparisons of seven ML algorithms

3 Results and analysis

This section discusses the results of the analysis. First,
eighteen ML-based fault identifications were developed and
compared. The best performing ML algorithm was selected.
Subsequently, an evaluation was conducted to the proposed
model using the validation dataset. After that, the combined
ML-based DTM was implemented to prove the applicability
of the proposed method to identify fault within the trans-
former using dissolved gas-in-oil data.

3.1 ML-based dissolved gas analysis interpretation

The datasets generated that are summarized in Tables 4, 5 and
6 are trained to six machine learning algorithms, namely DT
(Decision Tree), SVM (Support Vector Machine), RF (Ran-
dom Forest), NN (Neural Network, NB (Naïve Bayes), and
AB (AdaBoost). The tenfold cross validation was employed
to evaluate each of the trained model. Figure 5 shows the
performance of each ML algorithm in classifying each DTM
in terms of classification accuracy. The green bar shows the
accuracy ofML-Based DTM1, the blue bar is for DTM4, and
yellow bar is for DTM5. The dark blue dot shows the mean
of accuracy for each ML algorithm in predicting fault types
of DTM1, DTM4, and DTM5. RF resulted in the highest
average accuracy of 0.998, followed by AdaBoost for 0.997.
Decision Tree also obtain relatively high accuracy, 0.990,
while Support Vector Machine and Neural Network obtain
similar results of 0.944. In this case, Naïve Bayes got the
lowest average of accuracy of 0.823.

Figures 6, 7, 8 and 9 show the comparison of area under
curve (AUC), F1, Precision, and Recall of seven ML algo-
rithms in classifying fault types of transformer dissolved gas
analysis. Table 7 shows the performance of seven ML algo-
rithms. Random Forest and AdaBoost performed better than
other algorithms compared in this study, with RandomForest
models slightly better. This result is consistent with all of the
evaluation parameters. Therefore, RF models were proposed
to be implemented further.
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Fig. 6 Area under curve comparisons of seven ML algorithms
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Table 7 Performance of seven
ML algorithms ML algorithm AUC CA F1 PR RC

DT 0.996 0.990 0.990 0.990 0.990

SVM 0.997 0.944 0.941 0.941 0.944

RF 1.000 0.998 0.998 0.998 0.998

NN 0.997 0.944 0.943 0.944 0.944

NB 0.965 0.823 0.828 0.854 0.823

AB 0.998 0.997 0.997 0.997 0.997

Table 8 Accuracy of RF-Based DTM on Validation Dataset

Model No. of sample Accuracy (%)

DTM1 1071 95.5

DTM4 1071 96.2

DTM5 1071 95.1

Table 9 Confusion matrix of RF-based DTM1 on validation dataset

PREDICTED True
Posi-
tive

False
Neg-
ativePD D1 D2 T1 T2 T3 DT

A
C

TU
A

L

PD 109 0 0 0 0 0 0 100% 0%

D1 0 113 0 0 0 1 0 99% 1%

D2 0 2 177 0 0 0 0 99% 1%

T1 18 0 0 201 1 2 0 91% 9%

T2 0 0 0 1 142 0 0 99% 1%

T3 0 0 0 2 4 225 12 93% 7%

DT 0 0 1 7 4 0 60 83% 17%

3.2 Evaluation

After developing the RF-based DTM1, DTM4, and DTM5,
an evaluation was conducted using the validation dataset. As
many as 1071 dissolved gas data were obtained and subse-
quently classified using the developed RF-basedmodels. The
results of the fault identification were then compared to the
graphical DTM and analyzed. The resulting accuracy of RF-
based DTM on the validation dataset is shown in Table 8.
All of the models performed well and DTM4 obtained the
highest accuracy of 96.2%.

Tables 9, 10 and11 show the confusionmatrix ofRF-based
DTM on the validation dataset. The rows of the confusion
matrix shows the actual fault identifications by graphical
DTM,while the columns shows the results ofRF-basedDTM
in classifying the dissolved gasses into fault. True positive is a
ratio of correctly classified sample per class, while false neg-
ative is the ratio of incorrectly classified sample per class.

Table 10 Confusion matrix of RF-based DTM4 on validation dataset

PREDICTED True
Posi-
tive

False
Neg-
ativePD S C O N/D

A
C

TU
A

L

PD 42 2 0 0 0 95% 5%

S 16 440 6 1 2 95% 5%

C 1 10 292 0 0 96% 4%

O 0 1 0 204 1 99% 1%

N/D 1 1 0 1 61 95% 5%

Table 11 Confusion matrix of RF-based DTM5 on validation dataset

PREDICTED True
Posi-
tive

False
Neg-
ativePD S C O T2 T3 N/D

A
C

TU
A

L

PD 24 0 0 0 0 0 0 100% 0%

S 0 73 0 1 0 0 0 99% 1%

C 0 0 194 0 3 4 1 96% 4%

O 30 5 0 227 0 0 0 87% 13%

T2 0 1 0 3 29 1 0 85% 15%

T3 0 0 0 0 0 372 0 100% 0%

N/D 0 4 2 1 0 0 107 94% 6%

The results shows that RF-based DTM1 is excellent in iden-
tifying partial discharge fault type, with 100% true positive
rate. Satisfactory results were also shown in D1, D2, and T2
fault types with 99% true positive rate. Meanwhile, DT fault
type had 17% inaccuracy due to the fact that DT is a mixture
of electrical and thermal faults.

Table 10 shows the confusion matrix of RF-based DTM4
on the validation dataset. Thismodel was used to obtainmore
information related to faults within low temperature (PD, T1,
or T2). The results show that RF-based DTM4 is excellent in
identifying overheating fault under 250Cwith 99% accuracy.
Other fault codes for this model were also good, as the accu-
racy ranges from 95 to 96%. Table 11 shows the confusion
matrix of RF-based DTM5. This model was employed after
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Fig. 10 Flowchart of DGA Fault identification using combination of
DTM1, DTM4, and DTM5

DTM1 identified T2 or T3. The results show that DTM5 was
excellent in identifying PD and T3. However, the accuracy
of 87% and 85% were obtained when identifying O and T2,
respectively.

3.3 Combinedmethod

The combination of DTM1, DTM4, and DTM5 is useful to
distinguish further the faults inside the transformer besides
electrical faults of D1 and D2. When low energy or low tem-
perature faults were identified using the DTM1 (PD, T1 or
T2),DTM4was used to obtainmore information.When high,
or very high, temperature faults were identified with DTM1
(T2 or T3), DTM5 was used to obtain more information.
DTM4 distinguished between relatively minor faults such
as S, O, PD, and potentially more dangerous faults C, which
involved possible carbonization of paper. TheDTM5method
could be used to distinguish between high temperature faults
T3/T2 in mineral oil and potentially more dangerous faults
C involving possible carbonization of paper [11].

The combination of RF-based DTM1, DTM4, and DTM5
in fault identification was implemented in this study. The use
of combined Duval Triangle could improve the consistency
of the results [4]. Figure 10 shows the flowchart of DGA
interpretation using the combination of DTM1, DTM4, and
DTM5. These steps were applied to the 1071 dissolved gas

Table 12 Confusion matrix of combined RF-based DTM1,4, and 5 on
validation dataset

PREDICTED
Nor-
mal PD S C O T2 T3 D1 D2 N/D

A
C

TU
A

L

Normal 207 0 0 0 0 0 0 0 0 0

PD 0 25 0 0 0 0 0 0 0 0

S 0 5 97 0 1 0 0 0 0 0

C 0 0 5 139 0 0 2 0 0 0

O 0 0 0 1 125 0 0 0 0 0

T2 0 0 0 1 0 4 0 0 0 0

T3 0 0 0 0 0 0 149 0 0 0

D1 0 0 0 0 0 0 1 111 0 0

D2 0 0 0 0 0 0 0 2 176 0

N/D 0 1 1 0 1 0 0 0 1 27

Table 13 Total accuracy of the proposedRF-based combinationmethod
in DGA Fault Identification

DGA interpretation True positive (%) False negative (%)

Normal 100 0

PD 100 0

S 94 6

C 95 5

O 99 1

T2 80 20

T3 100 0

D1 99 1

D2 99 1

N/D 87 13

Total accuracy 98.7

dataset, using graphical DTMandRF-basedDTM. The com-
parison was carried out to evaluate the use of the proposed
Random Forest model.

Table 12 shows the confusion matrix of the proposed
RF-based combined DTM on the validation dataset. The
rows represent the actual DGA interpretation using graphical
DTM and the columns represent the predicted category using
combined RF-based DTM. The results show that the pro-
posedmethod has high performance when evaluated with the
validation dataset. As many as ten categories were observed,
with the total accuracy of 98.7% as shown in Table 13. The
resultingmethod performedwell and useful to support graph-
ical DGA fault identification, especially on large number of
transformers.
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4 Conclusion

This study investigates various machine learning algorithms
to support dissolved gas analysis fault identification of
power transformer. Duval Triangle Method 1, 4, and 5 were
employed as they were the most commonly used and reliable
DGAmethods. Three datasetswere developed to be trained to
six different machine learning algorithms. The results show
that Random Forest performed the best compared to the
others. Subsequently, the resulting RF-models were evalu-
ated using the validation dataset. As many as 1071 data of
dissolved gas in transformers were sampled from previous
researches and observed in this study. The resulting accuracy
of RF-basedmodel for DTM1 is 95.5%,DTM4 is 96.2%, and
DTM5 is 95.1%. Then, the combination of DTM1, DTM4,
andDTM5was implemented.The results show that the devel-
oped RF-based method performed satisfactorily with 98.7%
accuracy. The proposed model is reliable and especially use-
ful to help asset managers in assessing a large number of
transformers data.

Funding Funding was provided by Politeknik Negeri Malang (Grant
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