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Abstract
This paper focuses on achieving a good trade-off between performance and robustness for a class of uncertainty models
including unstructuredmultiplicative uncertainties. In robust control, the simultaneous improvement of the two securemargins
for nominal performances and robust stability using a standard controller structure represents two contradictory objectives
and guaranteeing simultaneously of these goals represents therefore a major challenge for most researchers. In this context, a
robust tilt-proportional integral derivative (T-PID) controller synthesized with an automatic selection of adjustable fractional
weights (AFWs) is discussed in our work. Their parameters are optimized through solving a weighted-mixed sensitivity
problem using an optimization tool which is based on the genetic algorithm. This problem is formulated from performance
and robustness requirements where a fitness function is accordingly determined. Furthermore, thus its search space is built
according to some guidelines for ensuring an automatic selection of adequate AFWs. The proposed constrained optimization
problem is initialized by using arbitrary T-PID speed controller as well as through initial fixed integer weights (FIWs) which
were chosen previously by the designer. To highlight the proposed control strategy, the synthesized robust T-PID speed
controller is applied on the permanent magnet synchronous motor. Their performance and robustness are compared to those
provided by an integer-orderPID (IO-PID) and two conventional fractional-orderPID (FO-PID) controllers. This comparison
reveals superiority of the proposed robust T-PID controller over the remaining controllers in terms of robustness with reduced
control energy.
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1 Introduction

In general, reaching a good trade-off between two conflicting
objectives such as (NP) and (RS) presents a critical issue for
the PMSM speed control [10]. It is considered as a main
objective of most synthesis methods, especially when some
undesired effects such as neglected and unmodeled dynamics
uncertainty, model parameter variation and sensor noise are
considered [10,31].

It is well known that satisfying the trade-off condition
for the PMSM speed control leads systematically to ensur-
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ing simultaneously NP and RS conditions. On the other
hand, meeting the two last conditions does not necessarily
imply achieving a good trade-off between NP and RS [31].
Consequently, in mechanical speed regulation of the PMSM
drive, several sensitivities can be derived from a closed-loop
system such as direct sensitivity, complementary sensitiv-
ity, controller sensitivity and plant sensitivity. Analysis of
these sensitivities in the frequency domain allows verifying
the mentioned above robustness conditions. Moreover, from
basic theories that are available in robust control strategies
[29,31], the singular value diagrams of direct sensitivity and
complementary sensitivity functions provide information on
the NP condition and RS condition, respectively. Accord-
ingly, a suitableNP is achieved if the singular values of direct
sensitivitymodules exhibit very steep slopes at low frequency
[29]. This property means in the time domain that the feed-
back control system of the PMSM speed control can ensure a
good disturbance attenuation of the PMSM model uncertain-
ties and a good reference tracking of the mechanical speed
of the PMSM drive. On the other hand, a suitable RS can be
achieved if singular values of the complementary sensitiv-
ity modules are provided by another steeper slopes at high
frequency. This is explained in the time domain by ensur-
ing a good sensor noise rejection, a less sensitivity against
effects of unmodeled (usually high-frequency) dynamics,
neglected nonlinearities in the modeling and effects of delib-
erate reduced-order of the PMSM models [29].

In the H∞ weighted-mixed sensitivity problem, all pre-
ceding properties are highly constrained by a good choice of
two appropriate FIWs named performance weight and stabil-
ity weight. Solving this problem leads often to an acceptable
trade-off if the linearized model is well conditioned around
the operating point and their parameters vary in a reasonable
range. Usually, this kind of problems is solved using two syn-
thesis methods: H∞ method based on two algebraic Riccati
equations (AREs) [10,29,31] and H∞ method based on linear
matrix inequality approach (LMI) [14]. Unfortunately, these
methods lead to a high-order controller where its implemen-
tation in real-world applications is expensive and leads to
difficult commissioning, poor reliability and potential prob-
lems in maintenance. To overcome these drawbacks, various
synthesis methods based on optimization algorithms have
been proposed since the end of the 90s, including methods
from global optimization [5], matrix inequality constrained
nonlinear programming [4], eigenvalue optimization [3] and
others. Therefore, an optimal performance associatedwith an
acceptable robustness not only requires a judicious choice of
a suitable controller structure, but requires a careful choice
of appropriate weights, including all the H∞ specifications
[26,29].

It should be noted that the inverse of an optimal perfor-
mance weight presents the ideal shape (to be achieved) for
the direct sensitivity function. Also, the inverse of an optimal

stability weight presents the ideal form of the complemen-
tary sensitivity function [18,26]. Furthermore, one of the
major issues occurring in the design of robust controllers
via conventional FIWs is the inability to achieve satisfactory
closed-loop performance with good robustness, especially
when model parameters vary in a wide range [28]. Instead
of using FIWs in the weighted-mixed sensitivity problem,
finding optimal AFWs leads to an acceptable trade-off. This
avoids easily the above mentioned drawbacks [28].

According to several previously published works, a large
number of researchers have demonstrated the advantage of
controllers synthesized by theAFWs compared to those given
by the FIWs in terms of time responses and ensured by rea-
sonable control energies [1,2,27]. For this reason, several
synthesis methods based on either adjustable integer weights
(AIWs) or AFWs have been proposed in recent years, provid-
ing robust controllers, presented with a sufficient number of
parameters. Among them, Hu [13] proposed a new proce-
dure based on AIWs to the real-time control of a vertical
take-off aircraft. This procedure allows updating the param-
eters of these weights during the design of the integer-order
H∞ controller [13]. Kaitwanidvilai et al. [15] synthesized
a fixed-structure of integer-order robust loop shaping con-
troller for the power system control applications using AIWs.
This technique used the particle swarmoptimization (PSO) to
find the optimal controller parameters and their correspond-
ing weights so that the stability margin of controlled system
was maximized [15]. Zang et al. [32] used the space vec-
tor model of PMSM to design the robust integer-order H∞
speed controller using the AIWs. The systematic selection
of these weights and the controller parameters was deter-
mined through optimizing five fitness using the GA [32].
Kaur and Ohri [16] used the same preceding idea for the
pneumatic servo regulation. The automatic selection of the
AIWs and the tuning parameter of the corresponding H∞
controller have been ensured from minimizing the H∞ norm
of the transfer function of the nominal closed loop [16].
Nair [21] controlled the active magnetic bearing system by
the integer-order robust loop shaping controller where the
corresponding weighted-mixed sensitivity problem includ-
ing the AIWs has solved by the GA. Sedraoui et al. [27]
proposed the cascade FO-PID controller synthesized with
optimal AFWs to control the doubly fed induction genera-
tor DFIG. Bouiadjra et al. [7] proposed a variety of parallel
FO-PID controllers synthesized with appropriate AFWs for
the PMSM speed control. The used optimization process in
these two preceding control strategies employs the min–max
optimization algorithm to solve the weighted-mixed sensi-
tivity problem. In the same context, several other controller
structures, derived from fractional-order controllers, have
been used by many scholars [8,11,19,20]. Among the lat-
ter, Morsali et al. [20] proposed the TID-based damping
controller where their parameters were determined by mini-
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mizing the integral time square error (ITSE) by the modified
group search optimization (MGSO) algorithm. Behera et al.
[6] synthesized the TID controller for hybrid power systems
using differential evolution (DE) algorithm. Guessoum et al.
[12] enhanced the robust performance of the PMSM speed
drive control. This goal is ensured through robustifying the
standard H∞ controller by the AFWs where its automatic
selection is performed by the particle swarm optimization
(PSO) algorithm [12].

It should be noted that the above-mentioned controllers
have not been, so far, employed to achieve the trade-off. One
of the novelties of this paper is to introduce the proposed
T-PID speed controller and the AFWs in the weighted-mixed
sensitivity problem. Their optimal parameters are ensured by
the GA, enhancing therefore the given trade-off by the FO-
PID controller. To highlight the proposed control strategy, the
proposed robust T-PID speed controller based on the auto-
matic selection of optimal AFWs is applied on the PMSM
drive system. Their given performance and robustness are
compared to those provided by IO-PID and FO-PID speed
controllers. The main goal of the proposed control strategy
is to ensure a good trade-off with reduced control energy
while considering plant uncertainties, unmodeled dynamic
and sensor noise effect.

2 Mathematical modeling of the PMSM
system

The actual PMSM behavior is commonly modeled by a non-
linear model which is given, in stationary reference frame,
by [7,9,17,30]:

– Direct and quadrature axis voltages:

Ud = Rs · id + dφd

dt
− ωr · φq

Uq = Rs · iq + dφq

dt
− ωr · φd (1)

– Direct and quadrature axis flux linkages:

φd = Ld · id + φ f

φq = Lq · iq (2)

– Electromagnetic torque of the motor:

Cem = 3

2
n p
(
φ f · iq + (Ld − Lq) · id · iq

)
(3)

– Mechanical speed of the motor:

J · dΩm

dt
+ fc · Ωm = Cem − Ct (4)

Table 1 Values of diverse PMSM components

Parameters Significations Unit values

Ud Stator voltage in axis d-axis V

Uq Stator voltage in axis q-axis V

id Stator current in axis d-axis A

iq Stator current in axis q-axis A

Ld Stator inductance in axis d-axis 8.5 × 10−3H

Lq Stator inductance in axis q-axis 8.5 × 10−3H

Φd Stator flux in axis d-axis V s

Φq Stator flux in axis q-axis V s

Φ f Flux linkage 0.175V s

Rs Stator resistance 0.2Ω

ωr Rotor speed r p m

n p Poles pair numbers 4

Ωm Mechanical speed r p m

J Moment of inertia 0.089 kg m2

fc Viscous damping 0.005N m s

Cem Electromagnetic torque N m

Ct Load torque N m

Therefore, Table 1 summarizes the meaning and the cor-
responding nominal values of diverse PMSM components
[7,9,17,30].

This paper focuses on the mechanical speed control of
the PMSM system where the desired speed controller should
satisfy some conflicting goals such as the tracking dynamic
of the reference mechanical speed, the rejection of model
uncertainties, the mitigation of undesirable effects caused
by parametric variations of the linear PMSM model, sensor
noise and nonlinear dynamics neglected during the lineariza-
tion step of the actual PMSM system. In general, ensuring a
good trade-off between all the preceding goals by a robust
speed controller requires developing a suitable linear model
where the field oriented control (FOC) principle, given in
Fig. 1, is used.

2.1 Field oriented control of PMSM

The principle of the FOC strategy for the mechanical speed
control of the PMSM system is depicted in Fig. 1. Accord-
ingly, the mechanical speed Ωm is controlled by regulating
the quadrature axis current i∗q while the direct axis i∗d cur-
rent must be kept at zero [9]. According to the FOC strategy,
the independent current regulator, incorporated in the direct
axis, allows to attenuate as much as possible the discrep-
ancy which is generated between the measured direct axis
id current and the corresponding reference current i∗d . This
enables decoupling of the nonlinear behavior of the PMSM
system where the mechanical speed control is only carried
out in the q-axis. It should be noted that the preceding tar-
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Fig. 1 The used block diagram
to illustrate the FOC strategy

get involves prior regulation of the electrical compartment of
PMSM system in the q-axis. This requires the development
of an adequate linear model describing the transfer function
from the stator voltage Uq to the stator current iq .

2.1.1 Quadrature current controller design

Assuming that the direct current regulation in the d-axis is
perfectly controlled by a corresponding current regulator in
which the current id is always kept at zero. Hence, from
Eqs. 1–4, the linear PMSM model of the q-axis can be deter-
mined by [9,30]:

Uq = Rs · iq + Lq · diq
dt

+ φ f · n p · Ωm

Cem = 3

2
· φ f · n p · iq

J · dΩm

dt
+ fc · Ωm = Cem − Ct (5)

The synthesis of the quadrature current controller Kq(s)
requires maintaining the load torque Ct at zero in Eq. 5,
yielding thus the block diagram, given by Fig. 2. The trans-
fer function Gq(s) that associates the stator voltage input
Uq by the stator current output iq is computed by means of
theMatlab®command linmod. Hence, Gq(s) is given by the
following zero-pole-gain format:

Gq(s) = 117.65 · (s + 0.05618)

s2 + 23.59 · s + 972.9
(6)

Based on Eq. 6, the Matlab®command rltool is applied to
design the desired quadrature current controller Kq(s) using
the following tuning parameters:

• Controller type: PID tuning
• Design mode: Frequency
• Desired bandwidth: 480 rad/s
• Desired phase margin: 60 degree

Fig. 2 The used block diagram for the quadrature current regulation

Therefore, the desired quadrature current controller is pro-
vided by:

Kq(s) = 4557 · (s + 45.74)

s · (s + 972.9)
(7)

The given time response for unit-step excitation confirms the
good stability of the closed-loop system where the reference
tracking dynamic is characterized by:

• Rise time: Tr = 2.9502 ms
• Overshoot:Dmax = 11.4011%provided at timeTDmax =

2.9502 ms
• Settling time: Ts = 17.7001 ms

2.1.2 Mechanical speed controller design

The usedmechanical speed controller used in most industrial
applications is usually given by the PID structure. Its param-
eters are often tuned according to the appropriate nominal
model Gn(s) developed through the zero-pole compensation
system, performed in inner loop between the two preced-
ing transfer functions Gq(s) and Kq(s). The corresponding
closed-loop system is done by the block diagram, given in
Fig. 3.

Similarly, the transfer function Gn(s) which associates
the reference stator current input i∗q by the mechanical speed
outputΩm is computed using theMatlab®command linmod.
Hence, Gn(s) is given by the following zero-pole-gain for-

123



Electrical Engineering (2021) 103:1881–1898 1885

Fig. 3 The used block diagram
for the mechanical speed
regulation

mat [19]:

Gn (s) = 6.325 · 106 · (s + 45.74)

(s + 49.87) (s + 0.054)
(
s2 + 992.2 · s + 5.1165 · 105)

(8)

The speed controller is synthesized from the linear model,
given by Eq. 8, and depending on the control requirements,
the desired controller is commonly chosen using either PI or
PID structure. Indeed, theMatlab®command rltool is carried
out to determine the controller parameters using the follow-
ing tuning parameters:

• Controller type: PID tuning
• Design mode: Frequency
• Desired bandwidth: 144.7 rad/s
• Desired phase margin: 60 degree

For thePI structure case, the transfer function of themechan-
ical speed controller is given by:

Kw0(s) = 11.61 · (s + 38.46)

s
(9)

where the corresponding closed-loop response for a unit-step
excitation is characterized by:

• Rise time: Tr = 7.0702 ms
• Overshoot: Dmax = 29.109% provided at time TDmax =
22.801 ms

• Settling time: Ts = 71.702 ms

According to previous works carried on the PMSM system
[7,8,11,19,20], when undesirable properties such as model
uncertainties and cross-coupling between direct and quadra-
ture currents are considered in the controller synthesis, the
mechanical speed regulation based on simple PI structure
oftenbecomes insufficient to guarantee all imposed specifica-
tions. For example, when the corresponding closed-loop sys-
tem is excited by the referencemechanical speed inputΩ∗

m =
50 r.p.m., the corresponding unit-step response provides
the undesired speed threshold max (Ωm) = 64.558 r.p.m.,
appearing in transient state. Consequently, the desired atten-
uation of the control error imposing the additional the
electromagnetic torque Cem = 318.8058 Nm, causing thus

the deterioration of the PMSM system. In this paper, the
mechanical speed control based on the PI controller will be
bypassed. It will be substituted by the PID structure where
the corresponding transfer function:

Kw1(s) = 109.27 · (s + 1751) (s + 26.54)

s (s + 26.54)
(10)

Therefore, the given closed-loop step response is character-
ized by:

• Rise time: Tr = 8.4101 ms
• Overshoot: Dmax = 11.501% provided at time TDmax =
27.501 ms

• Settling time: Ts = 92.403 ms

In general, the synthesis methods based on IO-PID speed
controllers usually provide agood reference trackingdynamic.
Nevertheless, when the effect of measurement noises is con-
sidered, the corresponding reference current in the q-axis
often becomes highly fluctuating, degrading the secure mar-
gin of the closed-loop robustness. These control signals
typically saturate the actuators installed in the feedback con-
trol system, leading thus to its failure in most real-world
applications. This drawback can be overcome using the
robust fractional-order controller instead of the IO-PI and
IO-PID controllers. Accordingly, the trade-off between ref-
erence tracking dynamic and closed-loop robustness can
be achieved independent of pole-zero compensation quality
which is performed in the inner loop by quadrature current
controller.

In general, the design of the robust fractional-order con-
troller for PMSM speed control requires the resolution of a
H∞ problem, also known as a weighted mixed sensitivity
problem. Its structure can be imposed by a three-degree-
of-freedom including the structure of the fractional-order
Proportional-Integral P I λ. Also, it can be imposed by a five-
degree-of-freedom including the structure of the fractional-
order proportional integral derivative P I λDμ type. Usually,
these structures improve significantly the response quality of
the closed-loop system in terms of rapidity, overshoot and
sensitivity to effect of sensor noise.
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Fig. 4 Structure of the proposed T-PID speed controller

3 Proposed of the robust mechanical speed
controller

In the design of the PMSM speed control, when the
imposed control targets are becoming severe and the model
parameters are varying within a wide range, the choice
of one of the two preceding P I λ and P I λDμ struc-
tures is still insufficient to achieve the desired trade-
off. For this purpose, the T-PID structure including six
degree-of-freedom is chosen in the synthesis of the desired
speed controller where its transfer function is depicted in
Fig. 4.

Here Kt , Kp , Ki and Kd are four adjustable gains, referred
to as tilt gain, proportional gain, integral gain and deriva-
tive gain. Furthermore, the adjustable filter coefficient τd
represents the bandwidth of the low-pass filter carried on
the derived part of the proposed T-PID speed controller.
It should be added to prevent the amplification of sensor
noise effect. In the T-PID structure, the tilt part includes the

fractional-order transfer function s
−1
N where the adjustable

parameter N is preferably chosen between 2 and 3. The
transfer function of the proposed T-PID speed controller is
given by:

K (s, xc) = Kt

s
1
N

+
(

Kp + Ki

s
+ Kd · τd

1 + τd · 1
s

)

(11)

Here, xc = (
Kp, Ki , Kd , Kt , N , τd

)T is the design vector
to be optimized by an adequate optimization algorithm. The
search space χm including the desired optimal parameters is
defined as boundary or saturation constraints; it is expressed
by:

χm :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Kpmin ≤ Kp ≤ Kpmax

Kimin ≤ Ki ≤ Kimax

Kdmin ≤ Kd ≤ Kdmax

Ktmin ≤ Kt ≤ Ktmax

2 ≤ N ≤ 3
τdmin ≤ τd ≤ τdmax

(12)

It is well known that implementing the proposed the T-PID
speed controller needs to approximate the fractional-order
transfer function of power

(
γ = − 1

N

)
using usual integer-

order transfer function with a similar behavior. In this study,
the Oustaloup-based method is used to approximate the
fractional-order operator sv by a rational transfer function of
order 2 ·q+1 in the specified frequency rangeω = (ωh, ωb).
This yields also [24,25]:

sv � kw ·
k=+q∏

k=−q

s + zk
s + pk

(13)

where zk , pk and kk denote, respectively, zeros, poles and
gain of the corresponding rational transfer function. They
are defined by [24,25]:

zk = ωb

(
ωh

ωb

) k+q+ 1
2 (1−v)

2·q+1

(14)

pk = ωb

(
ωh

ωb

) k+q+ 1
2 (1+v)

2·q+1

(15)

kk =
(

ωh

ωb

)− v
2

·
+q∏

k=−q

(
pk
zk

)
(16)

4 Formulation of the synthesis problem of
the robust T-PID speed controller

4.1 Weighted-mixed sensitivity problem including
FIWs

Consider the shown block diagram in Fig. 5, where u denotes
the control signal, y denotes the measured output, r denotes
the reference input (to be tracked), e denotes the control error,
and η denotes the sensor noise (to be rejected).

Supposing that the perturbed plan Gp(s) is given by the
form Gp(s) = (I + Δm (s)) · Gn(s) where Δm (s) is a sta-
ble transfer function satisfying ‖Δm (s)‖∞ ≤ 1. All these
transfer functions have appropriate dimensions. In this paper,
the resulting effects from model uncertainties, parametric
model variations and unmodeled dynamics are quantified as
unstructured multiplicative uncertainties. They are described
by the unknown signal dy that is carried on the output of the
nominal model (see Fig. 5).
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Fig. 5 Block diagram system based on unstructured multiplicative
uncertain model

In this paper, the trade-off between NP and RS should be
reachedwith a good securemargin.Here, theNP requirement
includes the tracking dynamic of the reference mechani-
cal speed as well as the rejection dynamic of the effect of
model uncertainties. Note that the direct sensitivity function
S0(s, xc), defined by Eq. 17, represents the transfer function
between the control error e and the measured output y. It
also represents the transfer function between the disturbance
input dy and the measured output y.

S0(s, xc) = [I + Gn(s) · K (s, xc)]
−1 (17)

Therefore, ensuring a good NP needs limiting the evolu-
tion of the maximum singular values of the direct sensitivity
function, i.e., σ̄ (S0 (ω, xc)) over the entire frequency range
ωmin ≤ ω ≤ ωmax. This goal is reached by selecting the suit-
able weighting function WS0 (s) such that the NP condition
which is given by Eq. 18 is always satisfied.

∥∥WS0 (s) · S0 (s, xc)
∥∥∞ ≤ 1 (18)

This condition may be translated into an upper bound∥∥WS0 (s)
∥∥ on the frequency plot of σ̄ (S0 (ω, xc)), yielding

thus the inequality ‖S0 (s, xc))‖∞ ≤ ∥∥WS0 (s)
∥∥−1

∞ .
On the other hand, theRS requirement includes the closed-

loop stability against some effects caused by sensor noises,
unmodeled and neglected nonlinear dynamics. Note that
the complementary sensitivity function T0(s, xc), defined by
Eq. 19, represents the transfer function between the refer-
ence input r and the measured output y. It also represents the
transfer function between the sensor noise input η and the
measured output y.

T0(s, xc) = Gn(s) · K (s, xc) · [I + Gn(s) · K (s, xc]
−1

(19)

Therefore, ensuring a good RS needs limiting the evolution
of themaximum singular values of the complementary sensi-
tivity function, i.e., σ̄ (T0 (ω, xc)) over the entire frequency

range ωmin ≤ ω ≤ ωmax. This goal is reached by select-
ing the suitable weighting function WT0 (s) such that the RS
condition which is given by Eq. 20 is always satisfied.

∥∥WT0 (s) · T0 (s, xc)
∥∥∞ ≤ 1 (20)

Similarly, the preceding RS condition may be translated
into an upper bound

∥
∥WT0 (s)

∥
∥ on the frequency plot of

σ̄ (T0 (ω, xc)), yielding thus the inequality ‖T0 (s, xc))‖∞ ≤∥∥WT0 (s)
∥∥−1

∞ .
It should be noted that the two preceding requirements

can be combined into a single one called the weighted mixed
sensitivity criterion. Indeed, meeting this criterion achieves
the desired trade-off between the two conflicting objectives
NP and RS [26,29]. It is defined by:

J∞(s, xc) =
∥∥∥∥
WS0(s) · S0(s, xc)
WT0(s) · T0(s, xc)

∥∥∥∥∞
≤ γ (21)

Equation 21 means that the desired controller must attenuate
the worst case of the threshold appearing from either plot
of σ̄

(
WS0 (ω) · S0 (ω, xc)

)
or σ̄

(
WT0 (ω) · T0 (ω, xc)

)
. This

last must be reduced less than the pre-specified attenuation
level γ ≤ 1 at all frequencies, i.e.,

max
{
max

ω
σ̄
(
WS0 (ω) · S0(ω, xc)

)
,max

ω
σ̄
(
WT0 (ω) · T0(ω, xc)

)} ≤
γ .Knowing that, the preceding H∞ optimal control problem
can be formulated as a H∞ suboptimal control problem. It
yields also to the following min–max optimization problem
[27]:

Min
xc

{
Max

ω
σ̄

(
WS0(ω) · S0(ω, xc)
WT0(ω) · T0(ω, xc)

)}
(22)

4.2 Weighted-mixed sensitivity problem including
AFWs

It should be noted that the choice of adequate FIWs in
designing T-PID speed controller presents a difficult task,
especially when the number of imposed frequency speci-
fications becomes higher. To avoid this drawback, the use
of AWFs instead of FIWs in the mixed-sensitivity problem
becomes indispensable to enhance the trade-off between RS
and NP. In general, the transfer function of the desired sta-
bility weight often takes the following form [21–23]:

WT (s, x) =
(
s
/
ω∗
BT + 1

/
n
√
MT

n
√
AT · s/ω∗

BT + 1

)n

(23)

where AT is a desired multiplicative error reached in
steady-state, i.e., AT = W−1

T (∞, x), ω∗
BT is a closed-loop

bandwidth carried on the preferred complementary sensi-
tivity function, MT is a desired H∞-norm to be reached
by the preferred complementary sensitivity function, i.e.,
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Fig. 6 Initial σ̄
[
(W−1

S0
)
]
,

desired σ̄
[
(W−1

S )
]
, initial

σ̄
[
(W−1

T0
)
]
and desired

σ̄
[
(W−1

T )
]

MT = ‖T (s, x)‖∞, nεR+ is a fractional order imposing the
slope −20 · n dB per decade on the maximal singular value
plot of the preferred complementary sensitivity function at
high frequency.On the other hand, the transfer function of the
desired performance weight often takes the following form
[21–23]:

WS(s, x) =
(
s
/

m
√
MS + ω∗

B

s + ω∗
B

m
√
AS

)m

(24)

where AS is a desired tracking error reached in steady state,
i.e.,

AS = W−1
S (∞, x), ω∗

B is a desired minimum bandwidth
carried on preferred sensitivity function, MS is a desired
H∞-norm to be reached by the preferred sensitivity func-
tion, i.e., MS = ‖S(s, x)‖∞, mεR+ is a desired fractional
order imposing the slope of −20 · m dB per decade on the
maximal singular value plot of the preferred sensitivity func-
tion at low frequency. Now, from Eqs. 23 and 24, it can be
seen that the appropriate WS (s) and WT (s) would heavily
depend on a good choice of the weight parameter vector x =(
MS, AS,m, ω∗

B, MT , AT , n, ω∗
BT

)T . In the next section, let
us consider that the initial AFWs have the same structures
that were given by Eqs. 23 and 24 where their parameters are

given by x0 =
(
MS0 , AS0 ,m0, ω

∗
B0

, MT0 , AT0 , n0, ω
∗
BT0

)T
.

Therefore, Fig. 6(a) gives the perfect template of desired per-
formance weight WS(s, x) for increasing the NP margin.
It is compared, in frequency domain, by the initial weight
WS0(s). Similarly, Fig. 6(b) gives the perfect template of
desired performance weight WT (s, x) for increasing the RS
margin. It is compared, in frequency domain, by the initial
weight WT0(s) [22]. It is worth noting that the safety mar-
gin of any trade-off can be increased against the undesired
exogenous effects. This target can be met if the parameters

of the two preceding adjustable weights are well chosen. In
this paper, four guidelines will be scaled so that the two per-
fect templates can be automatically guaranteed using theGA.
Consequently, the preceding threshold becoming always less
than one.

4.3 Used Guidelines for the automatic selection of
AFWs

In this section, some guidelines, available in the literature, are
described to ensure proper parameter tuning of both robust
T-PID speed controller and corresponding adequate AFWs.
These rules are summarized as follows [22]:

– Rule 1: The general rule for limiting the singular values
of desired sensitivity and desired complementary sensi-
tivity is to reduce, as much as possible, the values of MS

and MT , respectively. It should be mentioned that larger
values of MS and MT are always unavoidable. Typically,
they are often chosen to be in the range 1.5–2 so that the
two following bounded constraints are satisfied [22,27]:

δMS · MS0 < MS < MS0

δMT · MT0 < MT < MT0 (25)

where δMS and δMT are often chosen to be in the range
]0, 1[ .

– Rule 2: The general rule to enlarge the NP margin (with
respect to increase in the RS margin) is to increase, as
much as possible the fractional-order m (with respect to
increase in the fractional-order n). However, increasing
m more than necessary affects the RS margin in high
frequency, leading thus to violate the RS condition. By
contrast, increasing the fractional order n more than nec-
essary affects negatively the disturbance attenuation in
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low frequency, leading thus to violate the NP condition
[25]. Consequently, these fractional orders are chosen so
that the two following bounded constraints are satisfied
[22,27]:

m0 < m < δm · m0

n0 < n < δn · n0 (26)

where δm and δn are often chosen to be in the range ]1, 2[
.

– Rule 3: The general rule to enhance the disturbance
attenuation is to translate the bandwidth ω∗

B , as much
as possible, to the high-frequency range. In addition, to
enhance the sensor noise rejection, the bandwidth ω∗

BT
should be translated, asmuch as possible, toward the low-
frequency range. Nevertheless, increasing the bandwidth
ω∗
B more than necessary allows appearing an unsuitable

overshoot in σ̄ (S (ω, xc)) while decreasing the band-
width ω∗

BT more than necessary causes a reduction in
the system bandwidth and to a poor tracking perfor-
mance [25]. As a result, the choice of these bandwidths
is ensured so that the two following bounded constraints
are satisfied [22,27]:

ω∗
B0 < ω∗

B < δω∗
B

· ω∗
B0

δω∗
BT

· ω∗
BT0 < ω∗

BT < ω∗
BT0 (27)

where δω∗
B
is often chosen to be in the range ]1, 2[,

whereas δω∗
BT

is chosen to be in the range ]0, 1[.
– Rule 4: It should be noted that the ideal case for AS

and AT is to set AS = AT = 0. As a result, the

σ̄
(
W−1

S (ω, xc)
)
and σ̄

(
W−1

T (ω, xc)
)
curves become

maximally flat in the high- and low- frequency ranges,
respectively. Actually, these parameters must be chosen
very close to zero because of numerical difficulties [25].
This choice can be ensured by the following constraints
[22,27]:

δAS · AS0 ≤ AS ≤ AS0

δAT · AT0 ≤ AT ≤ AT0 (28)

where δAS and δAT are often chosen to be in the range
]0, 1[ .

4.4 GA-based solution of the weighted-mixed
sensitivity problem including AFWs

The new design vector xg ensuring the simultaneous deter-
mination of transfer functions of the robust T-PID speed

controller as well as their optimal AFWs is defined by:

xg =
⎛

⎜
⎝Kp, Ki , Kd , Kt , N , τd
︸ ︷︷ ︸

xc

, MS, AS,m, ω∗
B , MT , AT , n, ω∗

BT︸ ︷︷ ︸
x

⎞

⎟
⎠

(29)

where the fitness function which was given by Eq. 22 and the
given corresponding search space, given by Eqs. 25–28, are
parametrized by the augmented design vector xg . If all these
previous tuning rules are used in the optimization process,
then 14 variables will be found by theGAwhere their setting
parameters such as number of iterations, population size, bit
size, crossing probability and mutation probability will be
previously chosen by the designer. Indeed, if the optimiza-
tion process properly respects the stopping criterion, then
vector xbestg represents the optimal solution of the following
optimization problem:

Min
xg

{
Max

ω
σ̄

(
WS0(ω, xg) · S0(ω, xg)
WT0(ω, xg) · T0(ω, xg)

)}

subject to χm :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δMT · MT0 < MT < MT0
n0 < n < δn · n0
δω∗

BT
· ω∗

BT0
< ω∗

BT < ω∗
BT0

δAT · AT0 < AT < AT0
δMS · MS0 < MS < MS0
m0 < m < δm · m0

ω∗
B0

< ω∗
B < δω∗

B
· ω∗

B0
δAS · AS0 < AS < AS0
Kpmin < Kp < Kpmax

Kimin < Ki < Kimax

Kdmin < Kd < Kdmax

Ktmin < Kt < Ktmax

2 < N < 3
τdmin < τd < τdmax

(30)

In this paper, to avoid all complex computations during the
optimization process, only 2 rules among of the previous
guidelines are used to increase the safety margin of the NP-
RS trade-off. For this purpose, the size of the optimization
problem is reduced to only 10 variables, distributed as fol-
lows: 2 variables for each AFW and 6 variables for the T-PID
speed controller. Finally, the optimization process based on
the GA is summarized by the flowchart, depicted in Fig. 7.

5 Simulation results and discussions

In this paper, it is assumed that each AFW has the two
adjustable parameters, which are the desired bandwidth and
the desired order of the descending slope, while their remain-
ing parameters are assumed to be fixed. These adjustable
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Fig. 7 The flowchart providing the robust T-PID speed controller given
with automatic selection of AFWs

parameters are optimized taking into account the respect of
the two rules: Rule 2 and Rule 3. Also, the parameters of the
two existing FIWs, described below, are used to define the
search space and initialize the optimization process.

• Transfer function of the NP weight [7]: WS0(s) =
8.33·s+25
s+25·10−4 , where m0 = 1, ω∗

B0
= 25, MS0 = 1.2 and

AS0 = 10−4.

Fig. 8 The best provided minimization using the GA of the weighted-
mixed sensitivity problem

• Transfer function of the RS weight [7]: WT0(s) =
0.0025·s+0.8
25·10−8·s+1

, where n0 = 1, ω∗
BT0

= 400, MT0 = 1.25

and AT0 = 10−4.

The design problem is formulated as follows: in the set of
all stabilizing fractional-order controllers as well as in the
set of all AFWs, finding the optimal parameters of the robust
T-PID speed controller and those of the two corresponding
AFWs such that the NP-RS trade-off must be reached with a
good secure margin over the entire frequency range. There-
fore, the desired optimal solution xbestg solves the following
optimization problem:

Min
xg

{
Max

ω
σ̄

(
WS0(ω, xg) · S0(ω, xg)
WT0(ω, xg) · T0(ω, xg)

)}

subject to χm :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < Kp < 10
0 < Ki , Kd , Kt < 3
0 < τd < 1
2 < N < 3
1 < m, n < 2
25 < ω∗

B < 50
200 < ω∗

BT < 400

(31)

To reach the preceding goal, the tuning parameters of theGA
are chosen by:

• Generationnumber = 30;
• Tolerance f unction = 10−4;
• Populationsi ze = 30;
• Plot f unction : @gaplotbest f un;
• Reproducibili t y : rng(2,′ twister ′).

Due to the probabilistic nature of the GA, the optimization
process is run 20 times with different initial populations
of xg ∈ (

xgmin , xgmax

)
. Consequently, the best minimiza-

tion yields the desired level γ where the fitness function
is attenuated below one just after the third iteration, i.e.,∥∥Tzin→zout

∥∥∞ < γ = 0.9862 (see Fig. 8).
The performance level given above is acceptable; this

means that both NP and RS conditions are well fulfilled over
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the frequency range ω ∈ (10−4, 106
)
radians per sec. Fur-

thermore, the givenoptimal solution xbestg allows to determine
the following AFWs:

• Optimal performance weight:

WS(s, x
best
g ) =

( s
1.1351√1.2

+ 28.8308

s + 28.8308 · 1.1351√
10−4

)1.1351

(32)

• Optimal stability weight:

WT (s, xbestg ) =
⎛

⎝
s

319.9517 + 1
1.1910√1.25

1.1910√
10−4·s

319.9517 + 1

⎞

⎠

1.1910

(33)

where

⎧
⎪⎪⎨

⎪⎪⎩

ω∗
B0

< ω∗best
B = 28.8308 < 50

m0 < mbest = 1.1351 < 2
n0 < nbest = 1.1910 < 2

200 < ω∗best
BT = 319.9517 < ω∗

BT0

Equations 31–33 show that the setting of the parameters
for each desired fractional weight is done according to the
guidelines described above. Indeed, the previous trade-off
is well improved and the desired control objective is well
achieved. Therefore, the automatic selection of these weights
is also associated with the providing of the optimal param-
eters of the robust T-PID speed controller whose transfer
function is given by:

K (s, xbestg ) = 1.189

s
1/2.437

+
(

7.8030 + 1.046

s
+ 0.114 ·

(
0.977

1 + 0.977. 1s

))

(34)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 < K best
p = 7.8030 < 10

0 < K best
i = 1.046 < 3

0 < K best
d = 0.114 < 3

0 < τ bestd = 0.977 < 3

, and

{
0 < K best

t = 1.189 < 3

2 < N best = 2.437 < 3

From Eqs. 31 and 34, it is easy to see that the search
space χm , which includes the optimal parameters of both T-
PID speed controller and the two corresponding AFWs, is
well chosen since the GA-based optimization process is not
performed at the edge of χm and no relaxation of lower and
upper bounds is carried out. This result confirms that the
components of the resulting solution are not saturated at any
upper or lower limit.

5.1 Frequency-domain analysis

It is important to note that frequency analysis based on the
frequency response plotting of the sensitivity functions is not

performed on the closed-loop system based on the preceding
conventional IO-PID speed controller. Furthermore, it is only
applied to robust controllers synthesized by solving the same
mixed sensitivity problem. Indeed, the performances of the
proposed T-PID speed controller are compared with those
provided by two existing FO-PID speed controllers whose
transfer functions are given [7]:

K01(s) = 0.0825 + 25.9816

s0.2144
+ 1.787 · s0.4049 (35)

K02(s) = 3.8699 + 27.0594

s0.2233
+ 5.3577 · s0.0369 (36)

The frequency-domain analysis is carried out in a frequency
window whose lower limit is chosen so that the curve of
σ̄
(
W−1

S (ω, xbestg )
)

becoming flat in low frequencies, in

which no innovative evolution is observed in the frequency

plot of σ̄
(
S(ω, xbestg )

)
. On the other hand, the upper limit of

the preceding frequency window is chosen so that the curve

of σ̄
(
W−1

T (ω, xbestg )
)
becomes flat in high frequencies, in

which no innovative evolution is observed in the frequency

plot of σ̄
(
T (ω, xbestg )

)
. As a result, the frequency range

to be chosen for the frequency-domain analysis is given by
ω ∈ (10−4, 106

)
radians per sec where the setpoint track-

ing dynamic and the rejection of the caused effect by model
uncertainties becomes important in low frequency, partic-
ularly in the frequency range ω ∈ (

10−4, 10−2
)
radians

per sec. Also, the closed-loop stability against unstructured
multiplicative uncertainties and suppression dynamic of the
effect of sensor noise and unmodeled dynamics uncertain-
ties becomes important in high frequency, particularly in the
frequency range ω ∈ (101, 106)radians per sec. Therefore,
Fig. 9 presents the maximal singular value plots of direct
sensitivity functions that are provided by K (s, xbestg ), K01(s)
and K02(s) controllers. These frequency plots are compared,
at low-frequency range, by those provided by the inverse of
initial and optimal performance weights.

According to Fig. 9, it is clear to see how automatic
selection based on GA is carried out according to the two
principles outlined in Rules 2 and 3, so that the optimiza-
tion process starts with the initial FIW and ends with the
achievement of the optimal AFW in whichNPmargin is well
increased. Here, the optimal AFW has the steepest slope, i.e.,
20×mbest = 22.702 dB per decade, compared to slope of the
initial FIW, i.e., 20×m0 = 20 dB per decade. Therefore, the
proposed robust T-PID provides the better NP margin, espe-
cially below the frequency range ω ∈ (10−4, 10−2

)
radians

per sec, over the one provided the slopes of the two FO-
PID speed controllers. This will be explained later, in time
domain, by ensuring a good reference tracking dynamic and
a good disturbance attenuation dynamic. Also, Fig. 9 shows
also that all singular values of S(s, xbestg ) are bounded by its
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Fig. 9 Maximal singular value plots of the sensitivity functions com-
pared by the initial and optimal performance weights

template σ̄
(
W−1

S (ω, xbestg )
)
. This statement means that the

proposed robust T-PID can satisfy the NP condition for all
frequencies ω.

For the RS condition, Fig. 10 presents the maximal singu-
lar value plots of the complementary sensitivity functions that
are provided by the three controllers K (s, xbestg ), K01(s) and
K02(s) . These sensitivities are compared, at high-frequency
range, to those provided by the maximal singular value plots
of the inverse of initial and optimal stability weights.

According to Fig. 10, it is easy to see that the inverse
of the optimal stability weight has the steepest slope, i.e.,
20×nbest = 23.820 dB per decade, compared to the slope of
the initial stability weight, i.e., 20× n0 = 20 dB per decade.
Accordingly, the proposed robustT-PID offers betterRSmar-
gin, compared to those of the two remaining FO-PID speed
controllers. This will be explained later, in time domain,
by ensuring the less sensitivity to sensor noise, neglected
and unmodeled dynamics uncertainty. Figure 10 shows also
that all singular values of T (s, xbestg ) are bounded by their

templates σ̄
(
W−1

T (ω, xbestg )
)
. This means that the proposed

robust T-PID can satisfy the RS condition for all ω frequen-
cies.

5.2 Time-domain analysis

5.2.1 Time responses provided by Simulink software
package

The feedback control system based on the linear nominal
PMSM model for the classical IO-PID speed controller
Kw1(s), the two robust FO-PID speed controllers K01(s)
and K02(s) and the proposed robust T-PID speed controller
T (s, xbestg ) are depicted in Fig. 11.

According to Fig. 11, the three exogenous inputs, which
are the mechanical speed reference, the disturbance and the
sensor noise are used. The first input is assumed as a unit-
step function applied until the time t = 0.1 s. Afterward, it
is increased to a gain equal 2 until the total simulation time

Fig. 10 Maximal singular value plots of the complementary sensitivity
functions compared by the initial and optimal stability weights

t = 0.3 s. On the other hand, the second input is assumed
as a unit-step function with a gain equal to dy = −0.5
(50% overshoot) applies at the start time t = 0.2 s 2 until
the total simulation time t = 0.3 s. Finally, the third input is
assumed to be a random signal of zero mean and Gaussian
distribution with a variance equal to 10−3 with the star time
t = 0.25 s. Therefore, the output signals given by K (s, xbestg )

and Kw1(s) controllers are compared in Fig. 12, while their
control signals are compared in Fig. 13. Also, the output
signals given by K (s, xbestg ) and Kw1(s) controllers are com-
pared in Fig. 14, while their control signals are compared
in Fig. 15. Finally, the output signals given by K (s, xbestg )

and Kw1(s) controllers are compared in Fig. 16, while their
control signals are compared in Fig. 17. As a result, all these
time responses show the better performances of the proposed
robust T-PID speed controller over those provided by the
three remaining controllers in terms of exceedance, response
time, settling time, time needed to reject the effect of themod-
eling uncertainty, the width of the control fluctuation range
against the effect of measurement noise.

According to Fig. 12, it can be seen that steady-state track-
ing error of the Kw1(s) speed controller is ξS = 0.032
where the corresponding output signal has two overshoots
Dmax = 12%, provided at time t = 0.0284 s and t = 0.129 s,
respectively. On the other hand, the steady-state tracking
error of the K (s, xbestg ) speed controller is almost negligible,
i.e., ξS = 0.005, involving an improvement of 84.375%. The
corresponding time response is also ensured without over-
shoot. In addition, themaximumpeakof the control, provided
by the K (s, xbestg ) speed controller, is umax = 7.994 which
also fluctuates within −0.75 ≤ u ≤ +0.75 in the steady
state. For the Kw1(s) speed controller, the corresponding con-
trol which is signal fluctuates within−15 ≤ u ≤ +15 where
its maximum peak is umax = 109.211. This last value means
that the Kw1(s) speed controller requires almost 13 times
more control effort than the K (s, xbestg ) speed controller to
ensure both performance and robustness of the closed-loop
system (see Fig. 13). As a result, the above findings are a
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Fig. 11 Feedback control system based on three controllers and linear nominal PMSM model

Fig. 12 The given output
signals by the two K (s, xbestg )

and Kw1 (s) speed controllers

clear indication that the K (s, xbestg ) controller has the poten-
tial to provide better trade-off with reduced control energy
as compare to Kw1(s) controller.

According to Fig. 14 and Fig. 15, it can be noticed that
the steady-state tracking error of the K01(s) speed controller
is ξS = 0.018 , whereas for K (s, xbestg ) controller, it is
almost negligible, i.e., ξS = 0.005. This implies that there
is an improvement of 72.22% which can be provided by the
proposed controller. Also, because of sensor noise effect,
the control signal of the K01(s) speed controller fluctuates
within −20 ≤ u ≤ +20 in the steady state, whereas for
K (s, xbestg ) controller, it fluctuates within −0.75 ≤ u ≤
+0.75. Moreover, for the K01(s) speed controller, the max-
imum amplitude of the control signal is umax = 150.411,

Fig. 13 The provided control signals by the two K (s, xbestg ) and Kw1 (s)
speed controllers
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Fig. 14 The given output signals by the two K (s, xbestg ) and K01 (s)
speed controllers

Fig. 15 The provided control signals by the two K (s, xbestg ) and K01 (s)
speed controllers

Fig. 16 The given output signals by the two K (s, xbestg ) and K02 (s)
speed controllers

whereas for K (s, xbestg ) controller, it is umax = 7.994. This
means that the K01(s) controller requires almost 20 times
more control effort than the K (s, xbestg ) controller to ensure
both performance and robustness of the closed-loop system.
As a result, the above findings are a clear indication that
the K (s, xbestg ) controller has the potential to provide better
trade-off with reduced control energy as compared to K01(s)
speed controller.

Similar comparison of output response of the K (s, xbestg )

controller with that given by the K01(s)controller is shown in
Fig. 16, while their control signals are compared in Fig. 17.

According to Figs. 14, 15, 16 and 17, it is easy to see that
the time responses of the K02(s) speed controller are better

Fig. 17 The provided control signals by the two K (s, xbestg ) and K02 (s)
speed controllers

enhanced, compared to those of the K01(s) speed controller,
in terms of tracking error given in steady-state, amplitude
of the control signal and sensitivity to sensor noise effect.
However, by investigating the simulation time responseswith
K (s, xbestg ) and K02(s) speed controllers, it can be found that:

• For K02(s) speed controller, the maximum overshoot is
12%, whereas for K (s, xbestg ) controller the overshoot is
almost negligible.

• The closed-loop system with K (s, xbestg ) becomes less
sensitive to the sensor noise effect than the one looped
with K02(s).

• For K02(s) controller the maximum amplitude of control
signal is umax = 15.301 which means that the K02(s)
speed controller requires almost a double control com-
pared to the K (s, xbestg ) controller.

5.2.2 Provided time responses by PowerSim software
package

The feedback control systems based on the preceding four
controllers are simulated inMATLAB/Simulink using blocks
ofPowerSim toolbox such as electrical IGBT inverter,PMSM
system, DC link voltage source, three-phase I-V measure-
ment and powergui solver (see Fig. 18). It is important to
recall here that the preceding simulation has been carried out
only on the basis of the simplified PMSM model (nominal
model). However, the present simulation includes a PMSM
model given with more extensive and more detailed behav-
iors over the preceding one. Furthermore, the used feedback
control system, used in this simulation, contains other addi-
tional dynamics of some power electronic systems such as
inverter block and I–V measurement block. All these dynam-
ics have been neglected in the synthesis of the four previous
controllers.

It should be pointed out that the different signals that are
provided throughout this simulation are very close to the ones
that an electric drive engineer might expect in real-world
applications. It includes several signals types such as the low
I–V control signals which are converted into high I–V signals
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Fig. 18 Implementation of the four controllers using the Matlab/PowerSim software package

Fig. 19 The given mechanical speeds by the four controllers
K (s, xbestg ), K01(s), K02(s) and Kw1(s)

and then used to drive the motor, trigger signals which are
transmitted to the three-phase converter, I–V measurement
signals which are used in the control and display parts, etc.

Here, the chosen PMSM system in this validation has
a salient pole type rotor. It is fed by a three-phase IGBT
inverter, and it is equipped with three bridge arms, infinite
capacitance and a Snubber resistance of Rsn = 5000Ω .
This inverter is connected to a 290V DC link voltage source
where its trigger signal inputs are generated by the space-
vector pulse width modulation PWM block given by the
Simscape libraries ElectricalTM. The digital implementa-
tion of PWM-based radio frequency (RF) transmitters is
ensured by the frequency switching fs = 20 KHz, and
the pulse generator is ensured by three SR (set–reset ) flip-

flop blocks using the sampling time Te = 0.02 ms. Also,
the fractional part of the robust T-PID and the two con-
ventional FO-PID speed controllers are implemented using
additional Simulink blocks of free ninteger Toolbox, down-
loaded through the website: https://www.mathworks.com/
matlabcentral/fileexchange/8312-ninteger.

(a) Case of no model uncertainties and no-load torque.
In this section, no load torques and no changes in the
parameters of the PMSM model are taken into account.
Indeed, the two inputs such as the reference speed Ω∗

m
and sensor noise η are used to excite the feedback control
system. The first input is assumed by [7]:

Ω∗
m =

⎧
⎪⎪⎨

⎪⎪⎩

+50 : 0 ≤ t < 0.2
+30 : 0.2 ≤ t < 0.4
+10 : 0.4 ≤ t < 0.55
−10 : 0.55 ≤ t < 0.8

(37)

For practical consideration, a first-order lead–lag filter

which is given by
(
F(s) = 100/

s + 100

)
is added to

make Ω∗
m close to the one used in real-world applica-

tions. On the other hand, the second input is assumed
to be a random signal of zero mean and Gaussian distri-
bution with a variance equal to 0.1(r.p.m.)2 with a star
time t = 0.7 s. Therefore, Fig. 19 compares the given
mechanical speeds, whereas Fig. 20 compares their pro-
vided quadrature currents.
According to Figs. 19 and 20, it can be stated that the
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proposed robust T-PID speed controller allows ensuring
simultaneously, the better reference speed tracking, char-
acterized by an almost negligible overshoot and reduced
steady-state error. It also provides good suppression of
the sensor effect where the corresponding quadrature
current command is deliveredwith less sensitivity tomea-
surement noise. Its amplitude becomes less fluctuating
in steady state compared to those provided by the three
remaining speed controllers.

(b) Case of model uncertainties and no-load torque.
The performances of the previous speed controllers are
examined for 20 perturbed plants where the feedback
control system of each one is excited using the same pre-
vious reference speed and sensor noise inputs. In fact, a
parametric uncertainty of 20% is assumed to be carried on
themodel parameters Rs , Lq , J and Ld . Furthermore, the
set of the 20 perturbed plants is generated from a random
selection of these parameters where each one is chosen
within two limits that are given by a ±20% of deviation
from its nominal value. As a result, Table 2 summarizes
the numerical values of the used parameters used to com-
pute the 20 different perturbed models Gpj (s).
Furthermore, Table 3 summarizes the stable and unstable
closed-loop system for 20 perturbed plants.
The proposed T-PID speed controller has the ability to
stabilize 100% of the perturbed plants. Fourteen per-
turbed plants among 20 ones are stabilized by the speed
controller Kw1(s) which exhibits a success ratio of 70%.
It is increased up to 75% for the speed controller K02(s)
and to 80% for the speed controller K01(s).

(c) Case of sinusoidal and triangular reference speed and
load torque.
In this section, among of the preceding four worst-case
perturbed plants, that are Gp1(s), Gp8(s), Gp11(s) and
Gp17(s), the delivered mechanical speed outputs by the
feedback control systems based on the proposed T-PID
speed controller are plotted only for the two perturbed
plants Gp8(s) and Gp17(s). These time responses are
given in the presence of the load torque input Ct =
20N · m, applied at the starting time t = 0.5 s. Also,
for each perturbed plant, two reference speed type inputs
are used to excite the feedback control system during
the time range [0, 1] s. The first reference speed input is
assumed to be a sinusoidal signal based sample type. It
is given with the amplitude a∗

m = 50, where 100 samples
per period are used. On the other hand, the second ref-
erence speed input is assumed to be a triangular signal
with the amplitude a∗

m = 50 and the period T ∗
m = 0.4s.

Therefore, Fig. 21 shows the mechanical speed response
of the perturbed plant Gp17(s), given for the two preced-
ing reference inputs.
According to Fig. 21, the feedback control system pro-
vides a good speed tracking dynamic which is ensured

Fig. 20 The provided quadrature currents by the four controllers
K (s, xbestg ), K01(s), K02(s) and Kw1(s)

Table 2 The used numerical model parameters to compute the per-
turbed system

j Rs Lq J Ld

1 0.1699 0.0092125 0.091407 0.0080932

2 0.19078 0.009496 0.07285 0.0086767

3 0.20597 0.0084125 0.090973 0.0084741

4 0.23661 0.0077929 0.10095 0.0086692

5 0.17779 0.0069471 0.079135 0.0084906

6 0.21345 0.0072833 0.08966 0.0076555

7 0.20684 0.0077665 0.076587 0.0086885

8 0.23932 0.0098527 0.1059 0.0070025

9 0.18704 0.0088797 0.096716 0.0095171

10 0.16593 0.0078123 0.086498 0.0070832

11 0.1999 0.010184 0.088783 0.009456

12 0.20657 0.0078962 0.086744 0.0072197

13 0.17261 0.0074255 0.073829 0.0070002

14 0.22949 0.0072509 0.09446 0.0094911

15 0.17661 0.0074626 0.094376 0.0082649

16 0.17335 0.0074684 0.099474 0.0077157

17 0.23655 0.009449 0.10298 0.0087207

18 0.16955 0.0075825 0.081179 0.0077758

19 0.21354 0.0087908 0.098661 0.0080704

20 0.16506 0.0072926 0.083929 0.0088845

with a good load attenuation dynamic where its effect is
quickly attenuated within a short time range.

6 Conclusion

In this paper, we have proposed a new robust fractional-order
controller synthesized through combining the standard IO-
PID and the tilt controller structures. The main goal is to
achieve a good trade-off between NP and RS where the con-
trol energy would be ensured with reduced cost. This goal is
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Table 3 Closed-loop stability of each controller for 20 perturbed plants

j Kw1(s) K02(s) K01(s) T − P I D

1 Unstable Unstable Unstable Stable

2 Unstable Stable Stable Stable

3 Stable Stable Stable Stable

4 Stable Stable Stable Stable

5 Stable Stable Stable Stable

6 Stable Stable Stable Stable

7 Stable Stable Stable Stable

8 Unstable Unstable Unstable Stable

9 Stable Stable Stable Stable

10 Stable Stable Stable Stable

11 Unstable Unstable Unstable Stable

12 Stable Stable Stable Stable

13 Stable Stable Stable Stable

14 Stable Stable Stable Stable

15 Stable Stable Stable Stable

16 Stable Stable Stable Stable

17 Unstable Unstable Unstable Stable

18 Stable Stable Stable Stable

19 Unstable Unstable Stable Stable

20 Stable Stable Stable Stable

Success ratio 70% 75% 80% 100%

The unstability of the controllers K01(s) , K02(s) and Kw1(s) are shown
in bold

Fig. 21 The given mechanical speeds by the proposed T-PID controller
for the perturbed plant Gp17(s)

reached by solving the weighted-mixed sensitivity problem,
in which optimal AFWs are systematically selected by the
GA and some existing rules are well satisfied. The validity
of the proposed new controller structure was validated on
the PMSM drive control which was modeled previously by
unstructured multiplicative uncertainty. The given simula-
tion results show the evident improvement in terms of good
tracking dynamic of the set-point reference input, a good

rejection of themodel uncertainties, a good attenuation of the
load torque input, a good suppression of the effects caused
by sensor noise and unmodeled dynamics. These properties
are ensured with less cost of the control energy. The per-
formance and robustness analysis which is ensured by the
proposed T-PID controller was performed in the frequency
domain using the curves of both direct and complementary
sensitivity functions. They are also performed in the time
domain where the model parametric variations, the presence
of load torque and the presence of various types of the ref-
erence speed are considered in the feedback control system
using the Matlab/PowerSim software package. Finally, it is
clear that the proposed controller structure will require fur-
ther improvements to satisfy other hard condition such as
the Robust Performance (RP) condition where other plant
uncertainties types are taken into account. This requires a
more general condition than the one mentioned in this work.
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