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Abstract
In this paper, a newmulti-objective approach is suggested, known asmulti-objective backtracking search algorithm (MOBSA)
in order to formulate and solve the optimal power flow (OPF) problem in power systems. Many objective functions are
considered like fuel cost, power losses, and voltage deviation. The structure of the proposed method is simple and has one
control parameter. In addition, MOBSA is able to solve the highly constrained objectives. A fuzzy membership technique
is integrated into the BSA algorithm to extract the best compromise solution from all the obtained Pareto optimal solutions.
Furthermore, the capability of the MOBSA approach is evaluated and verified for bi- and tri-objectives, and tested on three
standard IEEE power systems, small network 30-bus, medium network 57-bus, and large network 118-bus test systems.
The obtained results reveal that the proposed method is efficient to generate well-distributed Pareto optimal non-dominated
solutions. Likewise, the comparison analysis with some re-implemented methods as MODE, SPEA, MALO, and those found
in the literature as MOABC/D, QOTLBO, NSGA-II and NSMOGSA, assured the superiority, effectiveness, and robustness
of MOBSA.

Keywords Power system · Optimal power flow · Multi-objective optimization · Backtracking search algorithm · Fuzzy
membership

List of symbols
ai , bi , ci Cost coefficients of the i th generator
BCS Best compromise solution
Bi j Susceptance of the admittance matrix
D Dimension
f (x, u) Objective function
F Scale factor
FC Fuel cost
Gi j Conductance of the admittance matrix
g(x, u) Equality constraints
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hist Pop Historical population
h(x, u) Inequality constraints
low Lower limits of problem
N Population size (the number of individuals)
OPF Optimal power flow
Pgi , Pdi Active and reactive power generated at i th unit
Ploss Power losses
Pop Population
QC Shunt VAR compensation
Qgi , Qdi Active and reactive power generated at i th unit
Sli Apparent power flow of i th line
Ti Tap settings of regulating transformer i
Ti, j Trial population
u Vector of independent variables or control

variables
up Upper limits of problem
V D Voltage deviation
Vgi Voltage magnitudes at i th PV buses
Vli Voltage magnitude at load bus i
x Vector of dependent variables or state vari-

ables
μ f i Membership function of i th objective
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θi Voltage angles at i th bus
BSA Backtracking search algorithm
MALO Multi-objective ant lion optimization
MDE Multi-objective differential evolution
MICA3 Modified imperialist competitive algorithm
MOABC/D Multi-objective artificial bee colony algorithm

based on decomposition
MODE Multi-objective differential evolution
MOO Multi-objective optimization
NSMOGSA Non-dominated sorting multi-objective gravi-

tational search algorithm
NSGA II Non-dominated sorting genetic algorithm
SPEA Strength Pareto evolution algorithm
QOTLBO Quasi-oppositional teaching learning-based

optimization

1 Introduction

Power flow (PF) is becoming one of the most fundamental
issues in power system, and the basic idea of the PF analy-
sis which is also known as load flow analysis is to find out
the voltage at different buses, power injection on lines, and
total system power losses for any given operating conditions.
Additionally, the optimal power flow (OPF) is a nonlinear,
non-convex, and large-scale problem, which leads to opti-
mize several objective functions by determining optimum
settings of control variables, and satisfying a set of equality
and inequality constraints. Generally, the control variables
set contains the generator real powers, voltages of genera-
tion buses, tap setting of regulating transformers, and reactive
power of shunt capacitors, whereas the objective functions
were formulated as decreasing the total fuel cost, active
power losses, and voltage deviation. The first authors who
introduced the formulation of the OPF problem are Dommel
and Tinney [1]. The popular numerical methods for solving
the power flow equations are the Newton–Raphson (N-R)
[2], Gauss–Seidel (G-S) [3], and fast decoupled (FD) meth-
ods [4].

Furthermore, the OPF problem can be solved via two
kinds of methods, traditional and intelligent optimization
algorithms.As traditionalmethods, several have been applied
such as linear and nonlinear programming [5], quadratic pro-
gramming [6], interior point method [7], and the ε-constraint
methods [8]. However, those methods are usually slow in
convergence, require heavy computational cost, and have
multiple local minimum points. In earlier years, metaheuris-
tic optimization methods are widely applied in searching
for optimal solutions in large-scale problems of engineering,
computer science, and business. They work by guiding the
searching in a solution space to find the optimal. Those intel-
ligent methods have been used for the global optimization
problem. Numerous metaheuristic optimization techniques

have been published lately such as black widow optimiza-
tion (BWO) [9], salp swarm algorithm (SSA) [10], intensify
harris hawks optimizer (IHHO) [11], hybrid harris hawks
optimizer (hHHO-IGWO) [12], henry gas solubility opti-
mization (HGSO) [13], hybrid grey wolf optimizer (hGWO)
[14], manta ray foraging optimization (MRFO) [15], and
so on. Recently, many researchers have tended to apply
intelligent methods for solving the OPF problem such as
differential evolution (DE) [16], ameliorated dragonfly algo-
rithm (ADFA) [17], particle swarm optimization (PSO) [18],
ant colony optimization (AC) [19], genetic algorithm (GA)
[20], evolutionary algorithm (EA) [21], modified shuffle
frog leaping algorithm (MSFLA) [22], gray wolf optimizer
(GWO) [23], sine cosine algorithm (SCA) [24], and hybrid
biogeography-based optimization (BBO) [25]. All the pre-
vious techniques have just considered single-objective OPF
problems.

In recent years, several methods are applied to solve the
multi-objective OPF problems (MOOPF). Generally, multi-
objective optimal power flowproblem is described as a highly
large-scale and nonlinear constrained optimization. Among
these methods, a modified artificial bee colony algorithm is
developed, and the objectives are combined using fuzzy logic
to formone single-objective function [26].Adecomposition-
based memetic algorithm for multi-objective capacitated arc
routing problem is improved [27]. An improved artificial bee
colony algorithm based on Pareto is presented for solving the
multi-objective dynamic optimal power flow problem [28].
An artificial bee colony algorithm based on decomposition
(MOABC/D) in [29] is employed for multi-objective OPF.
Ghasemi et al. [30] (Multi-objective optimal electric power
planning in the power system using Gaussian bare-bones
imperialist competitive algorithm) have attempted non-
dominated sorting procedure to get a trade-off between two
or more conflicting objectives simultaneously. An improved
strength Pareto evolutionary algorithm is proposed to deal
with themulti-objectiveOPF by considering the fuel cost and
emission [31].A quasi-oppositionalmodified Jaya algorithm
is introduced for multi-objective optimal power flow [32]. A
modified decomposition-basedmulti-objectiveOPFproblem
is solved with the consideration of different objectives [33].
A multi-objective harmony search algorithm is proposed
to minimize fuel cost [34]. A highly constrained multi-
objective OPF involving conflicting objectives is solved
using a comprehensive learning particle swarm optimiza-
tion (CLPSO) algorithm [35]. A modified flower pollination
algorithm (MFPA) is implemented to calculate the PFs under
different objective [36]. Multi-objective optimal power flow
using differential evolution-based approach is presented in
[37]. A novel differential evolution (MDE) solution method-
ology is investigated for multi-objective optimal power flow
(MOPF) problem [38]. An enhanced differential evolution
with self-adaptive strategy and mixed crossover operator is

123



Electrical Engineering (2021) 103:1217–1237 1219

considered for MOOPF problem [39]. A multi-objective
differential evolution algorithm (MODEA) based on forced
initialization is suggested [40]. Imperialist competitive algo-
rithm with some modified methods (MICA) is used to solve
the MOPF problem using a Pareto-based approach [41].

In this paper, the analysis of power flow is established, and
then, the study of the optimal power flow problem (OPF) is
performed to optimize a particular objective functions while
satisfying certain specified constraints (equality and inequal-
ity constraints).Weemphasize on the development of optimal
power flow technique using a multi-objective backtracking
search algorithm (MOBSA). This latter is a methodology
that seeks to find the solution of a group of objective func-
tions. There are several objectives which must be optimized
simultaneously, and they are different, i.e. when the first
function diminished, the second increased and vice versa.
Then, we should reach a compromise solution between two
or more objectives. Backtracking search algorithm (BSA)
is a stochastic optimization algorithm inspired from nature
by Pinar Civicioglu [42]. Since it has been introduced, var-
ious researchers have tried to use the standard BSA due to
its powerful global exploration, local exploitation, and high
convergence speed. Other academics suggested new algo-
rithms based on the original BSA in order to optimize its
performance and its adaptability to different optimization
problems. Moreover, BSA and its variants have been widely
used in the field of engineering. It has been successfully per-
formed in solving various real-world applications as follows:
inmaterial engineering,Ref [43]Chatzipavlis et all. proposed
an approach called BSA-based neuro-fuzzy network, where
the neuro-fuzzy network is used in the standardBSA formod-
elling the beach realignment, and to improve the performance
of BSA, the authors modified its mutation and crossover in
order tomaintain a balance between exploration and exploita-
tion. Control engineering: in [44], the authors suggested a
shuffled BSA to identify the parameters of chaotic systems.
In this novel method, two concepts were defined: firstly a
new operator to initialize the trial population and secondly
the population is separated to a several bunch. Afterwards,
each group is developed by itself based on BSA process.
After a repeated execution, a better search space exploration
is provided and an independent search rises the exploitation
capability of BSA. According to the recent study [45], an
optimization of the output weights of deep stochastic con-
figuration networks (DSCN) to construct optimal prediction
intervals (PIs) is treated. Based on this, BSA was modified
by proposing a dynamic updating strategy for the control
factor (F), and a new adaptive mutation process to enhance
its convergence. In addition, owing to the high number of
variables to be optimized, a levy flight is adopted to pro-
duce another trial population to improve the diversity of a
population. Mechanical engineering: in this study [46], a
nonlinear active noise control system (ANC) is solved by

a hybrid BSA with sequential quadratic programming SQP.
This last was utilized with the BSA algorithm to enhance
the search capabilities of BSA. In another study [47], a diag-
nosed gear fault is exploited using a support vector machine
(SVM) optimization based on BSA (BSA-SVM). The effi-
ciency of SVM is influenced by its optimal parameters. On
this basis, BSA is included to make the optimization for the
SVM parameters. Electrical engineering: as stated in [48],
the maximum power point tracking (MPPT) is combined
with BSA to analyse the I-V and P-V characteristics of dif-
ferent solar PV array configurations. The research in [49]
introduced a binary backtracking search algorithm (BBSA)
to find the optimal scheduling controller of microgrids vir-
tual power plant. Referring to [50], the ORPD problem was
solved by minimizing power losses, and improving the volt-
age profile using the BSA optimization. The authors of [51]
applied backtracking search optimization algorithm (BSA) to
perform theOPF calculationwith non-smooth cost functions.
Reference [52] solvesmulti-type distributed generators along
distribution networks problems using a multi-objective BSA
algorithm based on a weighting factor approach. Informa-
tion and communication technology: as proposed in [53], a
hybrid backtracking search with hyper-heuristic was utilized
for minimizing the flexible job shop-scheduling problem
(FJSPF) with fuzzy processing time. In BS-HH, BSA is
used as the high-level strategy to find the optimal performing
heuristics that generates near-optimal solutions for the FJSPF
by using an efficient low-level heuristics. As articulated in
[54], BSA was introduced to a dynamic QoS for maximiz-
ing the composite service quality in IoT application layer, to
make a balance between the performance and computational
time. All the experiment results of those previous optimiza-
tion problems revealed an improved and robust performance
of BSA approach. The remaining paper is organized in four
sections as follows: Sect. 2 introducesmathematicalmodel of
multi-objective optimal power flow. Section 3 is focused on
the explanation of the proposedmulti-objective backtracking
search algorithm method. The simulation results and discus-
sion of MOBSA are demonstrated in the last section, and
then, the paper will be finished by giving a short conclusion.

2 Multi-objective optimal power flow study

In general, the goal of a multi-objective optimal power flow
(MOOPF) problem is to optimize two or more selected
objective functions through optimal power system control
parameters, while satisfying several equality and inequality
constraints, simultaneously. It can be mathematically formu-
lated as follows:
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Minimize : f (x, u) = f1(x, u), f2(x, u), ..., fNobj (x, u)

Subject to : g(x, u) = 0

h(x, u) ≤ 0 (1)

where f (x, u) is the objective function to be optimized,
g(x, u) is the equality constraints, h(x, u) is the inequality
constraints, x is the vector of dependent variables (state vari-
ables), and u is the vector of independent variables (control
variables).

2.1 State variables

The state variables x can be expressed as:

xT = [Pg1, VL1, ..., VLNpq , Qg1, ..., QgNg, Sl1, ..., SlNl ]
(2)

where Pg1 is the generator active power output at slack bus,
VL is the load bus voltage magnitude at PQ buses, Qg is the
generator reactive power output of all generator units, and Sl
is the transmission line loading (or line flow). Npq , Ng and
Nl denote the number of load buses, number of generating
units, and number of transmission lines, respectively.

2.2 Control variables

The control variables u can be expressed as:

uT = [Pg2, ..., PgNg, Vg1, ..., VgNg, Qc1, ...,

QcNc, T1, ..., TNT ] (3)

where Pg is the active power generation at the PV buses
except at the slack bus, Vg is the generation bus voltages
magnitude at PV buses, T is the transformer tap settings,
Qc is the shunt V AR compensation, Ng , Nc and NT are the
number of generators, number of regulating transformers,
and number of V AR (shunt) compensators, respectively.

2.3 Objective constraints

The optimal power flow problem has both equality and
inequality constraints.

2.3.1 Equality constraints

The equality constraints are represented by the power balance
equations defined as follows:

{
Pgi − Pdi − |Vi | ∑Nb

j=1 |Vj |[Gi j cos(θi j ) + Bi j sin(θi j )] = 0

Qgi − Qdi − |Vi | ∑Nb
j=1 |Vj |[Gi j sin(θi j ) + Bi j cos(θi j )] = 0

(4)

where Nb is the number of buses, Pg is the active power
generation, Qg is the reactive power generation, Pd is the
active load demand, Qd is the reactive load demand, Gi j

and Bi j are the elements of the admittance matrix Yi j =
Gi j + j Bi j representing the conductance and susceptance
between bus i and bus j , respectively, θi j = θi − θ j is the
difference in voltage angles between bus i and bus j .

2.3.2 Inequality constraints

The inequality constraints are the operating limits of the
equipment present in the power system, and they are pre-
sented as:

– Generator constraints:

Vmin
gi ≤ Vgi ≤ Vmax

gi i = 1, ..., Ng (5)

Pmin
gi ≤ Pgi ≤ Pmax

gi i = 1, ..., Ng (6)

Qmin
gi ≤ Qgi ≤ Qmax

gi i = 1, ..., Ng (7)

where Vmin
i and Vmax

i are, respectively, the minimum and
maximum limits of the i th bus voltage of power plant Vi .
Pmin
gi and Pmax

gi are themaximumandminimumactive power

limit of the i th generator. Qmin
gi and Qmax

gi represent the mini-

mum andmaximum reactive power limit of the i th traditional
generator, respectively. Ng is the number of generation.

– Transformer constraints:

Tmin
i ≤ Ti ≤ Tmax

i i = 1, ..., NT (8)

where Tmin
i and Tmax

i represent the minimum andmaximum
limit of the i th tap changer transformer Ti , respectively. NT

is the number of tap changers.

– Shunt VAR compensators constraints:

Qmin
ci ≤ Qci ≤ Qmax

ci i = 1, ..., Nc (9)

where Qmin
c,i and Qmax

c,i are the minimum and maximum limit

of the i th shunt compensator Qc,i . Nc is the number of capac-
itor components connected to the power system.

– Security constraints:

Vmin
Li ≤ VLi ≤ Vmax

Li i = 1, ..., Npq (10)

Sli ≤ Smax
li i = 1, ..., Nl (11)

where Sli and Smax
li is the maximum limit of MV A of the i th

transmission line. Nl is the number of transmission lines of
the power system.
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2.4 Objective functions

Optimizing the fuel cost is frequently the most common
objective function considered in the optimal power flow
problem, and it is conventionally modelled by a quadratic
equation. In addition, other important objectives are provided
herein as power losses and voltage deviation.

2.4.1 Minimization of Total Fuel Cost

The fuel cost for each power plant can be expressed as follows
[37]:

F1 = Fc = min
{∑Ng

i=1 fi (Pgi )

= min
{∑Ng

i=1 ci + bi Pgi + ai P2
gi + |di sin(ei (Pmin

i − Pgi ))|
(12)

where Ng is the number of generation. ai , bi , ci , di , and ei
are the cost coefficients of generating unit i .

2.4.2 Active power losses (Ploss)

The power loss is one of the important objectives of the OPF
problem, and it is expressed as [37]:

F2 = Ploss = min
{∑Nl

i=1 Gi (V 2
i + V 2

j − 2ViVj cos(δi j ))

(13)

where Ploss is the total active power losses of the transmission
network. Gi is the transfer conductance.

2.4.3 Voltage deviation (VD)

Voltage deviation is a measure of voltage quality in the net-
work. The bus voltage is considered as one of the most
important security and service indexes. The aim of this objec-
tive function is to minimize all PQ bus voltage deviations
from 1.0 p.u. Mathematically, it is expressed as [30]:

F3 = V D = min
{∑Npq

i=1 |VLi − 1.0| (14)

where V D is the total voltage magnitude deviation of the
power system.

3 Multi-objective backtracking search
algorithm

BSA is a population-based iterative evolutionary algorithm
designed to be a global minimizer. This method is effec-
tive and capable of solving different numerical optimization

Fig. 1 Flow chart of the BSA algorithm

problem (nonlinear, non-convex, and complex). Its structure
is simple, and it needs just one control parameter unlike a
lot of other search algorithms. BSA can be divided into five
evolutionary mechanisms (Initialization, Selection I, Muta-
tion, Crossover, and Selection II), and BSA’s algorithm is
summarized in Fig. 1.

3.1 Backtracking Search Algorithm

The five major steps of BSA are described briefly herein:

Step 1: Initialization
The BSAmethod starts by initializing randomly two pop-

ulations in the search space, named Pop and hist Pop,
Eq. (15) and (16).

Popi, j = low j + rand[0, 1].(up j − low j ) (15)

hist Popi, j = low j + rand[0, 1].(up j − low j ) (16)

where Pop and hist Pop are the current and historical pop-
ulations, respectively. i = 1, . . . , N and j = 1, . . . , D are
the population size and dimension of the problem, respec-
tively. rand is a uniform distribution between 0 and 1. The
algorithm of this step is shown in Algorithm 1.
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Algorithm 1. Initialization step of BSA
Input: N,D,low,up
Output: Pop
for i = 1:N
for i = 1:D
Pop(i,j) = rand*(up(j) - low(j)) + low(j);
histPop(i,j) = rand*(up(j) - low(j)) + low(j);

end
end

Step 2: Selection I
hist Pop is generated at the beginning of each iteration

following the rule of (i f − then) according to Eq. (17):

hist Pop =
{
Pop, i f (a ≺ b|a, b −U (0, 1))
hist Pop, otherwise

(17)

After determining the hist Pop, a permuting function (ran-
dom shuffling function) is used to change randomly the order
of the individuals in hist Pop using Eq. (18).

hist Pop := permuting(hist Pop) (18)

Step 3: Mutation
Mutation operator initializes the form of trial population

according to the following equation:

M = Pop + F .(hist Pop − Pop) (19)

where F is a parameter controlling the amplitude of the
search direction matrix computed as the difference between
the historical and the current populations matrix (hist Pop -
Pop).

Step 4: Crossover
The final form of the trial population is determined in

BSA’s crossover. This process uses two steps: The first deter-
mines the number of elements of each individual by a control
parameter named mixrate. The second generates a random
binary matrix map with a same size of Pop Algorithm 2.
The parameter mixrate controls the maximum number of

elements in each row of matrix map with the value of 1.

Vi, j =
{
Popi, j i f mapi, j = 1
Mi, j otherwise

(20)

– Boundary Control Mechanism of BSA:

After the crossover, some individuals might violate the
boundaries of the optimization variables, so they need to be
checked and modified by an appropriate mechanism Algo-
rithm 3.

Algorithm 2. Crossover’s step of BSA
Input: mutant, mixrate, N, D
Output: trialpopulation (T)
map(1:N ,1:D) = 1
i f rand ≺ rand
for i = 1:N
u = randperm(D)
map(i, u(1 : ceil(mixrate ∗ rand ∗ D))) = 1

end
else
for i = 1:N
map(i,rand(D)) = 1

end
end
for i = 1:N
for i = 1:D
i f mapi, j = 1
T := Popi, j

end
end

end

Algorithm 3. Boundary Control Mechanism of BSA
I nput : T , low j , up j
Output: T
for i = 1:N
for i = 1:D
i f (Ti, j ≺ low j ) or (Ti, j � up j )

Ti, j = randast ∗ (up j − low j ) + low j
end

end
end

Step 5: Selection II
In this stage, BSA compares each individual of V with its

homologue from Pop in order to determine the next popula-
tion Pop.

Popnexti =
{
Vi i f f (Vi ) � f (Pi )
Popi otherwise

(21)

3.2 ProposedMOBSA non-dominated approach

The important phases in MOBSA are the two main steps,
mutation and crossover mentioned previously.

As mentioned before, in each generation of the evo-
lution process, BSA deals with the population Pop. The
offspring population V is produced by the phase’s mutation
and crossover. And in the Selection II, the individuals of
Pop and of V are compared. For improving BSA to multi-
objective optimization application, the comparison needs to
be modified according to the concept of Pareto dominance.
When the individual Pop is compared with the individual V ,
three situations are occurred, in which the first V is selected
as the individual of the next population, but the second and
the third situations Pop are selected:

– Pop is dominated by V if V ≺ Pop.
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Fig. 2 Crowding distance calculation of the density estimation

– Pop dominates V if Pop ≺ V .
– Neither Pop is dominated by V , nor Pop dominates V
if V ≺ Pop and Pop ≺ V .

3.2.1 Phases of multi-objective BSA

The steps of MOBSA are described as follows:
Step 1: Initialize two populations in the search space �

(Pop and hist Pop) using Eqs. (15) and (16), and set the
iteration number i = 0.

Step 2: Evaluate the fitness function of each individual of
Pop and save the non-dominated solutions from among the
population members into the non-dominated sorting.

Step 3: redefine the hist Pop and modify it through Eqs.
(17) and (18).

Step 4: the trial population M is generated by applying
the mutation operator through Eq. (19).

Step 5: determine the final trial population V by the
crossover step through Eq. (20). Then verify and modify the
constraints.

Step 6: determine the next population Pop by comparing
each individual of V with its homologue from Pop using Eq.
(21).

Step 7: set i = i + 1 and then verify the stopping criteria,
if algorithm needs to be repeated, return to Step 3.

3.2.2 Crowding distance

A specific crowding distance strategy is employed to define
an ordering among individuals. The crowding distance value
of a particular solution is the average distance of its two
neighbouring solutions. The quantity Dp serves as an esti-
mate of the diagonal of the cuboid formed by using the
nearest neighbours as the vertices. To compute the crowding
distance, we need to sort the population according to each
objective function value in ascending order. Thereafter, for

Fig. 3 Membership functions for objective function

Fig. 4 Single line diagram of IEEE 30-bus test system

each objective function, the boundary solutions are assigned
an infinite distance value. All other intermediate solutions are
assigned a distance value equal to the corresponding diagonal
length.

The crowding distance of the i th solution in its front as
the diagonal length of the cuboid is shown in Fig. 2.
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Table 1 The characteristics details of the system

Systems IEEE-30 IEEE-57 IEEE-118

Characteristics Value Details Value Details Value Details

Buses 30 [57] 57 [58] 118 [58]

Branches 41 – 80 – 186 –

Generators 6 Buses: 1, 2, 5, 8,
11 and 13

7 Buses: 1, 2, 3, 6,
8, 9 and 12

54 Buses: 1, 4, 6, 8,
10, 12, 15, 18,
19, 24, 25, 26, 27,
31, 32, 34, 36, 40,
42, 46, 49, 54, 55,
56, 59, 61, 62, 65,
66, 69, 70, 72, 73,
74, 76, 77, 80, 85,
87, 89, 90, 91, 92,
99, 100, 103, 104,
105, 107, 110,
111, 112, 113 and
116

Shunts 9 Buses: 10, 12, 15,
17, 20, 21, 23, 24
and 29

3 Buses: 18, 25 and
53

14 Buses: 5, 34, 37,
44, 45, 46, 48, 74,
79, 82, 83, 105,
107, 110

Transformers 4 Branches: 11, 12,
15 and 36

17 Buses: 19, 20, 31,
35, 36, 37, 41, 46,
54, 58, 59, 65, 66,
71, 73, 76 and 13

9 Branches: 8, 32,
36, 51, 93, 95,
102, 107 and 127

Control variables 24 – 33 – 130 –

Table 2 Various case studies

Cost Ploss V D

IEEE-30 Bi-Objective Case 1
√ √

Case 2
√ √

Tri-Objective Case 3
√ √ √

IEEE-57 Bi-Objective Case 4
√ √

Case 5
√ √

Tri-Objective Case 6
√ √ √

IEEE-118 Bi-Objective Case 7
√ √

Case 8
√ √

3.2.3 The best compromise solution

The fuzzy logic termwas first introduced and described using
membership functions by L.A. Zadeh in 1965 [55]. It was
elaborated to define the distinctions among data which is
neither true nor false, which means that fuzzy logic aids to
deal with the uncertainty of any situation and decide whether
the statement is true or false. The only condition a member-
ship function must really satisfy is that it must vary between
0 and 1. The fuzzy has been applied to various fields, from
control theory to AI.

In this paper, once getting the non-dominated Pareto opti-
mal set using the MOBSA approach, we may need to extract

one optimal among the Pareto optimal solutions, which
is called the best compromise solution, for satisfying the
different goals to some extent. However, owing to the uncer-
tainty of the decision maker’s judgement in multi-objective
optimization problems, a fuzzy decision-making strategy is
integrated to tune this issue. For this purpose, each objective
function fi is mapped to [0,1] by linear membership func-
tion. Then, the fuzzy membership function for i th objective
function can be calculated as follows:

μ f i =

⎧⎪⎪⎨
⎪⎪⎩
1 i f fi � f min

i
f max
i − fi

f max
i − f min

i

i f f min
i ≺ fi ≺ f max

i

0 i f fi � f max
i

(22)

where i is the index of objective functions,μ f i represents the
membership function of i th objective, fi is the fitness value
of i th objective function, f min

i and f max
i are the minimum

and maximum fitness value of i th objective function among
all the non-dominated solutions.

Therefore, the membership function represents the degree
of membership in fuzzy sets using values between 0 and 1.
The value 0 indicates incompatibility with the sets, while 1
means full compatibility Fig. 3. For each Pareto solution k,
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Table 3 Cost coefficients

Unit Cost coefficients

a b C d e

($/MWh2) ($/MWh) ($/h)

IEEE-30 1 0.00375 2.00 0 18 0.037

2 0.01750 1.75 0 16 0.038

5 0.0625 1.00 0 14 0.04

8 0.00834 3.25 0 12 0.045

11 0.025 3.00 0 13 0.042

13 0.025 3.00 0 13.5 0.041

IEEE-57 1 0.0775795 20 0 18 0.037

2 0.01 40 0 16 0.038

3 0.25 20 0 13.5 0.041

6 0.01 40 0 18 0.037

8 0.0222222 20 0 14 0.040

9 0.01 40 0 15 0.039

12 0.0322581 20 0 12 0.045

IEEE-118 1 0.01 40 0 – –

4 0.01 40 0 - –

6 0.01 40 0 – –

8 0.01 40 0 – –

10 0.0222222 20 0 – –

12 0.117647 20 0 – –

15 0.01 40 0 – –

18 0.01 40 0 – –

19 0.01 40 0 – –

24 0.01 40 0 – –

25 0.0454545 20 0 – –

26 0.0318471 20 0 – –

27 0.01 40 0 – –

31 1.42857 20 0 – –

32 0.01 40 0 - -

34 0.01 40 0 - –

36 0.01 40 0 – –

40 0.01 40 0 – –

42 0.01 40 0 – –

46 0.526316 20 0 – –

49 0.0490196 20 0 – –

54 0.208333 20 0 – –

55 0.01 40 0 – –

56 0.01 40 0 – –

59 0.0645161 20 0 – –

61 0.0625 20 0 – –

62 0.01 40 0 – –

65 0.0255754 20 0 – –

66 0.0255102 20 0 – –

69 0.0193648 20 0 – –

70 0.01 40 0 – –

Table 3 continued

Unit Cost coefficients

a b C d e

($/MWh2) ($/MWh) ($/h)

72 0.01 40 0 – –

73 0.01 40 0 – –

74 0.01 40 0 – –

76 0.01 40 0 – –

77 0.01 40 0 – –

80 0.0209644 20 0 – –

85 0.01 40 0 – –

87 2.5 20 0 – –

89 0.0164745 20 0 – –

90 0.01 40 0 – - -

91 0.01 40 0 – –

92 0.01 40 0 – —

99 0.01 40 0 – –

100 0.0396825 20 0 – –

103 0.25 20 0 – –

104 0.01 40 0 – –

105 0.01 40 0 – –

107 0.01 40 0 - –

110 0.01 40 0 – –

111 0.277778 20 0 – –

112 0.01 40 0 – –

113 0.01 40 0 – –

116 0.01 40 0 – –

the normalized membership function is defined as:

μk =
∑m

i=1 μk
f i∑D

k=1
∑m

i=1 μk
f i

(23)

where D is the number of non-dominated solutions, and m is
the number of objective functions.

Now, the best compromise solution is the one that has the
maximum value of minimum membership number μk , and
it can be selected using the min-max method following the
fuzzy decision process in [56] as follows:

μopt = max{μk} (24)

4 Simulation results and discussion

Results analysis

To improve the effectiveness of the proposed algorithm for
solving optimal power flow (OPF) problem,we applied it to a
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Table 4 Obtained solutions for the IEEE 30-bus power system case 1

Control variables MOBSA MODE SPEA MALO

Cost Loss BCS Cost Loss BCS Cost Loss BCS Cost Loss BCS

Pg2 48.475 79.988 55.423 47.565 76.835 50.619 46.401 76.875 57.386 51.26993 51.26999 51.26997

Pg5 21.845 50.000 33.502 20.148 49.772 34.480 20.091 49.983 35.866 25.99693 25.99691 25.99693

Pg8 20.804 34.914 35.000 23.950 34.994 34.722 32.116 34.976 34.887 27.12611 27.12610 27.12611

Pg11 11.511 30.000 30.000 13.723 29.484 29.552 11.401 29.982 29.692 20.79706 20.79707 20.79707

Pg13 12.000 40.000 24.377 12.196 36.173 24.422 12.044 39.890 22.844 21.34633 21.34632 21.34631

Vg1 1.0999 1.0999 1.0999 1.0996 1.0950 1.0999 1.0983 1.0996 1.0996 1.1000 1.1000 1.1000

Vg2 1.0887 1.0000 1.0928 1.0836 1.0867 1.0895 1.0810 1.0965 1.0919 1.092387 1.092388 1.092388

Vg5 1.0640 1.0855 1.0708 1.0580 1.0641 1.0674 1.0509 1.0760 1.0713 1.061487 1.061488 1.061488

Vg8 1.0701 1.0896 1.0804 1.0667 1.0717 1.0791 1.0675 1.0836 1.0802 1.084025 1.084024 1.084024

Vg11 1.1000 1.0817 1.0894 1.0926 1.0984 1.0987 1.0106 1.0849 1.0840 1.093276 1.093275 1.093275

Vg13 1.1000 1.0999 1.1000 1.0929 1.0943 1.0983 1.0770 1.0877 1.0842 1.061336 1.061336 1.061336

Qc10 2.9764 5.0000 3.9273 4.9707 3.4706 3.2588 4.5427 4.9409 4.9387 2.109247 2.109248 2.109247

Qc12 5.0000 3.6734 4.9732 1.3926 4.2595 4.6511 2.7997 4.5920 4.5703 2.966364 2.966364 2.966364

Qc15 4.9854 4.3834 4.8344 4.5514 3.2474 4.5360 4.5294 4.6064 4.5643 3.995148 3.995148 3.995149

Qc17 4.8436 5.0000 4.8246 3.3738 3.9712 4.2385 1.8016 4.5580 4.3218 3.417971 3.417972 3.417903

Qc20 4.7549 4.5855 5.0000 3.7757 3.5806 4.5103 4.2068 4.1465 4.2076 3.779269 3.779267 3.779265

Qc21 4.5295 5.0000 5.0000 4.6081 4.7287 4.5210 4.6988 4.7442 4.6706 4.526240 4.526240 4.526242

Qc23 2.8563 2.4909 2.3493 4.9681 2.8489 3.4606 3.5628 4.9282 3.9641 1.423344 1.423345 1.423344

Qc24 5.0000 4.9998 5.0000 4.2412 4.3352 4.6523 4.3545 4.8820 4.4381 2.378422 2.378423 2.378420

Qc29 1.4107 2.0878 2.2667 1.4169 2.5013 2.4583 2.4875 4.4754 4.2840 3.536467 3.536469 3.536467

T11 0.9669 1.0899 1.0127 1.0227 1.0182 1.0130 1.0173 1.0207 1.0157 1.065017 1.065017 1.065017

T12 1.0112 0.9000 0.9764 0.9444 0.9064 0.9137 0.9850 0.9984 0.9947 1.084842 1.084842 1.084821

T15 1.0127 1.0396 1.0124 1.0112 0.9888 0.9720 1.0401 1.0209 1.0203 1.094906 1.094906 1.094907

T36 0.9712 0.9908 0.9787 0.9854 0.9657 0.9644 1.0083 0.9939 1.0082 1.085405 1.085405 1.085404

Fuel Cost ($/h) 799.046 966.766 843.468 799.476 949.248 841.386 801.165 960.271 848.243 801.567 952.523 852.300

Ploss (MW) 8.6168 2.8841 4.6336 8.4195 3.0456 4.7015 8.1644 2.9321 4.5461 8.4723 3.1869 4.6818

Bold values are show the results clearly found

three power systems, IEEE30-bus inFig. 4, IEEE57-bus, and
IEEE 118-bus test systems. Table 1 summarizes the charac-
teristics details of these various systems.We considered eight
different cases with different complexity illustrated by the
cases reported in Table 2. The dimension (control variables)
of OPF problem is 24, 33, and 130 for IEEE 30-bus, 57-bus,
and 118-bus systems, respectively. The population size and
maximum number of function evaluation are varied depend-
ing on the different cases. The cost coefficients of the three
systems are included in Table 3. The results obtained by the
proposed approach are compared with the results found by
other heuristic methods as illustrated in the next subsection.
The optimal settings of control variables found are shown in
Tables 4, 6, 7, 8, 10, 12, 14, and 15.

The proposed MOPF optimization problem was solved
using a computer with Intel Core i5 CPU@2.7GHz and 4GB
RAM. The simulation results were implemented in MAT-
LAB R2016b software.

4.1 IEEE 30-bus power system

The IEEE30-bus test systemconsists of 6 generators inwhich
bus 1 is chosen as the slack bus, 24 load buses, 41 branches, 4
transformers, and 9 shunt reactive power injections as illus-
trated in Table 1. The optimization problem has 24 control
variables, where its boundaries are taken between [0.95–1.1]
for voltage magnitude, [0.9–1.1] for transformer taps, and
[0–5] for VAR compensators. The detailed data (line and
bus data) for the considered IEEE 30-bus system are given
in [57]. The system active and reactive power demands are
283.4 (MW) and 126.2 (MVAR), respectively.

4.1.1 Case 1: fuel cost and power losses

For this case, the optimization of fuel cost and power losses
is considered simultaneously as the multi-objective func-
tion of the OPF. The simulation was run using the proposed
algorithm with NP = 100 and a maximum of 200 iterations.
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Fig. 5 Pareto fronts case 1

Figure 5 shows the Pareto front (non-dominated solution) for
this case. The results obtained are presented in Table 4. The
minimum fuel cost, minimum active loss, and the best com-
promise solutions obtained were 799.046 ($/h) and 2.8841
(MW), and (843.468 ($/h), 4.6336 (MW)), respectively.
Table 5 provides the comparison between the results attained
with other methods reported in the literature as MOABC/D,
NSMOGSA, and NSGA-II.

4.1.2 Case 2: fuel cost, voltage deviation

In Case 2, minimization of fuel cost and voltage deviation
is simultaneously considered. Simulation was run with NP =
100 and a maximum of 200 iterations. The simulation results
of this case are shown in Table 6, and its Pareto front is
illustrated in Fig. 6. The minimization result fuel cost and
voltage values in this case are 799.298 ($/h) and 0.128 (p.u.),
respectively. The BCS are 799.6455 ($/h) and 0.4182 (p.u.).
Comparison analysis with other algorithms was also per-
formed, and its results are illustrated in Table 6.

4.1.3 Case 3: fuel cost, power losses, and voltage deviation

This case shows the minimization of all objective functions
(fuel cost, power losses, and voltage deviation) simultane-
ously. The proposed MOBSA gives best cost, best active
losses, and best voltage deviation of 799.271 ($/h), 2.8589
(MW), and 0.0959 p.u. as given in Table 7, respectively. Fig-
ure 7 displays the Pareto front for this case, and Table 7
tabulates the comparison between the proposed method and
others.

Table 5 Comparison solutions with other approaches for case 1

Approaches Objective functions Cost Loss

MOBSA Min Cost 799.046 8.6168

Min Loss 966.766 2.8841

MODE Min Cost 799.476 8.4195

Min Loss 949.248 3.0456

SPEA Min Cost 801.165 8.1644

Min Loss 960.271 2.9321

MALO Min Cost 801.567 8.4723

Min Loss 952.523 3.1869

MOABC/D [29] Min Cost 799.179 8.6446

Min Loss 912.854 3.3714

NSMOGSA [59] Min Cost 799.6095 7.9027

Min Loss 873.5107 3.4925

NSGA II [34] Min Cost 801.714 8.1734

Min Loss 875.005 4.3571

Bold values are show the results clearly found

4.2 IEEE 57-bus power system

This test system has 7 generators (slack generator is at bus
1), 50 load buses, and 80 branches where 17 line OLTCs are
existed, 15 transformers, 3 shunt reactive power injections,
six generators real powers, and 7 generators voltages. This
system has totally 33 control variables for OPF problem.
The voltage magnitude limits are between 0.95 and 1.1 p.u.
The lower and upper limits of transformer taps are 0.9 and
1.1 p.u., respectively. The limits of VAR compensators are
varying between 0 to 20. Line and bus data are provided in
[58]. Active and reactive power demands are 1250.8 (MW)
and 336.4 (MVAr), respectively.

4.2.1 Case 4: fuel cost and power losses

The minimum fuel cost and losses values obtained in this
case are 41623.292 ($/h) and8.5788 (MW), respectively.And
the BCS are 41959.152 ($/h) and 9.7667 (MW), its optimal
control variables are tabulated in Table 8, and the Pareto front
is shown in Fig. 8. This result is obtained for 200 generations,
400 iterations, and is compared with other methods as shown
in Table 9.

4.2.2 Case 5: fuel cost and voltage deviation

The minimization of two objectives such as fuel cost and
voltage deviation is considered simultaneously to solve the
MOOPFproblem. The non-dominated solutions obtained are
given in Fig. 9. It is observed from Table 10 that the best
compromise solution (BCS) attained is 41721.309 ($/h) and
0.6462 (p.u.), and the minimum of fuel cost and voltage is
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Table 6 Obtained solutions for the IEEE 30-bus power system case 2

Control variables MOBSA MODE SPEA MALO

Cost Loss BCS Cost Loss BCS Cost Loss BCS Cost Loss BCS

Pg2 48.4126 47.645 48.9836 48.970 48.9403 49.4573 49.9109 50.9868 48.7199 46.6996 46.6996 46.6997

Pg5 21.4633 19.886 21.1044 21.158 22.089 21.3037 21.0139 23.6908 21.0169 20.6716 20.6716 20.6716

Pg8 20.9497 21.265 21.2825 20.505 22.378 23.0516 21.6579 20.4698 21.6206 21.6290 21.6291 21.6291

Pg11 11.8331 13.448 11.5188 11.736 10.896 11.8079 11.6909 12.9040 11.8656 17.0743 17.0743 17.0743

Pg13 12.0540 12.007 12.000 12.207 13.258 12.0843 12.4247 12.4736 12.4486 14.1072 14.1073 14.1073

Vg1 1.1000 1.0570 1.1000 1.0979 1.0137 1.0597 1.0903 1.0352 1.0755 1.0703 1.0703 1.0703

Vg2 1.0879 1.0339 1.0835 1.0845 1.0248 1.0382 1.0692 1.0423 1.0574 1.0587 1.0587 1.0587

Vg5 1.0597 1.0024 1.0521 1.0581 1.0204 1.0064 1.0409 1.0169 1.0179 1.0310 1.0310 1.0310

Vg8 1.0688 1.0071 1.0589 1.0596 1.0053 1.0053 1.0444 1.0065 1.0259 1.0328 1.0328 1.0328

Vg11 1.1000 0.9500 1.0218 1.0761 1.0481 1.0404 1.0987 1.0009 1.0902 1.0468 1.0468 1.0468

Vg13 1.0593 1.0102 1.0441 1.0392 0.9892 1.0263 1.0574 0.9813 1.0123 1.0283 1.0283 1.0283

Qc10 0.3012 1.8465 1.1213 1.2372 4.0436 2.9792 3.7411 2.8756 2.8726 2.8681 2.8681 2.8681

Qc12 4.4434 4.9147 0.1941 1.6120 1.7462 2.8903 2.6759 2.2191 2.6771 2.8651 2.8651 2.8651

Qc15 3.5952 5.0000 0.1918 4.1297 3.8994 1.6470 3.4735 2.7374 3.1781 3.0629 3.0629 3.0629

Qc17 4.9784 4.8485 4.4628 2.8694 0.6220 1.7818 4.6616 3.3391 3.4798 3.3717 3.3717 3.3717

Qc20 3.4688 5.0000 4.7729 3.5241 4.4082 4.0308 3.3764 4.1390 2.8724 2.8166 2.8166 2.8166

Qc21 5.0000 5.0000 4.6199 4.1726 4.6130 3.6000 4.9920 4.8666 4.9160 3.5005 3.5005 3.5005

Qc23 4.2940 4.3718 5.0000 3.1370 2.7306 4.7388 3.7577 4.5037 3.7590 1.9765 1.9765 1.9765

Qc24 5.0000 5.0000 4.8674 4.2391 4.6533 4.9646 4.6972 4.9402 4.3955 3.9339 3.9339 3.9339

Qc29 3.0237 4.1473 2.8969 2.2313 2.2595 3.2463 3.7933 3.2637 3.4298 3.0937 3.0937 3.0937

T11 1.0748 0.9663 1.0558 1.0344 1.0527 1.0336 1.0400 0.9448 1.0236 0.9797 0.97979 9.7979

T12 0.9909 0.9000 1.0070 1.0125 0.9073 0.9212 1.0422 0.9896 1.0521 1.0094 1.0094 1.0094

T15 1.0614 0.9941 1.0798 1.0414 0.9246 1.0159 1.0168 0.9169 1.0069 0.9909 0.9909 0.9909

T36 1.0202 0.9750 1.0238 1.0092 0.9510 0.9746 1.0031 0.9686 1.0007 0.9885 0.9885 0.9885

Fuel Cost ($/h) 799.298 803.194 799.6455 799.621 807.193 802.2744 800.144 806.088 801.240 800.5791 808.1031 802.2618

VD (p.u) 0.9024 0.1280 0.4182 0.6354 0.1202 0.1639 0.7375 0.1282 0.2878 0.8755 0.1455 0.2941

Bold values are show the results clearly found

41655.984 ($/h) and 0.6052 (p.u.), respectively. This case
is compared with QOTLBO. The comparison of this case is
illustrated in Table 11.

4.2.3 Case 6: fuel cost, power losses, and voltage deviation

All objective functions (fuel cost, power losses, voltage
deviation) are taken into consideration simultaneously for
optimization. The best non-domination combination of three
objectives is 42338.39 ($/h), 12.1451 (MW), and 0.8059
(p.u.), respectively, and the minimum of each objectives is
41628.522 ($/h), 9.2175 (MW), and 0.6449 p.u.), as given
in Table 12. Pareto front is shown in Fig. 10. The results are
assessed toMODE, SPEA, andMALO as shown in Table 13.

4.3 IEEE 118-bus power system

The IEEE 118-bus test system has 118 buses, 54 generators
(slack generator is at bus 69), 186 branches, 14 shunt ele-

ments, 9 transformers tap, and 130 control variables. Voltage,
transformers tap, and shunt capacitors limits are considered
in the range of [0.95–1.1]p.u., [0.9–1.1]p.u., and [0–25]p.u.,
respectively. The active and reactive power demands are 4242
MW and 1439 MVAr, respectively. Bus and line data can be
found in [58].

4.3.1 Case 7: fuel cost and power losses

The optimization in this case takes into account two objec-
tives fuel cost, and real power. Table 14 tabulates the
results, the values of minimization objectives are 135,620.99
($/h) and 23.15116 (MW), and the compromise solution
is 138,669.21 ($/h) and 37.79042 (MW), respectively. Fig-
ure 11 shows the Pareto front.

4.3.2 Case 8: fuel cost and voltage deviation

In Case 8, fuel costs minimization and voltage deviation
are taken into consideration. The simulation results of this
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Fig. 6 Pareto fronts case 2

Fig. 7 Pareto fronts case 3

case are shown in Table 15, and its non-dominated solutions
obtained are illustrated in Fig. 12. The proposed MOBSA

Table 7 Obtained solutions for the IEEE 30-bus power system case 3

Control variables MOBSA MODE SPEA MALO

Cost Loss VD Cost Loss VD Cost Loss VD Cost Loss VD

Pg2 48.8136 80.0000 49.3915 48.8509 67.6215 77.9087 49.258 78.7031 62.8017 57.8554 57.8554 57.8553

Pg5 21.1947 50.000 20.7120 21.0170 49.9941 49.3692 21.0121 49.9898 37.6618 35.5101 35.5101 35.5101

Pg8 20.3833 35.000 25.8093 20.0562 34.4664 34.6300 19.4608 34.9919 31.8829 32.5252 32.5252 32.5252

Pg11 12.6728 30.000 17.2681 10.0806 29.3288 29.1944 10.9473 29.9153 29.3677 23.0593 23.0593 23.0593

Pg13 12.000 39.6442 18.8006 12.5262 39.6646 38.3200 12.1718 39.8777 27.5521 25.9671 25.9671 25.9671

Vg1 1.1000 1.1000 0.9928 1.0988 1.0997 1.0649 1.0933 1.0956 1.0064 1.0781 1.0781 1.0781

Vg2 1.0862 1.1000 1.0097 1.0862 1.0931 1.0523 1.0801 1.0890 0.9913 1.0658 1.0658 1.0658

Vg5 1.0570 1.0869 1.0190 1.0541 1.0762 1.0469 1.0501 1.0710 1.0196 1.0514 1.0514 1.0514

Vg8 1.0691 1.0935 1.0045 1.0705 1.0845 1.0514 1.0633 1.0799 1.0106 1.0504 1.0504 1.0504

Vg11 1.0532 1.1000 0.9957 1.0933 1.0929 1.0319 1.0818 1.0864 1.0047 1.0792 1.0792 1.0792

Vg13 1.0876 1.100 1.0418 1.0558 1.0961 1.0255 1.0932 1.0981 1.0314 1.0614 1.0614 1.0614

Qc10 5.000 5.000 2.9370 4.4834 4.6148 4.6484 2.5962 4.1609 4.1072 3.4234 3.4234 3.4234

Qc12 5.000 4.9208 3.9209 4.1881 4.2896 2.1895 3.2193 4.7388 5.0004 3.3161 3.3161 3.3161

Qc15 3.9982 2.6675 4.1087 3.3571 3.8522 4.1630 4.5610 4.9121 4.0257 3.8335 3.8335 3.8335

Qc17 5.000 5.000 2.6763 4.3256 3.3877 4.1380 4.6813 4.9452 1.6690 2.2129 2.2129 2.2129

Qc20 4.8193 4.7180 5.000 4.5293 2.5493 0.3946 3.8813 4.9724 4.6849 3.0816 3.0816 3.0816

Qc21 3.1741 4.9871 5.000 4.8810 4.1263 3.3329 3.5612 4.7594 4.8965 3.6278 3.6278 3.6278

Qc23 2.4980 3.6872 5.000 4.9389 2.7826 3.2938 4.7364 4.7546 4.2525 2.9489 2.9489 2.9489

Qc24 5.000 5.000 5.000 4.2225 4.4290 1.5732 4.8459 4.9460 4.6872 3.2768 3.2768 3.2768

Qc29 1.5360 2.8688 2.2155 4.3234 2.9532 3.4505 0.5689 2.7648 1.0570 2.9224 2.9224 2.9224

T11 1.1000 1.0751 1.0072 0.9552 1.0064 1.0793 1.0164 1.0106 0.9934 1.0546 1.0546 1.0546

T12 0.9000 0.900 0.900 1.0821 0.9828 0.9088 0.9482 1.0092 0.9314 1.0258 1.0258 1.0258

T15 1.0733 0.9865 1.0452 0.9776 1.0197 1.0348 1.0125 1.0268 1.0105 1.0251 1.0251 1.0251

T36 0.9899 0.9945 0.9615 0.9638 0.9951 1.0145 0.9849 0.9859 0.9482 0.9975 0.9975 0.9975

Fuel Cost ($/h) 799.271 966.1605 811.988 799.693 941.128 954.611 799.596 963.936 866.341 808.545 905.863 856.981

Ploss (MW) 8.6795 2.8589 10.2673 8.9806 3.0682 3.4561 8.9612 2.9336 5.9422 7.1044 3.6991 6.0398

VD (p.u) 1.1483 2.0509 0.0959 1.4046 1.6804 0.3741 1.3863 1.6900 0.1041 0.4122 1.0201 0.1326

Bold values are show the results clearly found
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Table 8 Obtained solutions for the IEEE 57-bus power system case 4

Control variables Case 4

Cost Loss BCS

Pg2 77.0239 94.0699 36.0022

Pg3 44.9514 45.6990 103.9675

Pg6 71.3756 76.7565 82.6348

Pg8 422.1359 462.877 328.0784

Pg9 99.3348 84.0701 100.00

Pg12 40.5213 35.9403 410.00

Vg1 1.1000 1.0973 1.0976

Vg2 1.1000 1.1000 1.0976

Vg3 1.0911 1.0934 1.0975

Vg6 1.0982 1.0979 1.0973

Vg8 1.1000 1.1000 1.0943

Vg9 1.1000 1.0957 1.0909

Vg12 1.0936 1.0863 1.0882

Qc18 11.0159 11.1071 8.8004

Qc25 14.3268 15.4730 11.3439

Qc53 13.3376 8.1177 13.6016

T19 1.0891 1.0864 1.0854

T20 1.0254 1.0054 1.0316

T31 1.1000 1.0660 1.0220

T35 1.0887 1.0824 1.0913

T36 1.0790 1.0356 0.9000

T37 1.1000 1.0970 1.0515

T41 1.0176 1.0212 1.0582

T46 1.0374 0.9623 0.9522

T54 0.9000 0.9059 0.9000

T58 0.9303 0.9500 1.0163

T59 0.9231 0.9594 1.0083

T65 0.9466 0.9769 1.0113

T66 0.9000 0.9150 0.9722

T71 0.9000 0.9000 1.1000

T73 0.9931 0.9815 1.0558

T76 0.9680 0.9853 0.9000

T80 1.0649 1.0563 1.0854

Fuel Cost ($/h) 41623.292 44246.85 41959.152

Ploss (MW) 13.3806 8.5788 9.7667

Bold values are show the results clearly found

gives minimum cost and voltages deviation of 135839.01
($/h) and 0.223 (p.u.), respectively. The BCSs are 136353.82
(MW), and 0.2787 (p.u.).

Discussion

This section visualizes the performance and efficacy of the
proposed algorithmMOBSA in solvingmulti-objective opti-

Fig. 8 Pareto fronts case 4

Table 9 Comparison solutions with other approaches for IEEE 57-bus
case 4

Approaches Objective functions Cost Loss

MOBSA Min Cost 41623.292 13.3806

Min Loss 44246.85 8.5788

BCS 41959.152 9.7667

MODE Min Cost 41623.602 13.0642

Min Loss 43433.117 9.3315

BCS 42000.426 10.2150

SPEA Min Cost 41639.546 12.5753

Min Loss 43101.856 8.9751

BCS 42002.083 9.8733

MALO Min Cost 41736.254 14.0741

Min Loss 42720.771 11.2494

BCS 41963.836 11.9884

QOTLBO [60] Min Cost - -

Min Loss – –

BCS 42006.14 12.3669

Bold values are show the results clearly found

mal powerflowproblem.Aswediscuss before, standardBSA
and its variants have been successfully evaluated in solv-
ing real-world problem. Similarly, in the current paper, the
multi-objective BSA was performed in all cases. To better
handle such multi-objective problem, two main challenging
goals are required: accurate convergence towards the global
optimum and high coverage (uniform distribution optimal
front). More precisely, an effective algorithm should balance
between convergence and coverage.

For results assessment, three most well-regarded algo-
rithms are designated and re-implemented such as MALO,
MODE, and SPEA-II. It is worth noticing that according to
no free lunch theorem (NFL) [61] (Wolpert-Macready,1997),
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Fig. 9 Pareto fronts case 5

none of the meta-heuristics algorithms can be talented to
resolve all optimization problems, and that is the main rea-
son that some algorithms outperform others in addition to
coverage and convergence.

It is worth discussing here that due to the dual populations,
MOBSA can ensure different search directions, which leads
to higher diversification in search space during optimization.
Additionally, MOBSA highly boosts exploitation using the
F parameter. Referring to the results found, it is clearly seen
that MOBSA was able to provide better solution than other
approaches in terms of distribution and solutions quality. It
might be seen from case 1 in Fig. 5 that the Pareto optimal
front of all algorithms is slightly similar except MALO.

Inspecting Pareto optimal fronts obtained for other cases,
it is illustrated that MOBSA keeps a well-distributed and
a good convergence characteristics, while the other multi-
objective algorithms tend to converge to a local optimum, on
account of the poor convergence to the Pareto optimal solu-
tions. In particular, the MALO algorithm is not able to show
good solutions in terms of convergence and coverage. How-
ever, when solving more complex problems, this algorithm
can be easily stuck into local optima. Furthermore, additional
important aspect of multi-objective optimization algorithms
is the running time for achieving accurate optimal solutions.
As illustrated in Table 16, it is clearly observed that the exe-
cution time of MOBSA is less than other algorithms.

To sum up, these results highly demonstrate that the
algorithm suggested in this work MOBSA can find an
approximate Pareto optimal solutions with high convergence
and coverage along both objectives when solving complex
problems in large scale.

Table 10 Obtained solutions for the IEEE 57-bus power system case 5

Control variables Case 5

Cost VD BCS

Pg2 87.3182 83.6272 89.1329

Pg3 43.7329 46.1360 47.9784

Pg6 73.0293 73.5333 74.4954

Pg8 461.184 457.228 458.564

Pg9 99.2313 95.1478 91.1740

Pg12 361.294 363.564 358.803

Vg1 1.0579 1.0148 1.0174

Vg2 1.0592 1.0211 1.0210

Vg3 1.0473 1.0124 1.0152

Vg6 1.0724 0.9967 1.0104

Vg8 1.0821 1.0195 1.0377

Vg9 1.0732 1.0263 1.0268

Vg12 1.0531 1.0022 1.0081

Qc18 17.1546 13.7511 9.8923

Qc25 11.8311 15.4188 14.6095

Qc53 16.3053 19.4996 17.5875

T19 1.0907 1.0245 0.9979

T20 0.9725 1.0004 0.9950

T31 1.0125 0.9728 0.9751

T35 1.0226 0.9929 1.0016

T36 1.0012 1.0451 1.0045

T37 1.0181 1.0052 1.0135

T41 0.9985 0.9885 0.9933

T46 0.9616 0.9304 0.9421

T54 0.9173 0.9057 0.9021

T58 0.9597 0.9364 0.9482

T59 0.9566 0.9511 0.9644

T65 0.9671 0.9848 0.9874

T66 0.9421 0.9079 0.9088

T71 0.9730 0.9497 0.9511

T73 0.9736 1.0264 1.0296

T76 0.9768 0.9037 0.9182

T80 1.0065 1.0043 1.0123

Fuel Cost ($/h) 41655.984 41749.079 41721.309

VD (p.u) 2.1219 0.6052 0.6462

Bold values are show the results clearly found

Conclusion

The present paper proposes a novel evolutionary algorithm
named MOBSA for solving multi-objective problems and
finding Pareto optimal solutions. This algorithm was applied
for different systems of transmission power systems, as IEEE
30-bus, IEEE 57-bus, and IEEE 118-bus systems, to mini-
mize fuel cost, active power losses, and voltage deviation as
objective functions. The obtained non-dominated solutions
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Table 11 Comparison solutionswith other approaches for IEEE 57-bus
case 5

Approaches Objective functions Cost VD

MOBSA Min Cost 41655.984 2.1219

Min VD 41749.079 0.6052

BCS 41721.309 0.6462

MODE Min Cost 41686.474 1.9553

Min VD 41793.865 0.6167

BCS 41722.405 0.6740

SPEA Min Cost 41691.86 1.1054

Min VD 41740.036 0.6283

BCS 41721.653 0.6408

MALO Min Cost 41696.259 1.4590

Min VD 41763.187 0.7159

BCS 41723.108 0.9382

QOTLBO [60] Min Cost - -

Min VD – –

BCS 41758 0.6694

Bold values are show the results clearly found

Table 12 Obtained solutions for the IEEE 57-bus power system case 6

Control variables Case 5

Cost Loss VD BCS

Pg2 94.0699 30.000 100.00 100.00

Pg3 45.6990 136.342 140.00 68.379

Pg6 76.7565 99.8221 42.9389 100.00

Pg8 462.877 309.509 320.035 340.474

Pg9 84.0701 99.2145 30.000 97.844

Pg12 359.403 109.906 389.652 410.00

Vg1 1.0973 1.1000 1.0190 1.0309

Vg2 1.1000 1.1000 1.0394 1.0395

Vg3 1.0934 1.1000 1.0536 1.0329

Vg6 1.0979 1.0988 0.9902 1.0159

Vg8 1.1000 1.1000 1.0216 1.0399

Vg9 1.0957 1.0982 1.0201 1.0145

Vg12 1.0863 1.0987 1.0014 1.0176

Qc18 11.1071 16.8920 8.9133 13.282

Qc25 15.4730 15.1067 12.3928 10.499

Qc53 8.1177 13.4005 13.2041 7.4401

T19 1.0864 1.0939 1.0784 1.1000

T20 1.0054 1.0384 0.9949 0.9536

T31 1.0660 1.0947 0.9665 0.9746

T35 1.0824 1.0844 0.9442 0.9704

T36 1.0356 0.900 1.0115 0.9679

Table 12 continued

Control variables Case 5

Cost Loss VD BCS

T37 1.0970 1.100 1.0238 1.0229

T41 1.0212 1.0537 0.9679 0.9647

T46 0.9623 0.900 0.9426 0.9319

T54 0.9059 0.900 0.9000 0.9000

T58 0.9501 0.9554 0.9647 0.9569

T59 0.9594 0.9533 0.9700 0.9629

T65 0.9769 0.9675 0.9875 1.0001

T66 0.9150 0.9230 0.9115 0.9533

T71 0.9000 0.9649 0.9574 0.9226

T73 0.9815 0.9759 1.0079 1.0472

T76 0.9853 1.0088 0.9249 0.9068

T80 1.0563 1.0781 0.9935 1.0030

Fuel Cost ($/h) 41628.522 44566.334 45781.010 42338.390

Ploss (MW) 14.0890 9.2175 18.7484 12.1451

VD (p.u) 4.0986 4.3014 0.6449 0.8059

Bold values are show the results clearly found

Fig. 10 Pareto fronts case 6

of MOBSA are compared with several multi-objective meth-
ods reported in the recent literature. Moreover, a fuzzy-based
mechanism is employed to extract the best compromise solu-
tion. As the simulation results indicated, the multi-objective
backtracking search algorithm is an efficient and a potential
approach, and is successful in solving multi-objective opti-
mal power flow compared with other methods like MODE,
SPEA, MALO, MOABC/D, NSGA-II, and QOTLBO. To
conclude, MOBSA is a robust and reliable optimization
approach for solution of a large-scalemulti-objective optimal
power flow issue.
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Table 13 Comparison solutions
with other approaches for IEEE
57-bus case 6

Approaches Objective functions Cost Loss VD

MOBSA Min Cost 41628.522 14.089 4.0986

Min Loss 44566.334 9.2175 4.3014

Min VD 45781.01 18.7484 0.6449

BCS 42338.39 12.1451 0.8059

MODE Min Cost 41641.799 14.3129 3.4120

Min Loss 44550.885 9.6232 3.0861

Min VD 42000.507 16.2763 0.7192

BCS 42156.799 12.2357 1.0742

SPEA Min Cost 41689.923 15.4866 1.4652

Min Loss 44518.189 10.2569 1.0095

Min VD 44425.098 12.0867 0.6476

BCS 42392.541 11.3757 0.7558

MALO Min Cost 41752.666 14.0091 2.0411

Min Loss 42730.227 11.3397 17.4503

Min VD 42145.358 14.5676 0.7422

BCS 42125.629 12.7586 10.7878

Bold values are show the results clearly found

Table 14 Obtained solutions for the IEEE 118-bus power system case 7

Control variables Case 7 Control variables

Cost Loss BCS Cost Loss BCS

Pg4 30.0000 60.1793 41.2653 Vg31 0.95023 0.95017 0.95000

Pg6 30.0131 30.0000 30.1264 Vg32 0.95005 0.95002 0.95005

Pg8 30.0000 76.8729 38.1097 Vg34 0.95084 0.95252 0.95178

Pg10 30.0129 35.2858 32.5711 Vg36 0.95000 0.95003 0.95001

Pg12 324.687 165.000 232.786 Vg40 0.95000 0.95252 0.95073

Pg15 68.9445 104.853 90.4106 Vg42 0.95001 0.95005 0.95002

Pg18 30.1649 58.1878 38.3610 Vg46 0.95000 0.95033 0.95008

Pg19 35.9830 35.3255 44.9259 Vg49 0.96515 0.95534 0.95707

Pg24 30.0000 92.5431 51.0438 Vg54 0.95000 0.95079 0.95000

Pg25 30.0000 30.2401 30.3803 Vg55 0.95000 0.95168 0.95061

Pg26 134.543 96.0000 103.8591 Vg56 0.95000 0.95024 0.95016

Pg27 224.5519 124.2141 151.4122 Vg59 0.96247 0.95109 0.95968

Pg31 30.0000 52.1126 39.4980 Vg61 0.95227 0.95415 0.95688

Pg32 32.1051 32.1157 32.1487 Vg62 0.95521 0.95000 0.95256

Pg34 30.0000 70.1493 41.4697 Vg65 0.95000 0.95000 0.95006

Pg36 30.0000 64.822 38.9066 Vg66 0.95013 0.95429 0.95260

Pg40 30.0000 34.9128 38.9772 Vg69 0.95488 0.95215 0.95334

Pg42 30.0000 100.000 79.7534 Vg70 0.95000 0.95000 0.95000

Pg46 30.0000 94.0166 89.7830 Vg72 0.95021 0.95438 0.95029

Pg49 35.7000 35.7000 36.1268 Vg73 0.95003 0.95053 0.95010

Pg54 176.359 146.391 157.530 Vg74 0.95007 0.95000 0.95010

Pg55 44.4000 148.000 56.5203 Vg76 0.95005 0.95066 0.95000

Pg56 30.0000 99.2247 94.0065 Vg77 0.95000 0.95007 0.950015

Pg59 30.0000 100.000 97.9837 Vg80 0.95188 0.95138 0.95151

Pg61 118.790 218.113 154.952 Vg85 0.95427 0.95000 0.95226

Pg62 133.367 78.4337 114.029 Vg87 0.95680 0.96343 0.96150
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Table 14 continued

Control variables Case 7 Control variables

Cost Loss BCS Cost Loss BCS

Pg65 30.0000 34.8942 30.1782 Vg89 0.95033 0.95203 0.95138

Pg66 273.248 147.300 260.789 Vg90 0.95000 0.95000 0.95020

Pg69 287.162 147.600 219.761 Vg91 0.95000 0.95000 0.95000

Pg70 30.3594 30.3514 30.1358 Vg92 0.95000 0.95003 0.95001

Pg72 30.2032 30.0000 30.0654 Vg99 0.95331 0.95109 0.95362

Pg73 30.0000 32.4568 30.2021 Vg100 0.95000 0.95000 0.95000

Pg74 30.6347 72.9019 46.8355 Vg103 0.95386 0.95000 0.95150

Pg76 30.0000 99.7440 76.2120 Vg104 0.95000 0.95182 0.95014

Pg77 30.0000 100.000 38.2109 Vg105 0.95000 0.95000 0.95000

Pg80 35.5586 314.949 317.922 Vg107 0.95014 0.95044 0.95013

Pg85 30.1061 35.0047 30.1285 Vg110 0.95019 0.95034 0.95033

Pg87 31.2000 31.3309 31.2021 Vg111 0.95000 0.95048 0.95029

Pg89 375.178 212.100 278.570 Vg112 0.95000 0.95002 0.95003

Pg90 30.0000 100.000 37.7915 Vg113 0.95000 0.95000 0.95000

Pg91 30.0000 30.0000 30.3881 Vg113 0.95196 0.95000 0.95138

Pg92 30.4082 30.1882 30.3144 Qc5 3.38550 1.61976 2.52518

Pg99 30.0000 35.3390 32.7408 Qc34 5.32615 2.82468 4.49088

Pg100 175.950 122.893 174.423 Qc37 2.42953 16.3544 9.00684

Pg103 42.2206 43.2168 43.2486 Qc44 11.7935 0.00000 12.1570

Pg104 30.0779 35.2410 30.9248 Qc45 0.29473 8.91632 4.10189

Pg105 30.0000 40.3559 34.5829 Qc46 5.05121 2.11643 3.12907

Pg107 30.3799 53.6548 38.3505 Qc48 9.03098 4.20223 10.9424

Pg110 30.0000 34.6223 30.4602 Qc74 10.4224 3.02360 7.21445

Pg111 40.8000 40.9069 40.9773 Qc79 6.26478 6.94610 11.8837

Pg112 30.0000 38.5924 34.2614 Qc82 4.82128 15.9247 22.7880

Pg113 30.0000 39.9421 31.8849 Qc83 0.00000 23.1907 10.8083

Pg116 30.0000 30.0000 30.3280 Qc105 3.20657 8.05024 4.13828

Vg1 0.9500 0.9501 0.95000 Qc107 0.00000 13.2519 6.25001

Vg4 0.9501 0.9501 0.95010 Qc110 0.72215 18.7091 8.49107

Vg6 0.95302 0.95659 0.95472 T8 0.93277 1.00032 0.98050

Vg8 0.95023 0.95135 0.95110 T32 0.94733 1.01954 1.04934

Vg10 0.95011 0.95019 0.95098 T36 0.97501 0.96124 0.96801

Vg12 0.95000 0.95000 0.95001 T51 0.97404 0.95117 0.97532

Vg 15 0.95000 0.95000 0.95000 T93 0.90629 0.95705 0.93581

Vg18 0.95000 0.95059 0.95009 T95 1.01518 1.00230 0.99789

Vg19 0.95000 0.95183 0.95077 T102 0.90000 0.98070 0.94320

Vg24 0.95000 0.95000 0.95245 T107 0.91640 0.92551 0.92432

Vg25 0.96749 0.95036 0.95813 T127 0.90000 0.94356 0.97994

Vg26 0.95004 0.95000 0.95016 Fuel Cost ($/h) 135620.99 147577.9 138669.21

Vg27 0.95590 0.95122 0.95117 Ploss (MW) 73.71883 23.15116 37.79042

Bold values are show the results clearly found
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Fig. 11 Pareto front case 7

Table 15 Obtained solutions for the IEEE 118-bus power system case
8

Control
variables

Case 8 Control
variables

Cost VD Cost VD

Pg4 30.5462 38.8024 Vg31 0.9797 0.9975

Pg6 30.0000 36.3103 Vg32 0.9875 0.9992

Pg8 34.7139 30.9273 Vg34 0.9855 1.0045

Pg10 30.0000 49.8454 Vg36 0.9838 0.9964

Pg12 302.820 22.0928 Vg40 0.9981 1.0073

Pg15 67.3579 75.3020 Vg42 0.9713 1.0048

Pg18 39.8719 49.8056 Vg46 0.9809 0.9880

Pg19 30.2845 30.0000 Vg49 1.0091 1.0135

Pg24 30.0812 47.5201 Vg54 0.9875 1.0228

Pg25 35.3232 33.6235 Vg55 0.9792 0.9903

Pg26 142.692 11.3177 Vg56 0.9890 1.0108

Pg27 211.687 16.5952 Vg59 1.0115 1.0197

Pg31 33.2950 39.6022 Vg61 0.9890 1.0185

Pg32 32.1013 32.1000 Vg62 0.9590 0.9580

Pg34 32.8077 51.2867 Vg65 1.0131 1.0160

Pg36 30.0497 57.6172 Vg66 1.0416 1.0479

Pg40 32.6218 40.1293 Vg69 1.0185 1.0136

Pg42 34.3162 57.3848 Vg70 1.0113 0.9997

Pg46 33.2325 38.7800 Vg72 1.0059 1.0022

Pg49 35.7000 42.3636 Vg73 1.0044 0.9978

Pg54 148.476 163.052 Vg74 1.0196 1.0129

Pg55 45.7630 48.3386 Vg76 0.9681 0.9918

Pg56 30.0000 44.2482 Vg77 1.0007 1.0027

Pg59 35.7226 50.2249 Vg80 1.0141 1.0226

Pg61 135.619 140.897 Vg85 1.0109 1.0116

Pg62 136.749 120.1611 Vg87 0.9679 0.9990

Table 15 continued

Control
variables

Case 8 Control
variables

Cost VD Cost VD

Pg65 30.2030 36.2847 Vg89 1.0064 1.0006

Pg66 279.516 224.630 Vg90 0.9996 0.9804

Pg69 284.352 307.584 Vg91 1.0195 1.0095

Pg70 30.0000 43.4691 Vg92 1.0084 1.0128

Pg72 30.2862 30.0000 Vg99 0.9758 0.9531

Pg73 30.1156 31.6706 Vg100 0.9976 1.0187

Pg74 30.3171 30.3578 Vg103 0.9876 0.9862

Pg76 31.9881 35.6065 Vg104 0.9660 1.0004

Pg77 30.4159 34.0665 Vg105 0.9801 0.9805

Pg80 343.484 577.000 Vg107 0.9913 1.1000

Pg85 30.0000 35.8900 Vg110 1.0060 1.0262

Pg87 31.2315 31.2000 Vg111 0.9620 0.9785

Pg89 385.730 247.777 Vg112 1.0038 0.9873

Pg90 30.0000 33.7837 Vg113 1.0156 0.9602

Pg91 30.0000 40.9193 Vg113 0.9969 1.0022

Pg92 30.0000 44.3722 Qc5 9.3782 8.3015

Pg99 33.6681 37.8211 Qc34 8.8518 13.6746

Pg100 164.083 167.1058 Qc37 6.8163 2.5103

Pg103 42.7060 54.3541 Qc44 11.488 19.4873

Pg104 30.9303 31.6251 Qc45 22.4924 25.000

Pg105 30.0000 33.4794 Qc46 17.1545 16.8897

Pg107 32.1084 41.0981 Qc48 7.4753 3.4575

Pg110 30.9871 30.0000 Qc74 12.709 18.8601

Pg111 41.2411 45.3562 Qc79 2.1015 15.4595

Pg112 31.9849 37.8591 Qc82 15.6375 19.7248

Pg113 31.0626 34.2657 Qc83 18.4274 15.2675

Pg116 31.2005 56.0237 Qc105 9.5776 6.0153

Vg1 0.9955 0.9972 Qc107 17.286 1.8649

Vg4 0.9848 0.9929 Qc110 20.0789 23.0504

Vg6 0.9769 0.9915 T8 0.9958 0.9560

Vg8 0.9817 0.9775 T32 0.9797 0.9761

Vg10 1.0019 1.0019 T36 0.9947 0.9683

Vg12 0.9997 1.0122 T51 0.9729 0.9596

Vg 15 1.0197 1.0215 T93 1.0279 0.9861

Vg18 1.0324 0.9851 T95 0.9353 0.9556

Vg19 1.0239 1.0301 T102 1.0435 0.9401

Vg24 1.0058 0.9636 T107 0.9256 0.9155

Vg25 1.0239 1.0588 T127 0.9563 0.9624

Vg26 0.9905 1.0560 Fuel Cost ($/h) 135839.01 141210.36

Vg27 1.0118 1.0118 VD (p.u.) 0.6489 0.2229

Bold values are show the results clearly found
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Table 16 Execution times

MOBSA MODE SPEA MALO

Case 1 118.60s 130.71s 160.45s 149.02s

Case 2 118.55s 117.58s 145.01s 131.31s

Case 3 126.68s 132.12s 152.40s 148.92s

Case 4 202.18s 203.58s 257.16s 235.74s

Case 5 205.65s 202.77s 253.04s 238.91s

Case 6 206.06s 214.86s 262.46s 239.74s

Bold values are show the results clearly found

Fig. 12 Pareto front case 8
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