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Abstract
This paper investigates the application of Principal Component Analysis (PCA) for the development of a simple method of 
classification and localization of power system faults for a 150 km long transmission line. The proposed work uses only a 
quarter cycle pre-fault and half cycle post-fault receiving end line current signals for fast identification and isolation of the 
faulty line. This work analyzes current data of ten different fault classes. The fault signals are recorded at fourteen interme-
diate geometric locations, out of which, three locations are used for developing the PCA-ratio based classifier and a total of 
six locations are used for developing the localizer model. PCA is applied here to develop PC score indices, based on which, 
fault signature curve is developed using best fit analogy. This curve works as the key signature of localizer for each class and 
phase. The work is made more practically suited by incorporating noise in the signals. Thus an effort has been made in the 
proposed work for developing a complete practical fault diagnosis algorithm with an aim to achieve high level of accuracy 
both to classify and localize fault. The proposed classifier is found to produces 100% accuracy, and the localizer is found to 
achieve an average localization error of only 0.1189% for 40 dB SNR and 0.3965% error at a further higher noise level of 
25 dB SNR, with less than 4% of maximum error.

Keywords  Principal component analysis (PCA) · Principal component indices (PCI) · Ratio indices (RI) · Best fit curve 
analysis · Percentage error

1  Introduction

Fault identification and classification of faults are the most 
important aspects of power system stability, reliability 
and uninterrupted service. Prediction of fault location in a 
high power long transmission line also possesses very high 
importance in the field of power system protection and anal-
ysis. Large power transmission networks and grids are the 
most spatially extended technical systems and fairly often 
are most vulnerable to minor as well as severe faults since 
they are mostly exposed to the different atmospheric hazards. 
It is of utmost importance to identify the faulty phase at the 
earliest possible time in order to remove the same and bring 
an immediate stoppage to the outage of huge power through 

the faulted line. This also helps in preventing damage to the 
equipments, and most importantly, preventing damage to the 
persons in vicinity. Retention of fault for long may lead to 
the development of instability in the system. Hence, identi-
fication of faulted phase is very important to restore system 
stability. Most often, the transmission lines run over differ-
ent terrains and are often experience short circuit between 
lines or between lines and ground. Very often these faults 
are permanent in nature and require manual intervention for 
its removal. An accurate prediction of fault location is very 
important to identify the cause of fault by the people at work 
and hence locate it easily in less time. This helps in quick 
removal of the fault causing element and restoration of nor-
mal power flow. Besides, presence of power line noise makes 
this works more challenging by introducing harmonics in the 
system. Advent of digital relays has made the whole pro-
tection system much more advanced, accurate and reliable. 
The different measuring devices, connected to the system, 
provide real-time data which are processed by different pro-
tection algorithms. These primarily extract vital informa-
tion by continuous condition monitoring of voltage, current, 
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frequency, power factor, etc. to identify any abnormality. 
The goal of this work is to develop a protection algorithm 
to detect, classify and most importantly, localize any fault at 
the earliest in order to remove the abnormality and restore 
the normal operation as quickly as possible.

Numerous methods have been employed by researchers for 
developing useful tools for transmission line fault analysis [1, 
2]. The proposed work is about fault analysis using multivariate 
statistical method like Principal Component Analysis (PCA). 
PCA is effective in reducing the dimension of a multivariate 
data set; at the same time it is capable of extracting the most 
significant directions of variability in the descending order 
of importance. This helps in identifying the key directions of 
variation; thus allowing for faster numerical simulations with 
minimal loss of significant information [3]. PCA is used exten-
sively in power system research, especially in fault detection, 
classification and distance prediction where multi-dimensional 
data are obtained regarding voltage, current, power, frequency, 
etc. and/or a combination of these parameters. In this regard, 
PCA helps in accurate identification of key features by reducing 
data dimension and enabling easier, faster and accurate compu-
tation. Thus, computational burden is significantly smaller for 
PCA compared to several other methodologies. This statistical 
method of covariance analysis is lighter in computation com-
pared to wavelet analysis, which uses intricate mathematical 
analysis as it behaves as a transform based operation. On the 
other hand, supervised learning approaches like neural network 
and its variants require large training data for successful updat-
ing of internal weights and also associate heavier computational 
analysis than PCA.

In this work, a simple and direct technique has been dis-
cussed for faulty phase identification and localization in a 
150 km long single end fed transmission line. This method 
uses PCA based fault location prediction algorithm. The pro-
posed work is initiated with the development of a 150 km long 
overhead transmission line in ATP draw simulation. Further, 
ten different types of power system faults have been simulated 
at equal intervals of 10 km each. Only quarter cycle pre fault 
and half cycle post-fault receiving end three phase voltage 
signals are collected for the proposed PCA based analyzer. 
Further, the line currents are contaminated externally using 
power system noise, alike the real-time system, with an aver-
age Signal-to-Noise Ratio (SNR) of 40 dB. This noise level is 
further increased to 25 dB SNR to validate its practical accept-
ability under more adverse practical situations; although, we 
have kept fault resistance at a constant low value considering 
the fact that high resistive faults are a minority in transmission 
networks. The proposed scheme is found to work satisfactorily 
well, showing the robustness of the algorithm under practical 
circumstances. Detection of fault is carried out earlier, followed 
by classifying the fault to isolate the faulty phase from the sys-
tem by operating the destined circuit breaker(s). This ensures 
fast removal of fault and restoration of stability at the earliest 

possible time. This is achieved using PCA-ratios of the three 
phases. Use of the PCA-ratios for the development of the fault 
classifier algorithm has been carried out as an extension of the 
work developed in [28–30]. Finally, detection of location of 
the fault is practiced in order to remove the cause of fault with 
the least effort. Three locations are used as the training point 
for the purpose of classification and three more locations are 
used in addition for developing the fault localizer. The simula-
tion is carried out in ATP draw and analyzer and the analysis is 
done in MATLAB environment. Ten different classes of faults 
and healthy condition of line are tested with varying geometric 
fault locations. PCA is effectively used here to build Principal 
Component Indices (PCI), which are the representations of the 
fault signatures. Six training location PCIs for each fault class 
are used to develop the best fit training curve following the 
minimum Root Mean Square Error (RMSE) criteria and with 
the best goodness-of-fit values. The unknown set of PCI is fitted 
into the different curves to find the best fit model, and finally, 
predict the geometric fault distance; thus localizing the fault. 
The entire fault diagnosis method is described using SLG-AG 
fault as a prototype fault case study.

In the first phase of this paper, the simulation details are 
given followed by brief description of the Ratio Analysis based 
fault classification. The proposed fault localization algorithm 
is also described in connection with these. The next stage 
describes the detailed result analysis for all the different types of 
faults at all the different locations. Finally, we have concluded 
on the usefulness of the proposed PCA based fault localizer 
scheme and the utility of the component analysis in power sys-
tem fault diagnosis in relation to the results obtained.

1.1 � Background

Power system protection scheme is intended to identify and 
localize fault during abnormality and eliminate fault at the 
earliest possible time using fault sensors like relays, current 
transformer and potential transformer and actuators like cir-
cuit breakers. Hence, prompt detection and classification of 
faults, as well as, precise fault location identification have 
been practiced by scientists in order to ensure system safety 
and stability [1, 2]. Researchers have developed many math-
ematical and computational tools for the detection, classi-
fication and localization of faults. Artificial Intelligence 
(AI), nowadays, is applied extensively by researchers in the 
area of fault analysis and power system research. Artificial 
Neural Network (ANN) and its different variants have been 
one of the most used and fundamental methods used in the 
research of power system protection of transmission lines 
and used in many researches effectively [4, 5]. Probabil-
istic neural network (PNN) has been extremely effective, 
especially in fault classification analysis, for its well known 
feature of pattern recognition; hence used in abundance [6]. 
ANN based works have progressed miles with the recent 
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development of machine learning and deep learning based 
analysis. Extreme learning machine (ELM) based analysis 
using neural networks has been among the recent advance-
ments in this field [7, 8]. Wavelet transform (WT) has been 
instrumental in several researches of fault analysis as a tra-
ditional method of fault signal analysis, even incorporating 
modern compensating devices [9]. Neural network based 
methods, although are very accurate, suffer from the require-
ment of diverse training and WT is computationally more 
demanding, especially with higher levels of decomposition. 
Despite the respective disadvantages, one of the most com-
mon ways of using WT lies in the use of wavelet coefficients 
and entropy features, which are obtained as fault features, 
with supervised learning model like neural network. This 
method has been instrumental in several researches [10–15], 
as it possesses the accuracy of transform based signal analy-
sis method like WT as well as supervised learning approach 
to develop accurate fault analyzers. The authors of [13] have 
also introduced Parseval’s theorem in addition to WT and 
neural network. Fault features of discrete wavelet transform 
(DWT) have been analyzed using Chebyshev neural Network 
(ChNN) for a thyristor controlled series compensated line 
in [14] for analysis of faults, whereas, wavelet features have 
been used to model a 2-Tier multilayer perceptron (MLP) 
network to develop a robust fault classification method in 
[15]. Fuzzy inference system has been another effective tool 
for fault analysis, often used as a major standalone method 
of analysis [17], as well as used as hybrid model in combina-
tion with wavelet analysis [18] and neural network, which 
is used as adaptive neuro fuzzy inference system or ANFIS 
model. This hybrid model has been often aided by wavelet 
analysis to develop wavelet based ANFIS models and used 
as an effective method of complete analysis [19–21]. Sup-
port Vector Machine (SVM) too has been used in a wide 
number of researches related to power system protection 
algorithm, as a major standalone method of analysis [22], 
or using features from other analysis methods like neural 
network [23], wavelet analysis [24], discrete orthogonal 
S-transform (DOST) [25, 26] and others. Signal entropy has 
also been analyzed which uses the randomness of a fault 
signal for each phase and classifies fault accordingly [27].

Traveling wave based methodologies have also been 
applied effectively in several researches, especially for 
localization of transmission line faults [28, 29]. Phasor 
Measurement Units or PMU is one of the relatively new 
methods that been investigated immensely in modern anal-
ysis [30, 31], although often requires additional hardware 
support for synchronous measurement at both ends of a 
transmission line. Time domain analysis as well as fre-
quency spectrums are among the other common applica-
tions in this field [32, 33]. The frequency of the transient 
fault oscillations bear major features, especially regarding 
fault location, which are interpreted using these time or 

frequency domain analysis. Spectral energy is also com-
bined with DOST and CUSUM algorithm for detection, 
classification, and localization of faults in power transmis-
sion system [34].

PCA has also been applied in transmission line fault analy-
sis for its major advantage to identifying principal directions 
of variation in the descending order, which, in turn, reduces 
the dimensionality of the data set. A PCA is often applied as 
a single feature extraction tool for developing methods of fault 
analysis [35–37], as well as in combination with PNN is shown 
in [38, 39]. Multiple linear regression [36] or curve fitting tool 
[37] has also been used to model fault localizer using PCA 
extracted fault features. Fault features from PCA have often 
been combined with other methodologies to develop hybrid 
fault analyzer models. PCA has also been used in combina-
tion with other methodologies like traveling wave and wavelet 
analysis [40], SVM [41] and others to develop accurate hybrid 
fault diagnosis techniques. The proposed method fault classifi-
cation, in this work, has been derived extending the ratio based 
method analyzed in [35, 36] in the form of a direct threshold 
based classification method and the localization scheme has 
been followed using the concepts described in [37], but using 
the receiving end fault signals only.

Classical methods of methods of fault analysis include 
mostly the sequence component based techniques, which are 
mostly used in practical power transmission-distribution sys-
tems [42–45]. Advancement of soft computation methods have 
helped researchers to develop more accurate classical positive 
and negative sequence network based fault analysis models 
which are able to produce accurate output [46, 47]. The devel-
opment of microprocessor, combined with soft computation 
has helped to develop and implement digital relays, embed-
ding the fast analysis techniques. Sometimes, these sequence 
components are analyzed directly, or combined with other 
tools to develop directional effective relaying schemes [48–50]. 
Sequence voltages and currents are very accurate, as well as 
sensitive in fault detection. However, many of the works have 
pointed out that load imbalance is one of the major causes of 
failure of the sequence based protection systems [43, 44]. Load 
unbalancing often occurs in real-life in a three-phase system; 
which, in turn, generates the symmetrical components in lines. 
It often causes the relays maloperation, even if there is no fault. 
Other errors include measurement errors, especially CT satura-
tion and CCVT sub-transient errors. These also introduce spu-
rious sequence components, e.g., negative and zero sequence 
components; which sometimes causes maloperation in relaying 
by introducing sequence components.
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2 � Transmission system design 
and simulation

A single side fed 270 kV 150 km long, single circuit, three 
phase, radial, overhead transposed AC transmission line 
model has been considered for the proposed work. The 
simulation model of the said line is designed in Electro 
Magnetic Transient Programming (EMTP). Receiving end 
current waveforms for three phase have been taken and 
used as the only data and the same is obtained for ten dif-
ferent types of faults, e.g.,

(a)	 Single Line to Ground (SLG) fault for lines A, B and C 
(SLG-AG, SLG-BG, SLG-CG, respectively),

(b)	 Double Line (DL) fault in between lines AB, BC and 
CA (DL-AB, DL-BC, DL-CA, respectively),

(c)	 Double Line to Ground (DLG) fault in between lines 
AB, BC and CA and ground in each case (DLG-ABG, 
DLG-BCG, DLG-CAG, respectively) and

(d)	 Three phase fault (LLL-ABC)

The above faults are conducted at different locations 
10 km apart throughout the entire length of 150 km line, 
along with the healthy condition and waveform are col-
lected for further analysis using the proposed algorithm. 
Fifteen three phase Line Cable Constants (LCC) blocks, 
each of 10 km, are connected in cascade to develop the 
150 km long overhead transmission line. The frequency 
dependent ‘JMarti’ model has been adopted for the given 
purpose. Sampling frequency has been taken as 2000 sam-
ples/cycle of the sinusoidal current waveform, hence, giv-
ing a sampling frequency of 100 kHz.

3 � Development of fault detection 
and classification algorithm

Power system fault identification and proper classification 
of the fault type are the first and foremost step in power 
system protection scheme. Unless the faulty line(s) is iden-
tified and immediately isolated, the fatal risk of damage 
to people and the working personnel exists, apart from the 
possibility of damage to the different protective instru-
ments and sophisticated devices. Besides, unnecessary 
drainage of electric power from the transmission network 
aids in hampering synchronous system stability, which 
may causes severe damage to the system. Hence, the cause 
of fault should be removed at the earliest possible measure, 
followed by system restoration. Hence the proposed work 
initiates the analysis using the fault identification and clas-
sification before proceeding to the localization of the fault.

3.1 � Training data preparation

Application of PCA on normalized, quarter cycle pre fault 
and half cycle post fault, three phase, receiving end current 
signals yields a set of Principal Component Indices (PCI). 
This is repeated for ten prototype fault classes, conducted at 
different intermediate locations of the line, each 10 km apart. 
Fault identification and classification have been carried out 
using fault ratio signatures generated using fault signals, for 
faults conducted at three intermediate locations: at 30 km, 
80 km and 140 km from sending end. Fault waveforms are 
recorded for ten fault classes and one healthy condition. 
Sampling frequency of 2000 samples/cycle produced a total 
of 1500 sample points for the above duration of waveform. 
Hence, the input variable matrix, using the signals of the 
three phases, is constructed as follows:

where, i denotes the fault class; hence, i = 1, 2, …, 11, rep-
resents ten fault class and healthy condition. The suffixes a, 
b and c represent three different phases. Thus, combining 
above 11 fault classes, the training variable takes the fol-
lowing form:

Further simplification has been carried out by phase sepa-
rating the training matrix X to construct Xa, Xb and Xc 
separately, e.g., Xa is given by:

Xb and Xc are also constructed similarly using B and C 
phase signals for the same 11 different conditions. Thus each 
phase produces a data matrix of the dimension 1500 × 11. 
Hence the modified training matrix, denoted by Xm, is given 
as:

3.2 � Test data preparation

This is done similarly to that of the training data prepara-
tion. Three phase current data of the receiving end for the 
unknown class of fault are taken as the experimental or test 
data. Thus the test data matrix (T) takes the form given by:

(1)X
i
=

⎡⎢⎢⎢⎣

IRa
i 1 IRb

i1 IRc
i1

IRa
i 1 IRb

i1 IRc
i1

… … …

IRa
i 1 IRb

i1 IRc
i1 1500

⎤⎥⎥⎥⎦
1500×3

(2)X =
[
X1X2X3 … X11

]
1500×33

(3)X
i
=

⎡⎢⎢⎢⎣

IRa1 1 IRa2 1 IRa11 1
IRa1 2 IRa2 2 IRa11 2
… … …

IRa1 1500 IRa2 1500 IRa11 1500

⎤⎥⎥⎥⎦
1500×11

(4)Xm = [ Xa Xb Xc ]1500×33
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T is again a 1500 × 3 matrix. Further, this test data matrix (T) 
is represented with symbols of individual phases to produce the 
modified test data matrix (Tm) as:

Each of Ta, Tb and Tc is of the dimension 1500 × 1. Finally, 
Xm and Tm become the two matrices under consideration 
which are processed through the proposed fault classifier algo-
rithm discussed in the next section.

3.3 � Fault classifier algorithm

As discussed earlier, Principal Component Analysis (PCA) 
has been used to design the proposed fault classifier algo-
rithm. It is evident that PCA serves a very good purpose 

(5)T =

⎡⎢⎢⎢⎣

IRa
i 1 IRb

i1 IRc
i1;

IRa
i 1 IRb

i1 IRc
i1;

… … … ;

IRa
i 1 IRb

i1 IRc
i1 1500

⎤⎥⎥⎥⎦
1500×3

(6)Tm = [ Ta Tb Tc]1500×3

in reducing the dimension of any multivariate data set and 
identify the direction of the most variability from a large 
set of widespread data. In the proposed work, PCA has 
been applied on the receiving end current data as discussed 
before. The training and test set matrices i.e., Xm and Tm, 
respectively, are processed using the proposed algorithm to 
find out PCA indices of each phases, corresponding to each 
of the eleven training and test conditions. The steps of the 
proposed work for faulty phase identification are discussed 
as follows:

3.4 � PCA algorithm

The training and test data are analyzed using PCA based 
algorithm with phases combined together independently. 
Hence, the phase separated matrix of the training and test 
set are merged together to obtain the combined matrix C as:

[Ca]1500×12 = [Xa Ta]; [Cb]1500×12 = [Xb Tb]; [Cc]1500×12 = [Xc 
Tc]. Hence, the proposed algorithm is developed as follows: 
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These two matrices: [PCI] and [RI] are used to develop the 
proposed fault classifier model. The PCI matrices thus formed 
are basically an approximate estimation of the extent of distur-
bance of each fault current waveform from the healthy condi-
tion. The direction of each component is given by the eigenvec-
tors obtained from the covariance matrix of the transformed 
data points. Magnitude of maximum deviation from the origin 
(which is assigned to the no fault condition) corresponds to the 
respective eigenvalues.

3.5 � Numerical analysis of three phase PCI values: 
ratio based logic development

The three phase receiving end current signals are analyzed 
for ten different fault classes as mentioned before and the 
PCI values are recorded. These PCI are further analyzed to 
obtain the [RI TRAINING] and [RI TEST] matrices following 
the above algorithm. Three intermediate locations: 30 km, 
80 km and 140 km are chosen as the training points for the 
development of the proposed scheme, and hence, constructs 

[PCI TRAINING]. These values are further analyzed to develop 
[RI TRAINING] and are shown in Table 1. The above two 
matrices are also described graphically in Figs. 1 and 2, 
respectively.

3.6 � Fault detection

The proposed ratio based algorithm is first used to identify 
a fault in line, followed by classification of the same. It is 
readily observed from Table 1 and the associated Figs. 1 
and 2 that for all the classes of faults, except the sym-
metrical ABC fault, at least one of the ratio values easily 
exceeds 2 by magnitude. Hence, the fault detection algo-
rithm is designed in such a way that the ratio values are 
tested first and a fault is detected if one of these is found 
to exceed this limiting magnitude of 2. Hence, a fault 
detection threshold ϕ1 is chosen for the ratio index, which 
is assigned magnitude 2, i.e., ϕ1 = 2. But the ABC fault 
escapes this loop since the symmetrical three phase fault 
affects all the three phases almost equally, which results 
in similar PCI magnitudes for the three phases, and in 

Table 1   Ratio Index values for 
ten fault classes at three fault 
locations

Fault Class Ratio 1 Ratio 2 Ratio 3

30 km 80 km 140 km 30 km 80 km 140 km 30 km 80 km 140 km

AG 4.163 4.53316 4.42338 1.00357 1.00971 1.00258 0.21128 0.21847 0.22549
BG 0.26176 0.25805 0.25262 3.8591 3.86606 3.95582 0.98995 1.00237 1.00067
CG 0.98989 1.00599 1.01139 0.2553 0.29573 0.30004 3.957 3.36132 3.29536
AB 1.00253 1.00156 0.99669 530.09 750.993 951.911 0.00188 0.00133 0.00105
BC 0.00179 0.00143 0.00053 1.00081 1.00058 1.00081 557.512 699.533 1902.74
CA 1156.46 1074.5 791.995 0.00087 0.00093 0.00126 0.99904 1.00102 1.00113
ABG 1.01419 0.92114 0.95606 4.69408 4.63943 4.37384 0.21005 0.234 0.23914
BCG 0.32631 0.22305 0.21176 0.62006 0.84327 0.93262 4.94236 5.31667 5.06338
CAG​ 6.43071 5.57782 5.1779 0.25314 0.23208 0.22546 0.61431 0.77251 0.85658
ABC 1.48366 1.16395 1.0801 0.85009 1.01346 1.03683 0.79286 0.84773 0.89295

Fig. 1   Three phase PCI for ten different fault classes obtained at three 
different fault locations (D): 30 km, 80 km and 140 km from sending 
end

Fig. 2   Ratio Indices values for SLG, DLG and LLL faults at three 
different fault locations (D): 30 km, 80 km and 140 km from sending 
end
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turn, produces similar ratio indices values close to unity. 
Figure 2 illustrates the above discussion. Hence, in order 
to identify the three phase fault, the three phase PCI val-
ues are also investigated. A LLL fault, which is the ABC 
fault, is identified on detection of the condition when all 
the three phase PCI values are found to exceed a certain 
level simultaneously. Observation of Fig. 1 shows that 
the all the three phase PCI levels exceed magnitude 6 for 
all LLL faults. Hence, a second threshold ϕ2 is identified 
which compares the PCI values of all phases and detects 
a LLL fault upon observing all the three phase PCIs to 
exceed this threshold ϕ2. Hence, as per the above discus-
sion, magnitude of this second threshold ϕ2 is selected as 
6, i.e., ϕ2 = 6. The proposed fault detection technique is 
also shown graphically in the form of a flowchart in Fig. 3.

The proposed algorithm is further tested with fault signals 
including variation of load and it is found that the algorithm 
does not detect it as a fault. This is primarily because the three 

phase signals are found to be affected almost equally with a load 
change. This is identified by almost equal increase or decrease 
in all the three signals simultaneously. Further, the proposed 
analysis is carried out by converting the fault signals into per 
unit system. This again reduces the effect of variation in load. 
This helps in analyzing the proposed design in two ways:

1.	 The change in load does not take the PCI values beyond 
the threshold level which is ϕ1, considering even the 
instantaneous transients arising immediately after a load 
change, hence, no fault is detected,

2.	 Since the load change affects the three phases almost 
equally, the mutual ratios of the PCI values remain 
almost near unity; hence does not exceed the PCI thresh-
old, i.e., ϕ2.

These two factors, when analyzed simultaneously, are found 
to detect only the true faults in all the tested cases. Hence, the 
proposed work is found to work well even for load changing 
conditions.

Fig. 3   Proposed fault detection algorithm

Table 2   Classification of ratio indices using three threshold values for ten fault classes at three training locations

Fault Class Ratio 1 Ratio 2 Ratio 3

30 km 80 km 140 km 30 km 80 km 140 km 30 km 80 km 140 km

AG θ2 < RI < θ1 θ2 < RI < θ1 θ2 < RI < θ1 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 RI < θ3 RI < θ3 RI < θ3

BG RI < θ3 RI < θ3 RI < θ3 θ2 < RI < θ1 θ2 < RI < θ1 θ2 < RI < θ1 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2

CG θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 RI < θ3 RI < θ3 RI < θ3 θ2 < RI < θ1 θ2 < RI < θ1 θ2 < RI < θ1

AB – – – RI > θ1 RI > θ1 RI > θ1 – – –
BC – – – – – – RI > θ1 RI > θ1 RI > θ1

CA RI > θ1 RI > θ1 RI > θ1 – – – – – –
ABG θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 θ2 < RI < θ1 θ2 < RI < θ1 θ2 < RI < θ1 RI < θ3 RI < θ3 RI < θ3

BCG RI < θ3 RI < θ3 RI < θ3 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 θ2 < RI < θ1 θ2 < RI < θ1 θ2 < RI < θ1

CAG​ θ2 < RI < θ1 θ2 < RI < θ1 θ2 < RI < θ1 RI < θ3 RI < θ3 RI < θ3 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2

ABC θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2 θ3 < RI < θ2

Table 3   Fault Classifier rule base

Ratio 1 Ratio 2 Ratio 3 Fault Class

θ2 < RI1 < θ1 θ3 < RI2 < θ2 RI3 < θ3 AG
RI1 < θ3 θ2 < RI2 < θ1 θ3 < RI3 < θ2 BG
θ3 < RI1 < θ2 RI2 < θ3 θ2 < RI3 < θ1 CG
– RI2 > θ1 – AB
– – RI3 > θ1 BC
RI1 > θ1 – – CA
θ3 < RI1 < θ2 θ2 < RI2 < θ1 RI3 < θ3 ABG
RI1 < θ3 θ3 < RI2 < θ2 θ2 < RI3 < θ1 BCG
θ2 < RI1 < θ1 RI2 < θ3 θ3 < RI3 < θ2 CAG​
θ3 < RI1 < θ2 θ3 < RI2 < θ2 θ3 < RI3 < θ2 ABC
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3.7 � Fault classification

It is observed from Figs. 1 and 2 that the PCI and the RI 
values have specific features for definite class of fault which 
are investigated in this work to obtain the classification rule 
bases. The following observations were found prominent 
from the [RI TRAINING] matrix, i.e., Table 1 and also, from 
Fig. 2:

(a)	 For any DL faults, any one of the ratio indices, i,e,, 
either ratio 1 or ratio 2 or ratio 3 becomes extremely 
high. This is clearly observed from Table 1 that, e.g., 
ratio 2 for AB fault, ratio 3 for BC fault and ratio 1 
and for CA fault becomes very high. This high value 
is more than 100, even considering the three different 
training fault locations.

(b)	 The ratio indices corresponding to the rest of the faults 
(SLG, DLG and LLL) follow some common ranges of 
values, irrespective of the fault location:

Class 1: Some of the ratio indices values are in the 
range of 0.2 to 0.35,
Class 2: Some of the ratio indices values ranges within 
0.6 to 1.5, and
Class 3: Some other ratio indices values ranges within 
3 to 7.

Depending on the above observations, three thresholds are 
developed as θ1, θ2, and θ3.

θ1 is the highest threshold limit designed for identification of 
DL faults. If any one of the three ratios is found to exceed this 
threshold θ1, the fault is identified as DL. Detailed examina-
tion of the ratio index, i.e., identifying if it is ratio 1 or ratio 2 
or ratio 3, the exact fault is classified. This θ1 is safely assigned 
the value of 100, as observed from Table 1. This threshold dis-
tinguishes the DL class from the ratio indices values belonging 
to class 3, since the upper limit of class 3 is found as 7, which 
is much less than this θ1.

In order to distinguish ratio indices values of class 3 from 
the set of ratio indices values of class 2 as mentioned above, 
the second threshold θ2 is assigned. This is selected to lie in 
between the upper threshold of class 2 i.e., 1.5 and lower thresh-
old of class 3, i.e., 3. Hence, θ2 is selected as 2.5.

Separation of ratio indices values of class 2 from the 
set of ratio indices values of class 1 is done similarly by 
selecting the third threshold θ3 as 0.45, which is almost in 
the middle of the upper threshold of class 1 i.e., 0.35 and 
lower threshold of class 2, i.e., 0.6.

Hence, the threshold values are written as: θ1 = 100, 
θ2 = 2.5 and θ3 = 0.4. Using these values, the RI values 
from Table 1 could be written in terms of the threshold 
values as shown in Table 2. It is important to note that only 
the relevant and useful thresholds are written the table and 

irrelevant fields in terms of classification are left blank. 
Depending on this Table 2, the final fault classifier rule 
bases are obtained as shown in Table 3.

The unknown fault is analyzed using the PCA based 
algorithm described before to obtain the [RI TEST] which 
is compared with this fault classifier rule base to obtain 
the predicted fault class. This algorithm is tested using 
fault signals corresponding to ten different fault classes 
and the results obtained are described later under the result 
section.

4 � Fault distance estimation

Determination of the fault location is another vital part of 
the proposed work. Best fit analysis has been applied with 
the PCA features [38] obtained with the receiving end fault 
current signals. The three phase current waveforms cor-
responding to six training locations, as mentioned earlier, 
have been used to develop the localizer algorithm. Close 
observation of the PCI values reveal a monotonic variation 
with fault location. This variation is also observed to be 
different for each fault class. These PCI values when plot-
ted against the corresponding fault locations reveal mostly 
curvilinear trend, which have been approximated by dif-
ferent curves in MATLAB environment. The best fit curve 
so obtained among the various combinations is termed as 
the fault location signature curve. The PCI of the test data 
corresponding to unknown fault location is used with this 
best fit curve to predict the unknown fault distance.

4.1 � Processing of training data: case study

The six PCI values so obtained are taken as the training 
input to the algorithm. The proposed analysis is illustrated 
using SLG-AG fault only as an example case of study. It 
is observed that the maximum disturbance is caused for 
the line directly under fault for each class. It is readily 

Table 4   A sample case of three phase PCI for SLG-AG fault with 
variation in fault location; SNR = 40 dB

Fault location 
(km)

PCI-A PCI-B PCI-C

10 7.653655 1.755881 1.776019
30 13.25115 2.910645 2.949314
50 15.06687 3.320619 3.373498
80 16.44998 3.684799 3.696578
110 17.4887 3.953036 4.00362
140 18.45396 4.213816 4.255525
Test 15.60633 3.464064 3.482196
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found that for SLG faults, only one line is directly affected 
and the two other lines remain less disturbed; for DL or 
DLG fault, two lines are directly under fault and are pro-
duce maximum disturbance; and finally, all three lines 
are disturbed for LLL fault. Hence, on PCA, the directly 
faulted phase(s) gives out highest magnitude of PCI and 
the indirectly faulted phase(s) produce less significant PCI 
values. Hence, for SLG fault, PCI of the single directly 
affected phase is considered; for DL or DLG faults, PCI 
values obtained from the two directly affected phases are 
considered; and for LLL fault, all the three PCI values 
are considered for analysis. Each phase signal is analyzed 
independently and the mean predicted values is considered 
as finally predicted location.

Post fault signals are analyzed initially for classifica-
tion of faults, followed by application of the fault localizer 
scheme. The primary training input is a 1500 × 6 matrix 
for each phase; the six columns of the same denote the six 
training location points. Hence, for SLG fault, only one; 
for DL and DLG faults, two; and for LLL faults, three 
such sets are obtained. PCI value primarily is a measure 
of the extent of disturbance caused in each phase during 
fault, with respect to the healthy condition. Hence, phase 
A, being the most disturbed phase in case for AG fault, has 
the highest impact of fault. More so, the fault signals are 
contaminated additionally with a noise level of 40 dB SNR 
to introduce more practically simulated signals. White 
Gaussian noise is generated in MATLAB environment 
and added with all the signals for this purpose. Further 
attempts have been made to identify and relate the vary-
ing pattern of the PCI values computed from these noise 
contaminated fault signals, to develop fault location curve. 
The variation of the PCI values for the studied case of 
SLG-AG fault is shown in Table 4 for all the six training 
locations.

This is also observed from the same table that PCI-B and 
PCI-C are very less in magnitude compared to PCI-A. Hence, 
only the most significant phase A current signals is taken for 

consideration for developing the fault location curve. It is well 
observed from Table 4 that as the fault distance increases from 
the source end, the deviation of the phase current increases 
gradually from no-fault condition, which is interpreted from the 
PCI values. It is also observed that PCI-A shows a fair mono-
tonic increasing variation with chronological variation of the 
geometric fault location, which is mathematically interpreted 
using best fit analysis. The test fault PCI is also shown in the 
same table at the final row. Apparent observation and consid-
eration of linear interpolation of the test value of PCI-A given 
in Table 4 show that test fault lies in between 50 and 80 km, 
closing more toward 50 km.

4.2 � Best fit model design

Close observation of Table 4 reveals that the PCI-A vary 
monotonically for variation of fault location. The input train-
ing column vector has the dimension of a 6 × 1; the six ele-
ments represent the PCI corresponding to the six training 
locations: 10, 30, 50, 80, 110 and 140 km of the 150 km 
long line. These values are obtained from the PCI-A values 
of Table 4, which are further scaled in the range [0, 1] and 
finally, plotted with the actual fault location as the dependent 
variable in Fig. 4.

A curvilinear nature of the PCI points is evident from Fig. 4. 
This is approximated using best fit curve analysis. Different 
curve fit models are applied over each set of these training PCI 
points for different fault prototypes. Different characteristic 
curves like linear polynomial, exponential, interpolant, dif-
ferent smoothing spline piecewise polynomial and Gaussian 
distribution has been investigated in this work. Only six of the 
minimum error methods among the several curve fitting meth-
ods have been chosen to find the estimates of fault locations. 
The test PCI has been investigated using the best fit method to 
obtain the predicted test fault location. The following fit models 
have been investigated for the initial evaluation:

Fig. 4   PCI-A vs. fault location plot of six training points and the test 
fault for SLG-A fault

Fig. 5   Best fit Shape-preserving interpolant curve fitted to training 
PCI points: fault location signature curve
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Fit 1: Shape-preserving interpolant
Fit 2: Exponential method 2nd-order
Fit 3: Smoothing spline piecewise polynomial
Fit 4: Cubic interpolating spline piecewise polynomial
Fit 5: Gaussian distribution 2nd-order
Fit 6: Linear model Polynomial 3rd-order

A curvilinear trend of the training PCA points is clearly 
visible from the PCI values of Fig. 4. Best fit analysis is 
carried out over these values to obtain the smooth curve 
joining these six training PCI points. A comparative analy-
sis using the goodness of fit values, regarding the minimum 
root mean square error (RMSE) criteria has been adopted 
here to obtain the best suited one among the six fitness mod-
els proposed here. This method is performed for the three 

Table 5   Result of the proposed 
fault classifier algorithm

True fault class Predicted fault class

No Fault A
G

B
G

C
G

A
B

B
C

C
A

A 
B
G

B 
C
G

C 
A
G

A 
B
C

No Fault 14 0 0 0 0 0 0 0 0 0 0
AG 0 14 0 0 0 0 0 0 0 0 0
BG 0 0 14 0 0 0 0 0 0 0 0
CG 0 0 0 14 0 0 0 0 0 0 0
AB 0 0 0 0 14 0 0 0 0 0 0
BC 0 0 0 0 0 14 0 0 0 0 0
CA 0 0 0 0 0 0 14 0 0 0 0
ABG 0 0 0 0 0 0 0 14 0 0 0
BCG 0 0 0 0 0 0 0 0 14 0 0
CAG​ 0 0 0 0 0 0 0 0 0 14 0
ABC 0 0 0 0 0 0 0 0 0 0 14

Table 6   Predicted fault 
locations using different fitness 
models for SLG-AG fault

Fit model Actual distance (km)

20 40 60 70 90 100 120 130

Predicted fault locations (km)

Fit 1 19.7886 40.1549 59.7361 70.2907 89.8992 100.0793 119.8859 130.1105
Fit 2 17.3982 42.2551 61.1024 69.8468 87.7094 97.12397 117.8839 129.4838
Fit 3 17.4963 40.6237 61.3343 71.0332 90.6601 100.2405 119.4554 129.2313
Fit 4 23.4522 39.8213 60.146 69.8426 89.9415 100.2124 120.0913 130.0966
Fit 5 21.9737 39.7744 60.0808 70.0835 89.9806 100.3726 120.1659 129.96
Fit 6 17.5741 41.1447 61.5818 70.7479 89.0913 98.71731 118.4105 129.868

Table 7   Error of prediction fault locations using different fitness models for SLG-AG fault

Fit model Actual distance (km) Average predic-
tion error (km)

20 40 60 70 90 100 120 130

Predicted fault locations (km)

Fit 1 0.21142 0.15488 0.26386 0.29066 0.10079 0.079283 0.114111 0.110456 0.165682
Fit 2 2.60178 2.25514 1.10241 0.15323 2.29061 2.876026 2.116095 0.516248 1.738943
Fit 3 2.50372 0.62371 1.33429 1.03318 0.66014 0.240511 0.544567 0.768651 0.963595
Fit 4 3.45218 0.17873 0.14603 0.15745 0.05846 0.212395 0.091322 0.096562 0.549141
Fit 5 1.97367 0.22558 0.08076 0.08351 0.01942 0.37258 0.165859 0.04003 0.370176
Fit 6 2.42588 1.14465 1.58185 0.74793 0.90875 1.282691 1.589472 0.131969 1.226648
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phases individually for each fault class. Further, the curves 
obtained are tested with PCI data of some test faults with 
unknown geometric distances. It is observed that shape-
preserving interpolant model produces the minimum level 
of error of prediction; hence, adopted in this work. This best 
fit curve is also shown in Fig. 5, which is also denoted as 
the fault location signature curve. The test fault PCI is also 
marked with a red vertical dotted line in the same plot. This 
test fault line intersects the curve at a certain point; projec-
tion of the same point on the vertical axis predicts the fault 
location. In this example test case, the predicted test fault 
location is found nearly 60 km. Hence, the inference drawn 
in the earlier section from Table 4 regarding the location of 
the test fault remains valid from this best fit fault location 
signature curve of Fig. 5. This again confirms the location 
of the test fault in between 50 and 80 km, and further, its 
proximity toward the 50 km end.

5 � Results and discussion

5.1 � Results of the fault classifier

Table 5 shows the results of the ratio analysis based fault 
classifier algorithm based on 14 sets of test current signals. 
It is found that the proposed classifier produces 100% accu-
rate result, irrespective of the addition of noise. This shows 
the effectiveness of the proposed scheme even in practical 
like situations.

5.2 � Results of the proposed fault localizer

In this work, six locations along the 150 km line, viz., 10, 
30, 50, 80, 110 and 140 km are used for the development of 
the proposed scheme, hence termed as training locations. 
The rest eight locations, viz., 20, 40, 60, 70, 90, 100, 120 
and 130 km are used for testing the same. The results of the 
different curve fit models are shown in Table 6. These results 

Table 8   Sample observations 
of the predicted fault locations 
using Shape-preserving 
interpolant (fit 1) model

Fault Type Actual 
Distance
(km)

Average Predicted Fault Distance 
(km)

Average Pre-
dicted Output 
(km)

Absolute 
Error (km)

PE (%)

Phase A Phase B Phase C

AG 20 19.2886 – – 19.2886 0.7114 0.4743
BG 70 – 70.5954 – 70.5954 0.5954 0.3969
CG 90 – – 88.9882 88.9882 1.0118 0.6745
AB 100 99.2748 99.6547 – 99.4648 0.5352 0.3568
BC 60 – 60.4125 58.7457 59.5791 0.4209 0.2806
CA 130 130.2413 130.8125 130.5269 0.5269 0.3513
ABG 120 120.3124 120.7478 – 120.5301 0.5301 0.3534
BCG 130 – 130.2315 129.5514 129.8915 0.1085 0.0723
CAG​ 20 19.5907 – 19.8718 19.7313 0.2687 0.1791
ABC 40 40.3149 40.9346 39.9854 40.4116 0.4116 0.2744

Table 9   Summary of fault 
location predictor algorithm 
considering all faults and using 
Shape-preserving interpolant (fit 
1) fitness model, SNR = 40 dB

Type of Fault Average error from 
target (km)

Average PE
(%)

Maximum error 
(km)

Maximum PE (%)

AG 0.1657 0.1105 1.2046 0.8031
BG 0.1812 0.1208 1.6721 1.1147
CG 0.1753 0.1169 1.3047 0.8698
AB 0.1808 0.1205 1.6412 1.0941
BC 0.1614 0.1076 1.2042 0.8028
CA 0.1146 0.0764 1.2745 0.8497
ABG 0.1852 0.1235 1.8157 1.2105
BCG 0.1383 0.0922 1.3407 0.8938
CAG​ 0.2186 0.1457 1.7051 1.1367
ABC 0.2625 0.175 1.7408 1.1605
Overall 0.17836 0.1189 1.8157 1.2105
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are obtained using the PCI-A values for a prototype SLG-AG 
fault, which is used here as an example case. The predicted 
fault locations are shown in Tables 6, and 7 show the corre-
sponding errors of prediction. Finally the choice of the best 
fit is decided on the minimum error of prediction criteria.

It is observed that Shape-preserving interpolant (Fit 1) pro-
duces the best results, followed by Gauss 2nd-order (fit 5) and 
Cubic interpolating spline piecewise polynomial model (Fit 
4); although, Shape-preserving interpolant model is superior 
by fair margin compared to the others. This model is again 
tested for other classes of faults with one or multiple set of 
PCI values corresponding to one or more phases, where the 
same fitness model is found to produce appreciable results; 
hence, considered as the global fitness model in this work for 
fault location prediction. Table 8 shows a few samples of the 
simulation results by the proposed fault location predictor algo-
rithm using the same shape-preserving interpolant model for 
ten different prototype classes, conducted at different locations 
of the line. Two accuracy parameters: Absolute Error and the 
Percentage Error (PE) are calculated according to the below-
mentioned formulae:

Since noise contaminated current signals are used as work-
ing data in our work; the PCIs are prone to a minor variation 
due to the randomness of power system noise. Hence, each 
prediction is carried out three times for each signal in order to 
obtain an average outcome of fault location; thereby, reduce the 
effect of random noise. Table 9 further shows the summary of 
the maximum location error for different classes of faults. The 
expressions of fitness models are described in tabular form in 
"Appendix" in Table 11.

(7)Absolute Error(AE in km) = Actual Fault Distance − Estimated Fault Distance

(8)Percentage Error (PE) = (AE∕Line Length) × 100

The average location error, as is observed from Table 9, is 
found out to be 0.1784 km which is about 0.1189% as computed 
from the above expression. The average deviation between the 
prediction and the target fault locations is found minimum for 
DL-CA fault which is in the range of 0.1146 km and is worst 
for LLL-ABC fault which is about 0.2625 km for the designed 
150 km long overhead transmission line. The worst prediction 
percentage error was also found as 1.8157 km i.e., 1.2105% of 
PE for SLG-ABG fault. It is further found that DL faults pro-
duce marginally better average location prediction compared 
to ground faults like SLG or DLG faults. The performance of 
the model is again investigated for further higher level of noise 
of 25 dB SNR. The performance of the model using the same 
fitness model is also found quite accurate and these results are 
described in Table 10.

It is still observed from Table 10 that the proposed fault 
localizer is capable of producing an accurate result, even with 
this elevated noise level of 25 dB SNR. The average percentage 
prediction error is found 0.3965% and the maximum percent-
age error is found to be 3.8761% for a sample SLG-ABG fault. 
Thus, the overall performance of the location predictor model 

is again found high satisfactory, even at this high noise level.
We have further tested the proposed model for parametric 

variation of the line. We have designed a new line with different 
line parameters and applied the method. We found that the clas-
sifier method works well directly on the new line, but the locali-
zation method looses accuracy to some extent, as expected. But 
we have conducted faults on the new line and trained the best 
fit model using the PCA features from fault signals of the new 
line when we found that the model regains comparable accu-
racy. Hence we could confirm that the model could be applied 
to any other line with variation in line parameters, post train-
ing. Similarly, if the line is split into multiple segments with 

Table 10   Summary of fault 
location predictor algorithm 
considering all faults and using 
Shape-preserving interpolant 
(fit 1) fitness model at higher 
noise level of SNR = 25 dB

Type of Fault Average error from 
target (km)

Average PE
(%)

Maximum error 
(km)

Maximum PE (%)

AG 0.5197 0.3465 5.2145 3.4763
BG 0.6784 0.4523 4.9578 3.3052
CG 0.6627 0.4418 3.5404 2.3603
AB 0.5349 0.3566 4.3475 2.8983
BC 0.4212 0.2808 2.9845 1.9897
CA 0.3185 0.2123 3.6842 2.4561
ABG 0.7108 0.4739 5.8142 3.8761
BCG 0.5745 0.383 5.0412 3.3608
CAG​ 0.7419 0.4946 4.7451 3.1634
ABC 0.7854 0.5236 5.1547 3.4365
Overall 0.5948 0.3965 5.8142 3.8761
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different line parameters and connected in cascade; it would 
behave similarly. Since, the measurement is taken only at the 
receiving end only, even if the line is made up with multiple 
segments having different impedance levels, the proposed 
algorithm would work, provided the model is training with the 
fault signals of the new line. Thus the concept of variation in 
upstream impedance could be satisfied this way, even for the 
single end fed, radial transmission line. So the model would 
work with other upstream impedance as well, provided, the 
model is recalibrated each time when a variation of line imped-
ance occurs; otherwise a unique model would fail to deliver the 
claimed accuracy.

5.3 � Discussion

The results obtained so far are studied carefully and the fol-
lowing outcomes are highlighted as the key findings of this 
research work:

•	 Operation of the proposed scheme is faster due to the 
requirement of less than one cycle of data for analysis.

•	 This scheme requires lesser memory compared to other 
schemes like neural network of wavelet analysis. This 
is achieved in a sense that PCA extracts key features in 
terms of the principal components in the descending 
order of importance. Hence, consideration of a few most 
important directions only reduces the entire data set to 
a few sets of data, simultaneously retaining the most 
significant information with very low loss. Hence, the 
memory requirement reduces from storing a large data 
set to a very low one.

•	 Absolutely accurate ratio analysis process for faulty 
phase identification yielding a 100% correct result

•	 The proposed method is tested with two different lev-
els of power line noise. The robustness of the scheme 
is verified even for an increased noise level of 25 dB 
SNR, at which the method is still found to work accu-
rately.

•	 Accurate fault localization with average localization 
error of 0.1189% and maximum localization error of 
even less than 1.25% at SNR of 40 dB. The model is 
further tested at higher power line noise level of 25 dB 
SNR and average localization error of 0.3965% and 
maximum localization error of less than 4% is achieved.

•	 The proposed analysis is simple as it does not involve 
either supervised learning approaches like neural net-
work or transform methods with intricate mathematical 
analysis like wavelet or Fourier transform, etc.

•	 The method requires only a single end data, which 
is another advantage of the scheme as it discards the 
requirement of synchronized data acquisition from both 

ends, which involves additional hardware support, and 
hence, cost.

•	 The proposed algorithm is less sensitive toward unbal-
ancing of load. Since we are converting the system 
to per unit model, any unbalance in load is automati-
cally scaled, and more importantly in all three lines; 
although, their effects will be reflected in the per unit 
magnitude. Most importantly, PCA identifies the prin-
cipal directions of variations only. The major effect 
during fault is the drastic and large disturbance of line 
current from the healthy condition. Hence, the minor 
effect of unbalancing of load is minimized to good 
extent using PCA. Since we have modeled the system 
using balanced condition, this unbalancing of load is 
found to introduce some error in the localization algo-
rithm; although, it is much less sensitive toward the 
classifier model.

•	 The proposed model is also applicable to other lines 
with different line parameters, but recalibration of the 
model is required in each case for each separate line.

A comparative analysis of the different existing schemes 
would show that the proposed method is well justified as 
an effective fault analysis scheme. The proposed classifier 
scheme produces 100% of classification accuracy, which 
is the highest possible level of accuracy to be achieved. 
This accuracy level achieved in this work is margin-
ally better than [5, 8, 14] which mostly uses supervised 
learning schemes and its advanced forms. The proposed 
method of classification also performs better than SVM-
WT based methods adopted in [24]. The present output is 
also marginally better than [26] which uses SVM aided 
by discrete orthogonal S-transform (DOST); although the 
above researches compared here consider variable fault 
resistance, which is not followed in this work. We have 
simulated the faults with fixed fault resistance, rather than 
considering partial or high resistance faults; considering 
that faults on transmission lines does not usually occur due 
to high resistance. Other research works like [10, 35] have 
produced 100% classifier accuracy, as well as considered 
fixed fault resistance similar to the present study; hence, is 
found very much comparable to the present work in terms 
of the outcomes. The half cycle post fault cycle of fault 
signal required in this present study is also comparable 
to few of the other existing schemes [10, 14, 26, 35]. But 
most of the methods discussed here are high in computa-
tion where the present scheme takes an upper hand with 
low computational burden as it uses PCA as the only com-
putational tool.

Accuracy of fault localization achieved using this 
scheme is also high with an error level of 1.25% only 
at SNR of 40 dB. This level of accuracy is better than 
many other methods like neural network based approaches 
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adopted in [4, 5, 8]. The accuracy of the present scheme is 
also found mostly higher compared to sequence network 
based schemes like [46, 47] or wavelet-neural network 
based approach like [10]. Many of the methods mostly 
use wide variation of fault resistance; especially the works 
carried out in [8, 46, 47] analyze high resistance faults, 
where it is considered more than 100Ω. But, this is not 
practiced in this present analysis, as also mentioned ear-
lier. The hybrid WT-ANN based approach described in 
[10] has rather used fixed fault resistance; yet the proposed 
method is found to achieve higher accuracy compared to 
[10]. Hence, it can be stated that the proposed fault diag-
nosis scheme is simple in computation using PCA as the 
only method for feature extraction; as well as efficient 
both for classification and localization of transmission 
line faults, especially considering practical constraints 
like power line noise.

6 � Conclusion

An efficient transmission line fault detection, classification 
and localization scheme has been developed in this work for 
a single end fed 150 km long overhead transmission line. 
Principal component Analysis (PCA) has been applied here 
to realize, design and implement the proposed protection 
algorithm in MATLAB environment. Fault current wave-
forms are measured at the receiving end for quarter cycle 
pre-fault and half cycle post-fault duration to design the 
algorithm. PC indices (PCI) have been computed from the 
PCA scores, which are used to develop a threshold based 
algorithm to identify and classify faults. The results show 
that the classifier produces 100% accurate classification 
using only three sets set of training data at intermediate loca-
tions. The method is simple and has less computational com-
plexity, especially compared to different supervised learning 
schemes like neural network or other transform based meth-
ods possessing high complexity mathematical analysis. The 
proposed algorithm is further extended to develop a fault 
location prediction scheme. The PCI values correspond-
ing to six intermediate locations are used to develop a best 
fit analysis. The average error of localization is only about 
0.1784 km, i.e., 0.1189% with a maximum error of 1.2105% 
at 40 dB SNR level. The same algorithm, when tested with 
higher noise level of 25 dB SNR, produced an average error 
of 0.3965% with a maximum PE of 3.8761%. This is quite 
appreciable considering this high level of noise. Accurate 
distance prediction helps the personnel to identify the fault 
location at the nearly exact locations; thus, requires less 
effort to find the fault. Hence, the proposed algorithm has 
considerable contribution to actuate prompt and accurate cir-
cuit breaker operation and fast restoration of system stability.

Appendix

The details of the fitness models for a certain noise pattern 
are described in a tabular form as shown below (Table 11).
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