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Abstract
This paper proposes an improved probabilistic load and distributed energy resources (DERs) modeling as pseudo-measure-
ments by considering the correlation to be used for distribution network state estimation. The two-point method (TPM) is 
applied for the modeling of pseudo-measurements. The proposed method has the ability to estimate the states of a distribu-
tion network with high accuracy and short computational time. To implement the proposed scheme, the probability density 
functions (PDFs) of uncertain loads and DERs at different buses are extracted using historical data. Then, the TPM achieves 
two concentration points at each bus from obtained PDFs. Finally, the weighted least squares state estimation method is 
utilized at these two concentration points to obtain the probabilistic distribution of output variables. To examine the effec-
tiveness of the suggested model, simulations are carried out on IEEE 69-bus standard test system. The proposed TPM-based 
state estimation approach is then compared with other conventional methods such as the Gaussian-based model, Gaussian 
mixture model (GMM) and Monte Carlo simulation. The superiority of the proposed TPM-based state estimation model 
over the GMM and Gaussian model is confirmed by a significant decrease in the running time and a noteworthy increase in 
the accuracy of all estimated variables.

Keywords State estimation · Probabilistic loads · Pseudo-measurements · Weighted least squares (WLS) · Two-point 
method (TPM)

1 Introduction

In recent years, there has been an increasing interest in using 
renewable energy sources (RESs) in distribution networks 
because of technical, economic and environmental advan-
tages [1, 2]. Nevertheless, to attain a reliable and secure 
operation, a number of technical issues such as monitor-
ing and control of active distribution networks have to be 
resolved before RESs can become commonplace. Conse-
quently, improved monitoring schemes based on situation 
awareness of the system conditions for distribution networks 

are required. In order to deal with difficulties stemming from 
the growing integration of RESs, real measurements of all 
buses in a distribution network are essential for system 
operators. However, for economic reasons, the installment 
of intelligent measuring devices at all buses in a distribution 
network is not possible. Distribution system operators are 
also facing the highest level of uncertainties due to the inte-
gration of intermittent renewables and distributed generation 
(DG) and new types of loads such as storage devices [3]. A 
major problem with this significant level of uncertain infor-
mation is that the monitoring of the actual operating condi-
tions of the network is considerably reduced owing to high 
numbers of nodes and branches. It should be noted here that 
deterministic approaches are not preferable with such level 
of uncertainties since the status of a distribution network 
cannot be properly determined. An alternative method for 
reflecting the accurate system response considering different 
types of uncertainties in the power system is probabilistic 
methods [4].
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Owing to the uncertain behavior of the loads and distrib-
uted energy resources (DERs) in distribution networks, real-
time monitoring is becoming more essential. As mentioned 
before, reliable and precise system condition awareness with 
the high level of uncertainties in active distribution networks 
cannot be attained with a full deployment of instrumentation 
due to economic reasons. An alternative method for making 
a correct decision in these circumstances is using estima-
tion methods [5]. In the distribution system state estimation 
(DSSE), the uncertain parameters, including voltage mag-
nitude, voltage angle, active and reactive power flow and 
current at different buses can be obtained by using only a 
few measurement devices. The DSSE function is presented 
with the challenging duty of providing reasonable estimates 
of the system states using a few measurement devices. For 
the stochastic nature of loads and DERs and limited avail-
ability of real-time measurements, pseudo-measurements 
are necessary for improving the observability of a distribu-
tion network [6]. However, pseudo-measurements must be 
precisely modeled so that the quality of the estimates can 
be enhanced.

A considerable amount of literature has been published 
on state estimation techniques in distribution networks [5, 
7–10]. Several state estimation methods are proposed based 
on phasor measurement units (PMUs) information [11, 12], 
and using smart meter measurements [13–15]. However, due 
to the high price of PMUs and the high cost of communi-
cation services connected with them, it is not economic to 
use PMUs in the distribution network. The DSSE is accom-
plished by formulating a weighted least squares (WLS) 
optimization problem in [16–19]. In [20], a conventional 
method based on state estimation in transmission grids is 
suggested. In this scheme, the algorithms applied in the 
transmission system are modified for the distribution sys-
tem by replacing the weighted least absolute value (WLAV) 
and Schweppe–Huber Generalized-M (SHGM) with WLS. 
Since there exists less redundancy in the measurements 
in distribution networks in comparison with transmission 
systems, WLS shows acceptable performance, when used 
in distribution systems. To cope with the challenge in the 
complex domain and to reduce the computational complex-
ity, a Wirtinger calculus-based method is suggested in [21]. 
Another approach based on the branch current formulation 
is given in [22, 23] to solve the computational complex-
ity, when the system features only solidly grounded wye-
connected loads.

In [24], probabilistic models for daily peak loads at dis-
tribution feeders under a feeder using power-law distribu-
tions are suggested. The models are tested by the enhanced 
Kolmogorov–Smirnov test using the Monte Carlo simula-
tion (MCS). The method is highly effective for long-term 
small-area load forecasting and provides high accuracy. 
However, it is not fast due to the high running time in large 

networks. In [25], a probabilistic method for statistical mod-
eling of loads is suggested by representing all probability 
density functions (PDFs) through a Gaussian mixture model 
(GMM). However, a major problem with this method is that 
it needs a high number of iterations to achieve desired proba-
bility function outcomes, resulting in an additional computa-
tional burden on measurement and calculation. Furthermore, 
in [26], a plain feed-forward neural network is suggested to 
estimate the network state from the measurements. Pseudo-
measurement modeling using artificial neural networks is 
presented in [27]. In this study, WLS state estimation is 
applied by decomposition into several components through 
GMM. Nevertheless, the correlation among loads is not con-
sidered. The high computation calculation burden is another 
disadvantage of the presented method in [18].

Ghosh et al. [28] investigate the load modeling using 
historical variables such as customer billing, weather and 
type of customers. The historical variables are then used 
for the probabilistic modeling of customers. Customer class 
curves are also applied to reflect the uncertainty in the meas-
urements. The need for precise load characteristics such as 
load factor and diversity factor is the main limitation of this 
strategy. In [29], a robust two-step state estimation method 
for DGs based on WLS and GMM modeling is proposed to 
improve the estimation accuracy and to update the output 
information, simultaneously. Authors use a set of reasonable 
weights for the measurement information to successfully 
perform WLS-based state estimation. A limitation of this 
study is that the effect of correlation among variables is not 
taken into account. Moreover, the computation complexity 
is the other major problem with this approach.

In [30], an improved state estimation method for 16-bus 
and 33-bus test systems based on a WLS is suggested. The 
genetic algorithm (GA) is employed to solve the WLS 
problem without any need for precise historical data. How-
ever, very slow convergence is the main drawback of such 
a method. In addition, active and reactive powers are not 
modeled in this approach. Similarly, Niknam et al. [31] use 
the combination of the Nelder–Mead simplex search and 
particle swarm optimization (PSO) algorithm to tackle the 
WLS estimator problem. A new method for voltage, current 
and power loss estimation in the presence of DG units based 
on online measurements from smart meters is suggested in 
[32]. Because the smart meter locations are dependent on 
the network topology and the scheme is implemented using 
communication links, a failure in a smart meter leads to inac-
curate voltage and current estimation. Moreover, the high 
cost of smart meters, central control units and communica-
tion links are other limitations of this method. In [33], the 
expectation–maximization algorithm is used for modeling 
the complexity of PDF. This scheme can reduce the compu-
tational burden; however, it does not still satisfy the required 
time. This method is modeled based on an approximation 
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technique, which results in a difference between estimation 
and real results.

In this paper, an enhanced probabilistic loads and DERs 
modeling as pseudo-measurements for distribution network 
state estimation is suggested. To achieve more accuracy, the 
correlation between variables is also considered. To incor-
porate the pseudo-information of loads and DERs into the 
WLS estimation problem, the two-point method (TPM) is 
employed. Using prior statistical studies and historical data, 
the PDFs of uncertain loads and DERs at different buses are 
extracted at the first step. The PDFs are applied to the TPM 
to attain two concentration points at each bus as uncertain 
variables, afterward. Finally, WLS state estimation is applied 
to these two concentration points to attain the probabilistic 
distribution of output variables. It is shown that high accu-
racy and short computational time are the main advantages 
of the proposed method.

This study has been divided into four parts. Section 2 
describes the WLS state estimation. Modeling of pseudo-
measurements is also presented in Sect. 3. Simulation results 
are provided in Sect. 4. A discussion is given in Sect. 5. 
Finally, the conclusion is presented in Sect. 6.

2  WLS state estimation

2.1  WLS state estimation technique

The set of measurements given by the vector z can be rep-
resented as [20, 21]:

where hi(x) is a nonlinear function depending on the meas-
urements i to the state vector x. The system state vector can 
be represented as:

where X is the system state vector, including �i , vi that are 
angle and magnitude of bus voltage in flat start [7].

Moreover, the vector of measurement errors is:

WLS estimator is one of the most widely used tech-
niques to estimate the state of the distribution network by 

(1)Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
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.

.

.

zm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
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h1(x1, x2,… , xn)

h2(x1, x2,… , xn)

.

.

.
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
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em
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⎥⎥⎥⎥⎥⎥⎥⎥⎦

= h(x) + e,

(2)X =
[
�1,… , �N , v1,… , vN

]T
,

(3)ez =
[
e1, e2, e3,… , em

]T
.

considering the normal measurements assumption [34]. 
Considering measurement error to be normally distributed 
as:

WLS estimator can be defined by minimizing the following 
objective function [27]:

where h(x) is a function, which is presented in [35]. The 
measurement error vector can be also written as:

ℕ introduces Gaussian random variable with covariance 
matrix ℜ . Moreover, the error covariance matrix can be rep-
resented as:

Consider that ezi is a Gaussian random variable �2
zi
 , where 

�2
zi
 is the variance of the i-th measurement. In order to mini-

mize the objective function (5), the first-order optimality 
conditions should be fulfilled as:

In addition, H can be defined as:

By expanding the Taylor series on g(x) around the state 
vector, xk will have [30]:

By using Gauss–Newton method as an iterative solution 
technique, the next iteration of x can be achieved from (10) 
by considering only the lower order terms as:

where k is the iteration index and the solution vector at itera-
tion k is ([36]):

Furthermore, G(x) is the gain matrix, which can be 
defined as [37]:

(4)f (Z�X) =
�

1√
(2�)m det (R)

e
−1

2
(z−hx)

T
,R−1

z (z−hi)

�
.

(5)J = [z − h(x)]TR−1[z − h(x)],

(6)ez = ℕ(0,Rz).

(7)R = diag
{
�2
z1
, �2

z2
,… , �2

zi

}
.

(8)g(x) =
�J(x)

�x
= −HT (x)R−1[z − h(x)] = 0.

(9)H
(
x̂k
)
=

[
𝜕h(x)

𝜕x

]|||||x=x̂k
.

(10)g(x) = g(xk) + G(xk)(x − xk) +⋯ = 0.

(11)xk+1 = xk − [G(xk)]−1g(xk),

(12)g(xk) = −HT (xk)R−1(z − h(xk)).

(13)G(x̂k) = HT (x̂k)R
−1H(x̂k).
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In order to obtain the optimal values of the estimated state 
vector of the system, the following equation can be presented 
using a recursive scheme as:

where the state vector is: X̂ =
[
�̂�1 … �̂�k, v̂1 … v̂k

]T , v̂k is the 
estimated values of voltage magnitude at the n-th bus, �̂�k is 
the voltage angle at the n-th bus. Besides, k is the number of 
buses and bus 1 is the reference bus with �̂�1 = 0.

The state covariance matrix at x is:

As the bus voltage magnitudes and angles are achieved 
directly from the state estimation method, they can be con-
sidered as primary variables. The variance of the estimation 
errors related to the primary variables is the diagonal elements 
of (15). Using the associated functional relationships for each 
variable like line power flows, line currents and bus power 
injections, the estimated state of other variables, which named 
secondary variables can be derived from the primary variables.

By each iteration of the estimator as the mean values of 
primary and secondary variables determined to construct the 
distribution function of each variable, the related variances are 
needed. The precision of the secondary variables are highly 
depended on primary variables, if the state covariance matrix 
is known, the variance of a secondary variable can be calcu-
lated as follows [27]:

where g(x) is the functional representation of a secondary 
variable.

2.2  WLS formulation for power distribution system

The measurement equations of a power distribution network, 
expressed in form of (1), includes the state variables X (angles 
and magnitudes of bus voltages) and functions h(.) (relating 
the measured value to the state values). If the measured values 
are the bus voltage magnitude or angle, they directly replace 
with state variables in the flat start algorithm. If the measured 
value is i-th bus injected active or reactive power, say Pi or Qi 
we get [38]:

(14)X̂K+1 = X̂K + G(x̂k)
−1HT (x̂k)R

−1
[
Z − h(x̂k)

]
,

(15)P̂K =
[
G
(
X̂k

)]−1
.

(16)�2 =
�g(x)

�x
,

(17)Pi = vi

N∑
j=1

vj(Gij cos �ij + Bij sin �ij)

(18)Qi = vi

N∑
j=1

vj(Gij sin �ij − Bij cos �ij).

And if the measured value is the power flow from bus i to 
bus j, hi(x) can be written as [35]:

In this study, the objective is to consider the loads and 
DGs modeling as pseudo-measurement. In addition, the 
correlation between loads and DGs is also investigated. In 
the following section, the pseudo-measurement modeling 
method of loads and DERs are described.

3  Modeling of the pseudo‑measurements

Generally, there exists a limitation in installing real measure-
ments in all buses and lines in distribution networks owing 
to economic issues and lack of convergence. An alterna-
tive in the absence of any real measurement of loads and 
DERs could be pseudo-measurements. Since the behavior 
of loads and DERs is random, an appropriate approach to 
model pseudo-measurements is to construct their PDFs [39], 
which can be obtained from historical load profiles.

The load profile at each bus in a distribution network can 
be achieved by gathering data from meters on buses within 
a predefined period of time. In this method, DERs are mod-
eled as negative loads [40]. In this paper, bus power PDF’s 
are computed as follows: (1) firstly, a metering device is 
placed on a sample bus and the active and reactive powers 
are saved. This sample bus can include either only loads or 
DERs/loads and then the historical data, which is composed 
of bus active and reactive powers, is created. Figure 1 rep-
resents a typical measured active power at a sample bus, 
including load and DER, and (2) at the next stage, the PDF 
of load and DERs at each sample bus is then constructed as 
depicted in Fig. 2. It is obvious that the PDF of Fig. 2 could 
be fitted with a single standard probability distribution like 
the well-known Gaussian PDF [41].

To improve fitness accuracy, the power profile of Fig. 2 
can be attributed to the sum of several Gaussian density 

(19)Pij =
v2
i

a2
ij

(gsi + gij) −
vivj

aij
(gij cos �ij + bij sin �ij)

(20)Qij = −
v2
i

a2
ij

(bsi + bij) −
vivj

aij
(gij sin �ij + bij cos �ij)

(21)Pji = v2
j
(gsi + gij) −

vjvi

aij
(gij cos �ji + bij sin �ji)

(22)Qji = −v2
j
(bsj + bij) −

vjvi

aij
(gij sin �ji + bij cos �ji).



1545Electrical Engineering (2021) 103:1541–1553 

1 3

functions, which is named as the Gaussian mixture model 
[42]. The resulted GMM PDF is depicted in Fig. 3.

It should be noted that the resulted PDFs from Gauss-
ian Modeling (GM)/GMM cannot be directly used in the 
WLS problem. However, there are some methods used 
in the literature to incorporate these data into the WLS 
problem. The simplest method is to use the GM mean as 
the measurement value and the standard deviation as the 
error in formulations (3), (6) and (7).

4  The proposed state estimation method

In the state estimation problem, there exist two common 
approaches to deal with uncertainties resulted from pseudo-
measurements. The first method is to utilize the MCS out-
puts as measured power data values in the WLS state estima-
tion problem. Even though this method provides accurate 
results, it leads to a high computational burden, which may 
be intolerable in many cases. The second approach is to 
attribute the expectation values as the measurements and 
the statistical variances of the measurement errors. Such 
modeling of pseudo-measurements leads to a low-computa-
tion WLS estimation. The main drawback here is, however, 
the lower accuracy of estimation results. To compromise 
between accuracy and the calculation speed, two-point mod-
eling of each Gaussian PDF could be a suitable choice. In 
the next subsection, the mathematical preliminaries for two-
point modeling of pseudo-measurements are described.

4.1  Two‑point modeling of loads and DERs

Pseudo-data corresponding to loads and DERs in the state 
estimation problem must be accurately modeled to achieve 
precise results. In this paper, the PDF for pseudo-data is 
obtained using density histograms of load profiles. Although 
different methods can be used to model generation and con-
sumption buses in the two-point approach, here, a Gauss-
ian pdf is applied to reduce the computation time while 
maintaining the accuracy of the results. The effectiveness 
of adopting a Gaussian pdf in the two-point approach is 
confirm in the simulation part. In this section, the TPM of 
pseudo-measurement is described. In the TPM, concentra-
tion points (representative points) are attained by the data 
provided by central moments. These concentration points 
are used for modeling of Gaussian pseudo-measurements. 
Considering statistical data from m-th input random vari-
able, random pseudo-measurements can be described by 
two representative points Xm,n, ∀m = 1, 2,…M, ∀n = 1, 2 , 
where M is the number of Gaussian sub-functions within 
the overall GMM. The n-th location factor of m-th Gaussian 
PDF in a GMM can be written as [43]:

where �xm
 and �xm are the m-th GMM’s mean and the stand-

ard deviation, respectively. �m,n is the standard location of 
the n-th concentration point as below [4]:

where M is the number of random variables, �m,3 is the coef-
ficient of skewness. It can be defined as:

(23)Xm,n = �xm
± �m,n�xm ,

(24)�m,n =
�m,3

2
+ (−1)3−n

√
M +

(�m,3
2

)2

,

Fig. 1  Typical active power in a sample bus

Fig. 2  Probability density function of load and generation from a 
sample bus

Fig. 3  Gaussian mixture model of the load
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where

where prb
(
Xm,n

)
 is the probability of occurrence [4]. The 

weight factor for each concentration point is:

The location factors Xm,n and weight factors �m,n are used 
to define the n-th concentration point of m-th Gaussian PDF. 
Note that weight factors �m,n are between zero and one with 
the unity sum for two concentration points [43]. Hence, the 
l-th moment of the i-th random output variables, i.e., E

(
Vl
i

)
 , 

can be achieved by:

where i and Vi(m, n) are the indicator of the output variable 
and the output function WLS, respectively [44].

The output function of WLS problem can be written as:

where x is location factor, the standard deviation is also can 
be defined as [43]:

In this paper, to apply the TPM for solving the WLS, the 
PDF of each uncertain parameter can be considered as the 
input variable. For each scenario, the representative point 
of a parameter with the mean value of other parameters is 
assumed as the input of WLS analysis.

4.2  Steps for TPM‑based WLS state estimation

The flowchart of the proposed TPM-based WLS state esti-
mator is shown in Fig. 4. As seen, to achieve the state esti-
mation objectives for a distribution network, several basic 
steps should be taken.

At the first stage, the distribution network information, 
including configuration, the number of buses and lines and 
other required parameters should be specified. Moreover, 
the accuracy of the estimator and the number of iterations 
must be determined. At the next stage, by using historical 
data, the bus power histograms containing uncertainties are 
created. The approximation of historical data with Gaussian 

(25)�m,3 =

ETP

[(
Xm − �xm

)3]

�2
xm

,

(26)ETP

[(
Xm − �xm

)3]
= �2

n=1
prb

(
Xm,n

)(
Xm,n − �xm

)3
,

(27)�m,n =
1

M
(−1)n

�m,3−n

2

√
M + (

�m,3

2
)2
.

(28)E
(
Vl
i

)
≅ ��

�=1
�2
�=1

[
V��, �

]�
�m,n,

(29)Vi(m,n)
= Vi(�x1

,�x2
,… , x(m,n),…�xM

),

(30)�zi =
√
var(Vi) =

�
E(V2

i
) − [E(Vi)]

2.

PDF is performed at the next step, where the means (�) and 
the standard deviations of each Gaussian PDF are calculated 
to be used for WLS state estimation.

TPM is used to model the pseudo-data from load/DER 
buses in which two points are assigned to each Gaussian 
PDF. The main advantages of TPEM are its high accuracy 
and the appropriate speed. After choosing an uncertain 
parameter, the coefficients of skewness, weight factor and 
location factor are calculated. By selection of two points 
from each pseudo-measurement PDF, or each Gaussian 
PDF in GMMs, the process of state estimation using mul-
tiple WLS is easily applicable. To solve the iterative WLS 
problem, we also need the distribution network admittance 
matrix. At the last step, results obtained from the WLS esti-
mator are compared with the results from MCS to show the 
effectiveness of the proposed scheme.

5  Correlation modeling of loads and wind 
farms

Generally, there exists a high dependency on the production 
of different wind farms within a single area of the network. 
Such dependency is also present among other random vari-
ables such as loads. In this study, the effect of correlation 
between variables (demand or wind farms) is formulated to 
improve the accuracy of output results output results [38]. 
Assume that x and y are two random variables with the mean 
values �x , �y , the covariance of the joint stochastic variable 
(x,y) can be written as [45]:

Generally, the covariance matrix is used to determine 
relationship between several variables. Each element in 

(31)Cov(x, y) =
[
(X − �x)(Y − �y)

]
.

Initial States

WLS State Estimation

Results/Comparison

Determine:
-Network topology
-Estimation accuracy
-Number of iterations

Creating histogram from
historical Load/DER data

Approximating the
Load/DER histogram

with GMM

Computing TPM
parameters for each

Gaussian PDF

Measurement
Inputs

Y-Bus Matrix
Data

Preparing TPM Parameters
WLS Es mator

Fig. 4  Flowchart of the proposed algorithm
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the covariance matrix indicates the covariance of the cor-
responding row and column. Considering x, y and z are 
three stochastic variables, the related to covariance matrix 
is [46]:

And also

which results in symmetric covariance matrix. The 
diagonal elements of the covariance matrix in (32) are the 
variance of the corresponding variables. The correlation 
coefficient ρ represents the relationship between the mean 
values of two variables. In this study, the Pearson corre-
lation coefficient (PCC) is used to characterize the rela-
tionship between the mean values of two variables. The 
formulation of the linear correlation between two variables 
X and Y in the PCC approach can be resented as [47]:

where Corr(X, Y) is the correlation between X and Y. In addi-
tion, � is the standard deviation, � is the mean value and E 
is the expected value.

The elements of the measured vectors correlate with the 
mean values and the diagonal elements of matrix stand for 
the variances of the Gaussian points are employed in the 
i-th amalgamation. The correlation corresponds with the 
active powers, reactive powers, the line currents, magni-
tude and the angle of voltage buses is considered in the 
off-diagonal elements of the correlation matrix. For sim-
plicity, the correlation between Gaussian points which is 
related to two specific Gaussian distribution is equal to 
the correlation of those two points of distributions. Con-
sequently, the off-diagonal element is [47]:

where −1 ≤ �(X, Y) ≤ 1.
According to (15) and (16), the variance of the esti-

mation errors associated with the primary variables and 
secondary variables can be achieved. In order to create the 
PDFs corresponding to the power injections, bus voltages 
and power flows, it is required to obtain the i-th mean 
value (�) by solving of the i-th WLS run. In addition, using 
diagonal elements of (15) and (16), the i-th variance can 
be attained. In the end, the weight of the i-th WLS solution 
is achieved from all the weights of Gaussian points in the 
i-th combination [48]. The PDF also can be described as:

(32)Cov =

⎛
⎜⎜⎜⎝

cov(x,x) cov(x,y)
cov

(x,z)

cov
(y,x)

cov
(y,y)

cov
(y,z)

cov
(z,x)

cov
(z,y)

cov
(z,z)

⎞
⎟⎟⎟⎠
.

(33)Cov(x, y) = Cov(y, x)

(34)Corr(x, y) =
Cov(x, y)

�x�y
=

E
[
(x − �x)(y − �y)

]
�x�y

,

(35)R(i,j) = rijsisj,

where �̂� is the weight of y-th combination.

6  Simulation results

To validate the effectiveness of the proposed state estimator, 
it is evaluated on the 69-bus test system. The loads are char-
acterized by a constant power factor. The topology and net-
work parameters of the distribution test system can be found 
in [49, 50] and [51]. The proposed network is equipped with 
a minimum number of real-time measurements that are in 
different groups, in branches between the buses 0-1 and 9-42 
power flow measurements exist, between buses 9-10, 2-28, 
4-36 and 8-40 current measurements placed. Also, measur-
ing voltage magnitudes in buses 0, 4 and 9 have done; then, 
to improve convergence current measurements are replaced 
with their square values [52]. These locations are depicted 
in Fig. 5.

To assess the probability distribution of the power injec-
tions, it is needed to do statistical studies at the first stage. 
Power load profiles on buses 11, 21 and 68, are considered as 
GMMs and modeled based on TPM. The rest of the loads are 
assumed as Gaussian random variables with known mean 
and variance values. Moreover, wind farms which are not 
equipped with real-time measurements in 49 and 52 buses 
are modeled as PQ buses with 0.95 of power factor [51]. 
The GMMs employed for modeling of wind power genera-
tions on buses 49 and 52 as well as the non-Gaussian output 
power of loads are given in p.u. (1 MVA base) in Table 1. 
Wind farms are modeled as negative loads.

The active and reactive powers of all buses are fully cor-
related as the power factor is assumed to be constant [51]. 
The correlation coefficients of groups of load demands and 
wind power generations are given in Table 2.

(36)PDFFunction = 𝛴
Nt

i=1
�̂�N

(
y; �̂�; �̂�2

)
,

Fig. 5  69-Bus tested radial distribution system
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The simulated 63 kV, 69-bus radial distribution network 
is shown in Fig. 5 [51]. The suggested method is compared 
with the Gaussian approximation, Gaussian mixture model 
and Monte Carlo simulation presented in [53]. The cor-
relation between variables is also considered in this study 
to improve the accuracy of results.

Obtaining the Gaussian PDF and two-point model from 
the power load profile of a sample bus is depicted in Fig. 6 
[54]. After modeling the pseudo-measurements taken from 
load/DER buses using different methods such as GMM, 
Gaussian, Monte Carlo Simulation and the suggested 

TPEM, they should be utilized for solving WLS estimator 
to find the PDF of the unknown variables.

The solution PDFs achieved from TPM-WLS (which 
means we make use of TPM for load/DER modeling and 
WLS for solving state estimation problem) compared to 
Monte Carlo-WLS (with 10,000 points), GMM-WLS and 
Gaussian-WLS. According to [45], a transformation of cor-
related samples from Gaussian is used to consider the cor-
relation between input variables in the MCS. PDFs of the 
GMM method are solved by 288 runs according to [55]. 
The Gaussian model is also implemented by one WLS run. 
In order to compare the performance of the TPM with other 
methods, the variables of some sample buses having a cor-
relation between variables (demand and generation) are 
selected and their PDFs are obtained.

The output powers flowing in branch 51–52 are estimated 
by the proposed method and compared with the Gaussian 
model, GMM and MCS as depicted in Fig. 7. In simula-
tions, the accuracy of the obtained results from the MCS is 
considered as the reference for comparing the conventional 
methods such as the GMM and Gaussian with the proposed 
2PEM. Comparing the proposed method with conventional 
approaches, the similarity of estimated PDFs with MCS 
simulation indicates the accuracy of the results. As can be 
seen from the figure, the PDF of the proposed method for 
the active power flowing through branch 51–52 is more simi-
lar to the MCS solution in comparison with the Gaussian 
model. Indeed, the proposed method provides more accu-
racy in comparison with the Gaussian model. However, the 
figure shows that the suggested method has a result close to 
the GMM PDF; however, the short computational time is 
the main advantage of the TPM-WLS over the GMM-WLS. 
From Fig. 7, we can also see that the performance of the pro-
posed approach for reactive powers flowing through branch 
51–52 is improved in case of accuracy with fewer WLS runs 
in comparison with the Gaussian model. However, there 
exist no significant differences between the proposed method 
and the GMM-WLS in case of accuracy. Nevertheless, the 

Table 1  Original Parameters of GMM

Parameter bus11 bus21 bus49 bus52 bus68

Components
Component1 − 0.142 − 0.065 0.070 0.036 − 0.016
Component2 − 0.120 − 0.077 0.110 0.060 − 0.047
Component3 – − 0.093 0.180 0.108 − 0.028
Component4 – − 0.108 – 0.168 –
Standard Deviations
Standard dev.1 0.006 0.005 0.020 0.006 0.005
Standard dev.2 0.010 0.006 0.030 0.016 0.018
Standard dev.3 – 0.003 0.040 0.040 0.009
Standard dev.4 – 0.009 – 0.012 –
Weights
Weight1 0.50 0.22 0.030 0.20 0.45
Weight2 0.50 0.50 0.040 0.20 0.11
Weight3 – 0.13 0.030 0.40 0.44
Weight4 – 0.15 – 0.20 –

Table 2  Correlation coefficients

No. ρ bus bus

1 0.9 6 27
2 0.8 28 41
3 0.8 42 69
4 0.9 49 52

Fig. 6  The probability distribution of loads at one sample bus [54]

(a)

(b)

Fig. 7  Estimated PDFs with different methods; active (a) and reactive 
(b) power flows from bus 51 to bus 52
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high computational calculation requirement is the main 
drawback of the GMM-WLS. The other advantage of the 
proposed method over two other methods is that the upper 
and lower limits of active and reactive power flow attained 
from the WLS runs are in agreement with those achieved 
from the MCS-WLS.

Figure 8 also compares the estimated PDFs obtained from 
the suggested method and other conventional approaches 
for active power flow from bus 20 to bus 21. From Fig. 8, it 
can be seen that the TPM-WLS estimation method for the 
active power flow through branch 20–21 is improved regard-
ing the accuracy compared to the Gaussian-WLS method. 
This figure also shows that the results attained from the TPM 
are close to the GMM approach. Nevertheless, the suggested 
method can achieve this accuracy with shorter computation 
time. The reactive powers flowing through branch 20–21 is 
also illustrated in Fig. 8b, however, there exists no signifi-
cant difference between methods here. The superiority of the 
TPM-WLS can be deduced from Fig. 8b, regarding both the 
accuracy and the computational speed.

The estimated PDFs for power flow from bus 67 to bus 
68 by the TPM-WLS and other methods are also given in 
Fig. 9a, b. As seen, the proposed TPM-WLS method and 
GMM-WLS have similar results for the estimated active 

power, when comparing with MCS-WLS. However, GM-
WLS shows more error in its variance, when compared 
to two other methods because of using only one point for 
modeling of input variables. In the estimation of the reac-
tive power flow from bus 67 to bus 68, the attained results 
also prove the merits of the TPM-WLS technique. Here, the 
enormous variations in the voltage magnitude arise from the 
large changes in generated power of bus 67-68, which results 
in power flow inversion.

Figure 10 compares the PDFs of the voltage magnitude 
as well as the voltage angle of bus 52 obtained from the pro-
posed TPM-WLS method and other schemes. As shown in 
Fig. 10, the proposed method provides accurate results very 
close to the GMM-WLS; however, it benefits from more run-
time speed. In addition, the higher accuracy of TPM-WLS 
in comparison with the Gaussian-WLS can be verified. Note 
that the estimated voltage magnitude using Gaussian-WLS 
has a lower variance in comparison with two other methods.

The estimated PDFs of bus 21 with the proposed method, 
Gaussian-WLS, GMM-WLS and MCS-WLS solutions 
are depicted in Fig. 11. As can be seen, the PDF resulted 
from TPM-WLS is similar to others in the case of bus volt-
age magnitude, which still shows the effectiveness of the 

(a)

(b)

Fig. 8  Estimated PDFs with different methods; active (a) and reactive 
(b) power flows from bus 20 to bus 21

(a)

(b)

Fig. 9  Estimated PDFs with different methods; active (a) and reactive 
(b) power flows from bus 67 to bus 68

(a)

(b)

Fig. 10  Estimated PDFs with different methods; magnitude (a) and 
angle (b) from bus 52

(a)

(b)

Fig. 11  Estimated PDFs with different methods; magnitude (a) and 
angle (b) voltage from bus 21
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proposed method regarding the accuracy and short compu-
tational time. It should be noted here that the large variation 
of the voltage magnitude arises from the large variations of 
generated power in bus 21. In other words, the suggested 
method provides more accuracy in comparison with the 
Gaussian-WLS and higher run-speed rather than GMM. Fur-
thermore, from the figure, we can see that the performance 
of the proposed approach for voltage angle estimation in bus 
21 is enhanced in case of accuracy and computational time 
in comparison with the Gaussian-WLS and GMM-WLS, 
respectively.

Figure 12 represents the effect of the voltage magnitude 
of (a) bus 52 and (b) bus 21 with and without consider-
ing the correlation between variables with the TPM-WLS 
method, resulting in smaller deviation with respect to their 
mean value. It can be noted that when neglecting correlation 
between variables the estimated PDFs and limits of volt-
ages are not precise. However, the simulation results become 
more accurate, when correlation coefficients are taken from 
previous statistical studies.

7  Discussion

Figures 13, 14 and 15 show the estimated voltage angle and 
voltage magnitude of all buses in the test distribution net-
work. As seen, the voltage angles are within the range of 
− 0.18 to 1.22 (degree) in Fig. 13. According to the network 
topology, high rate of r/x and the status of pseudo-measure-
ments, the voltage angles of some buses are positive. As can 
be observed, there are no significant differences between the 
three methods and MCS-WLS, these can be seen in Fig. 13. 
However, GMM-WLS imposes a more computational bur-
den, which leads to a slow response.

In addition, GM-WLS needs only one WLS run and uti-
lizes only the peak value of pseudo-measurements, resulting 
in inaccuracy in the formation of the PDF. Consequently, it 

is required to use a method to improve the performance of 
these methods. In fact, TPM-WLS is a trade-off between 
the computation time and the accuracy of the estimation 
results. It is apparent from figures that the estimated voltage 
magnitudes in Fig. 15 and voltage angles in Fig. 13 obtained 
by TPM-WLS is highly improved in case of accuracy rather 
than Gaussian-WLS, when comparing these two methods 
with MCS-WLS. On the other hand, no significant differ-
ences can be found between GMM-WLS and TPM-WLS, 
whereas the former is more time-consuming. Overall, these 

(a)

(b)

Fig. 12  Estimated PDFs of the magnitude of voltage with and with-
out correlation with the TPM method for bus 52 (a) and bus 21 (b)

Fig. 13  Comparison of voltage angle of all busses

Fig. 14  Comparison of voltage angle error from all busses
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results indicate that TPM-WLS is a compromise between 
short  computation  time and accuracy with very similar 
results to the MCS-WLS solution and could be an alternative 
for GMM-WLS and Gaussian-WLS in different situations.

For the accuracy evaluation, the mean absolute percent-
age error (MAPE) of voltage angels for three methods are 
also compared with MCS-WLS as shown in Fig. 14, accord-
ing to:

where Ve(t) and Va(t) are the estimated and actual values of 
variables, respectively [56].

(37)MAPE =
1

T

T∑
t=1

|Va(t) − Ve(t)|
Ve(t)

× 100,

It is  obvious  from Fig.  14 that all  three  meth-
ods show insignificant differences in case of error. Although 
this difference becomes significant, where including uncer-
tain loads and DERs. As seen, for buses with load/DER 
uncertainties such as 11, 21, 49, 52 and 68, TPM-WLS 
provides the lowest MAPE, resulting in more accuracy in 
comparison to other methods. The GMM-WLS takes 20% of 
the total time needed by the MCS-WLS. However, this per-
centage is 10% for TPM-WLS and 2% for Gaussian-WLS. 
Table 3 compares the expected values and MAPEs of some 
sample buses. From this data, we can see that the expected 
values of the three studied models have an insignificant dif-
ference with MCS-WLS. Comparing such results, it can be 
seen that TPM can be considered as an alternative modeling 
method for pseudo-measurements due to advantages such as 
high accuracy and short computational time. The MAPE for 
three methods and MCS-WLS plus the total time needed by 
all methods is given in Table 3. As observed, the proposed 
TPM-WLS method needs 6.6 s run-time. In addition, the 
MAPE of the proposed method is enhanced by 49% over 
the Gaussian-WLS method. Even though there exist insig-
nificant differences between the proposed method and the 
GMM regarding the accuracy, the superiority of the pro-
posed model over the GMM is confirmed by a %58 decrease 
in its running time.

8  Conclusion

Probabilistic modeling of uncertain load/DERs as pseudo-
measurements in order to be used in distribution network 
state estimation is investigated in this paper. In order to 
model pseudo-measurements, TPM is applied. For this pur-
pose, the PDFs of uncertain loads and DERs at different 
buses are extracted from historical data, and then, the PDFs 
are applied into TPM to reach two concentration points. 
The WLS state estimation is also employed for such two 

Fig. 15  Comparison of voltage magnitude of all busses

Table 3  Comparison of results

Method of approximation input variables Mont Carlo simula-
tion

Gaussian approximation 
modeling

GMM modeling Two-point esti-
mation method

Voltage magnitude bus 52 0.939 0.953 0.936 0.946
MAPE 0 1.49 0.319 0.745
Voltage angle of bus 52 (deg) 1.012 1.309 1.103 1.180
MAPE 0 29.27 8.92 16.53
Active power flow, line 51–52 (P.U.) 0.1255 0.1742 0.1049 0.0926
MAPE 0 38.82 16.41 26.21
Reactive power flow, line 51–52 (P.U.) − 0.152 − 0.110 − 0.1319 − 0.1121
MAPE 0 27.630 13.2236 26.250
Time (s) 85 0.6 15.8 6.6
Total MAPE for all variables 0 0.3670 0.0096 0.0403
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concentration points to achieve a probabilistic distribution of 
output variables. It is shown that the high accuracy and short 
computational time at the same time are the main benefits of 
the proposed TPM-WLS method. To enhance the accuracy 
of the state estimation, the correlations among loads/DERs 
are also taken into account. The suggested probabilistic 
approach is compared with the Gaussian-WLS, GMM-WLS 
and MCS-WLS. The most obvious finding to emerge from 
this study is that the proposed model shows a significant 
reduction in running time over the GMM-WLS and a major 
enhancement in the accuracy over the Gaussian-WLS for all 
estimated variables.
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