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Abstract
The forecast of electricity demand in recent years is becoming increasingly relevant because of market deregulation and
the introduction of renewable resources. To meet the emerging challenges, advanced intelligent models are built to ensure
precise power forecasts for multi-time horizons. The use of intelligent forecasting algorithms is a key feature of smart grids
and an effective tool of resolving uncertainty for better cost and energy efficiency decisions like scheduling the generations,
reliability and power optimization of the system, and economic smart grid operations. However, prediction accuracy in
forecasting algorithms is highly demanded since many important activities of power operators like load dispatch depend
upon the short-term forecast. This paper proposes a model for the estimation of the consumption of electricity in Agartala,
Tripura in India, which can accurately predict the next 24 h of load with and estimation of load for 1 week to 1 month. A
number of specific characteristics in the city have been analysed in order to extract variables that could affect the pattern of
electricity consumption directly. In addition, the present paper shows the way to significantly improve the accuracy of the
prediction through ensemble machine learning process. We demonstrated the performance of individual Random forest and
XGBoost along with their ensemble. The RF and XGBoost ensemble obtained an accuracy with an improvement of 15–29%.
The analyses or findings also provide interesting results in connection with energy consumption.

Keywords Energy prediction · Random forest · Xgboost · Ensemble machine learning · Short-term load forecasting

1 Introduction

The demand for electrical energy is increasing with rising
economic growth [1, 2]. The efficiency of energy plants
decreases in the event of an immediate need for additional
energy, and they generate toxic exhausts. An appropriate
energy production plan can reduce the detrimental effect of
the plants [3]. Moreover, with the emergence of renewable
energy resources and smart grids, the prediction of elec-
trical energy consumption or load forecast is getting more
essential. Load forecasting, which aims to predict future load
demand means projecting how the electrical load of an indi-
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vidual apartment, a grid, an area, and even a whole country
will evolve in the future. This forecast is carried out in one or
more phases over a time period called the prediction horizon.
An hour or several-hours ahead predictions called Short-term
load forecasting (STLF) is generally needed for program-
ming and energy transfer scheduling, unit allocation, and
decisions about load imbalance, with lead times of half an
hour or one day. Some increase in STLF’s accuracy can thus
result in an improvement in power management efficiency
and a reduction in power system costs. Regarding mainte-
nance and power management strategies, forecasting for a
longer horizon is also useful. Increasing the accuracy by 1%
leads to a massive decrease in operating costs [4], so it is
interesting to make the smallest change in prediction error.
The error can be a power overestimation or underestimation,
which both lead to problems balancing demand and supply.
The idea of the smart grid involves the use of advanced and
intelligent computing technologies, including power predic-
tion to control supply so as to meet demand in real-time. The
management of supply is strongly associated with the spin-
ning reserve. Prediction of load then includes estimating the
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Fig. 1 a Site location of Agartala, b electrical energy consumption distribution

spinning reserve aswell,which is crucialwhendemand raises
unexpectedly, generators break down or fails. The spinning
reserve is able to compensate for any shortcomings quickly
when the forecast is right. For longer horizons, the load pro-
file forecast dictates the ability to add to the entire network,
to avoid an emergency.

For recent intelligent energy management systems, load
electricity demand forecasting is important [5]. It plays a
key role in the allocation of short-term load and long-term
planning for a new generation and transmission infrastruc-
ture. An accurate forecast also allows for better cost and
energy efficiency decisions. More and more load forecasting
applications are being made each day. In this regard, many
works have devoted their content to the domain of electric-
ity demand prediction [6, 7]. Some of the literature predicts
that weather variables like temperature, humidity, rainfall, or
season may help to influence energy consumption [8], while
other studies estimated on the basis of socio-economic and
population variables [9]. While the prediction of electricity
consumptionbasedongeneral variables is significant, a better
result can be achieved if the model of prediction is altered.
To validate this assumption, a forecasting model is devel-
oped for a particular city’s power consumption i.e. Agartala,
Tripura located in India, based on the original data obtained
from State load Despatch centre. The model is developed
using machine learning ensemble of Random Forest (RF)
and extreme gradient boosting (XGBoost) [10]. The loca-
tion of the site [11] and the distribution of electrical energy
consumption is shown in Fig. 1.

Hence, the contribution of this paper refers in multiple
directions to the prediction of electricity consumption:

1. First, an RF and XGBoost ensemble model for Agartala
based on real data is presented in this paper.

2. It demonstrates the potential of the RF-XGBoost ensem-
ble technique.

3. It analyses the output of the model with different models
of a similar standard for multiple time horizons.

4. Finally, the research discusses the different parameters
that affect the forecast and identifies the most important
parameters.

The rest of the paper is organized as follows. Section 2
presents a literature review of related work, Sect. 3 delivers
the hypothesis ofmachine learningwith boosting and ensem-
ble. Then, Sect. 4 presents the proposed model, and Sect. 5
demonstrates the analysis of the results after the modelling
process. Finally, Sect. 6 concludes this paper.

2 Related work

Prediction is a statistical analysis applied to sequences of time
series,which implies that several factors, including future and
historical observations, have to be tested. The load signal is
a time series and a forecasting tool must predict its future
development from historical observations and some predic-
tor variables that influence the future load. In the first steps,
the forecast issue was discussed by statistical methods like
regression, multiple regression, smoothing, weighted least
squares, etc. up to fuzzy logic and machine learning. The
first load prediction studies showed a regression [12] whose
authors employed linear regression for load prediction, while
an approach based on nonlinear load regression has been
developed byHyde et al. [13] andBroadwater et al. [14]. Sev-
eral autoregressive modelling approaches have been used:
El-Keib et al. [15] worked on short-term prediction models
using exponentially smoothing, and Hurang [16] proposed
autoregressive model for short-term load prediction. Many
forecasting model designs were developed for very short-
term horizon; for less than an hour, for short-term; for an
hour or more upto a week, for medium-term; for one or more
months and for a longer time; for one to several years. The
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techniques of modelling can be classified into statistical, arti-
ficial intelligence, and hybrid.

In statistical models, the output is related directly with
inputs via mathematical equations. The implementation
of these techniques is easy and is well suited short-term
predictions, but fails to accommodate the nonlinearity of
the load series which is why an intelligent technique is
demanded. Statistical methods comprise linear regression
[17], multiple regression [18], autoregressive moving aver-
age (ARMA) [19], and autoregressive integrated moving
average (ARIMA) [20], etc.

Artificial intelligence (AI) techniques are black-box
approaches of unknown internal dynamics. Three major
methods are included in this category, including fuzzy infer-
ence system (FIS) [21] artificial neural networks (ANN) [22,
23] and support vector machines (SVM) [24]. In FIS, a col-
lection of linguistic rules for fuzzy structures will decide
the association between input and output. While in SVM
and ANN, this association is determined by training. The
problem of the ANN model to find solutions for local opti-
mization problems and the tendency of both under-fitted and
over-fitted is addressed by SVM through empirical risk min-
imization principle [25, 26]. Another popular approach is
random forest (RF) [27, 28], which rely on training. The
improvement in RF is its lower sensitiveness towards param-
eter values and suitable for nonlinear estimation [29]. All the
AI-based techniques require an optimumarchitectural design
and tuning of parameters, which can be effectively handled
through hybridization.Recently,Khayatian et al. [30] applied
ANN to predict energy performance certificates of domestic
buildings in Italy. Ascione et al. [31] investigated the asso-
ciation of energy usage and occupant thermal comfort in the
prediction of energy performance.

A hybrid or combinedmodel of SVMandmulti-resolution
wavelet decomposition was developed by Chen and Tan [32]
for the prediction of power utilization in different buildings.
The precision of linear and regression GP was contrasted
by Rastogi et al. [33] which revealed that the reliably of
GP beats linear regression by four times while simulating
a building efficiency. Tree-based predictive models are also
evaluated by Papadopoulos et al. [34] for the prediction of
energy efficiency in buildings. A recent short-term forecast
of power using RF was studied by Wang et al. [35] for
office building parameters of envelope, climate, and time.
In that study, RF was shown to be dominant over regres-
sion trees and SVMwhile forecasting hourly electricity load
in buildings. Several implementations of Deep Neural net-
works are also available. Ahmad et al. [36] predicted energy
demand utilizing climate, date, and building usage rate. Lee
et al. [37] computed the country-wise environmental con-
sumption level with a big data analytics tool. Li et al. [38]
utilized Autoencoder to extract the building energy demand
and forecast future energy consumptions. Kim et al. [39] uti-

lized State Explainable Autoencoder to predict household
electricity consumption with 5 years of data.

3 Machine learningmodel and variables

In order to increase prediction accuracy over conventional
energy consumption methods, Machine learning (ML) tech-
niques have been developed [40, 41]. The prevalent approach
of forecasting electricity consumption is Regression analysis
which is based on the concept that there is a relation between
the amount of energy usage and other meteorological param-
eters such as temperature, precipitation, air density, humidity,
andwind speeds. In this section,we review thepredominantly
used algorithms of machine learning in energy consumption
forecasting domain such as RF and XGB along with their
ensembles.

3.1 Random forest model

In the ML context, the RF models can be seen as bagging
strategies with minor changes. In RF, the bagging estimator
algorithm is enhanced where decision trees form the base
estimators. Random samples from the training set are drawn
in this technique. In contrast to bagging, however, where each
tree has a full range of features, RF draws a few features
to train each tree for the best split. This allows the trees
more independent, making the predictionmore effective than
bagging. As each tree is trained by a subset of features, it is
also faster. On the other hand, Bagged decision trees choose
to split variables in a greedyway that reduces errors. As such,
even Bagging can keep several structural similarities, and
their predictions are indeed strongly correlated. A mixture
of several models’ predictions in the ensemble thus works
best if the predictions of the submodels are not correlated or
correlated very poorly. RF modifies the algorithm to learn
the sub-trees and minimize the correlation between all sub-
trees predictions. While choosing a split point, the learning
algorithm is allowed to select the best split point in every
variable. This function is modified by the RF algorithm so
that only a random sample of features can be checked. The
steps of RF are as follows:

1. Generate random subset (bootstrapping) in the sample.
2. Select a random feature set for the optimal split for each

node in the decision tree.
3. Generate a model decision tree for each subset.
4. Aggregate forecasts from all decision trees and the aver-

age for final forecasting.
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3.2 Ensemble learning

Ensemble is the strategy of combining various learners
(single models) to improve prediction and model stability
collectively. All the forecasts are integrated into ensemble
learning and more than one learner is equipped to accom-
plish the same classification or regression goal [42]. Unlike
a ML model, which attempts to form a single conclusion in
the training system, ensemble models propose and integrate
multiple conclusions. The main purpose of the model is to
reduce generalization error by reducing the variance or bias
[43]. Each learner of ensembles is a base learner and the pre-
diction of an ensemble of base learners is enhanced compared
to individual base learners. Error in ensemble model is given
by [44],

Error � (
E

[
y′] − y

)2 + E
(
y′ − E

[
y′])2 + σ 2

e

Error � Bias2 + Variance + Irreducible error (1)

Bias error tends to measure the mean difference between
the expected and real prediction values (i.e. how much on
an average are the predicted values different from the actual
values). A high bias error implies the model is inaccurate,
and important trends tend to be lacking. On the other hand,
variance quantifies how the results of the same observation
are different (i.e. the predictionmade on the sameobservation
different from each other). A model of high variance over-
passes and underperforms outside of the training instances.
Irreducible error is the error ensuing from noise present in
the dataset like missing values.

3.3 Boosting

In ensemble learning, boosting is a popular technique used
to generate an accurate classification or regression resulting
from a number of poor classification systems. It can be done
by building models from training data through assigning a
weight to the instance. It is an evolving process that generates
amodel for correcting sample errors from the previousmodel
in the next iteration andmodel add-ons are continued until the
training data prediction is accurate or a threshold is reached.
At each iteration, the weight of an instance is modified and
for an incorrectly classified instance, the weight is increased
for the next iteration. Boosting decreases the bias error and
therefore creates a better prediction model.

Step 1: Divide the training data into ‘n’ sub-sample.
Step 2: Train ‘n’ decision trees.

Build decision tree (based on features) for each sub-
set

Step 3: Generate tuple predictions independently of each
tree for the test set.

Step 4: Combine and build a final forecasting model

3.4 Gradient boosting

The most effective predictive model creation approaches are
gradient boosting. The principle of boosting was based on
a possibility to increase the development of a slow learner.
The first design of the boosting that was successful in the
project was Adaptive boosting or Adaboost. The first highly
effective binary grading boost was Adaboost which is used in
small decision trees. The training data use tree performance
after the development of the first tree to allocate weight to the
next tree. More weight is assigned to the data that are hard to
forecast while those can be easily predicted are assignedwith
less weight. Sequentially, models are developed, adjusting
the weights of the training data, each influencing the learn-
ing of the next tree in a row. Predictions for new data are
made after all trees are completed. Because the algorithm
emphasizes error correction, smooth data, i.e. free of out-
liers, is important. The Gradient Boosting model comprises
of the following: loss function, decision trees, and additive
models.

3.5 Extreme gradient boosting (XGBoost)

XGBoost, because of its fast parallelism and low predictive
error, is the flexible and efficient ML implementation tech-
niques. XGB uses the original Friedman’s gradient boosting
model theory [45]. The training data xi has been trained to
predict a target variable ‘yi’ and an ensemble of ‘K’ Clas-
sification and Regression Trees (CART) [46] {T1 (xi, yi)…
TN (xi, yi)} where xi is the given training set of descriptors.
The XGB implementation through the gradient boost deci-
sion tree algorithm has shown that it is a highly efficient ML
method. XGB’s prediction results are high and run time is 10
times faster than conventional methods of gradient boosting.
The XGB ensemble creates a new model that evaluates the
errors of the previous model and integrates with a gradient
descent approach to minimize the loss to obtain the overall
prediction. The following advantages also make XGBoost’s
versatility to forecast variable instability:

• Multithreaded parallelism is incorporated into predictions
incorporating large time-series data, hence faster than
other common ensembles.

• The availability of L1 and L2 regularizations functions.
• There is no need to normalize the data in the tree structure
model.

• Ability to handle missing data.
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The data d{(xi,yi): i � 1 to n} with ’n’ sample of ’m’
feature, while y

′
i is defined as the model prediction value

given by,

y
′
i �

J∑

j�1

f j (xi ), f j ∈ N (2)

where ‘ f j ’ is the regression tree and ‘ f j (x)’ represents the
prediction score given by j-th tree to the data sample. N �
{f (x)�Wp(x)} (p:Rm →T,W εRT ), the space of regression
tree (CART), where ‘W ’ is the leaf weight and ‘p’ is the
structure of each treemapping to its corresponding leaf index.
Lastly, ‘T ’ represents the number of leaf nodes in the tree.
The function ‘ f j ’ is learned by minimizing the objective
function,

� �
n∑

i�1

l
(
yi , y

′
i

)
+

J∑

j�1

�( fk) (3)

where ’l’ is the training loss and the regularization term ’�’
penalizes model complexity in order to avoid over-fitting.
The optimal weight of leaf is given by,

�( f j ) � λ1T + 1/2λ2||wt ||2 (4)

where λ1 and λ2 are the degree of regularizations. ‘T ’ and
‘wt ’ are leaf nodes and score, respectively, Assuming, y

′
i

(t) prediction at ’t’ iteration, ‘ ft ’ is added to minimize the
objective,

�(t) �
n∑

i�1

l
(
y, y′(t−1) + ft (x)

)
+ �( ft ) (5)

The first- and the second-order gradient on ′l ′ are ∂y′(t−1)l(
y, y′(t−1)

)
and ∂2

y′(t−1)l
(
y, y′(t−1)

)
denoted by ′g′

i and
′h′

i ,
respectively. Hence, using second-order Taylor expansion,
Eq. (5) can be written as,

�(t) �
n∑

i�1

[
gi ft (x) +

1

2
hi ft (x

2)

]
+ �( ft ) (6)

where gi and hi is the second-order gradient on ’l’. It is
defined as Ik � {f i |p(xi) � k} as the instance set of leaf ‘k’.
Hence, we can write Eq. (6) by expanding ‘�’ as,

�(t) �
n∑

i�1

[gi ft (x) +
1

2
hi ft

(
x)2

]
+ λ1T +

1

2
λ2
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k�1

w2
k
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k�1

[

⎛

⎝
∑

i∈Ik
gi

⎞

⎠wk +
1

2
(
∑

i∈Ik
hi + λ1)w

2
k ] + λ2T (7)

The optimal weight, w∗
k of leaf ‘k’ on a fixed structure

q(x) is given by,

w∗
k � − Gk

Hk + λ2
(8)

whose value is computed by,

�∗ � −1

2

T∑

k�1

G2
k

Hk + λ2
+ λ2T (9)

where Gk � ∑
i∈Ik gi , Hk � ∑

i∈Ik hi and � represents the
scoring function for the tree structure where smaller value
means better tree structure. Both the gradient and second-
order gradient statistics on each leaf are to be added before
implementing the scoring algorithm to get the overall reliable
score. The optimal split finding algorithm and loss reduction
after the split is the key which is discussed later.

4 Proposedmodel

4.1 Data

For forecasting the overall electricity load in Tripura, original
data from 2016 to 2019 have been collected from State Load
Despatch Centre (SLDC), Tripura State Electricity Corpo-
ration Limited (TSECL), Agartala, which is the only source
of electricity consumption data in Tripura. The weather data
have been obtained fromModern-EraRetrospectiveAnalysis
for Research and Applications (MERRA)-2 meteorological
data for latitude 23.831° north and longitude 91.287° east
provided by National Aeronautics and Space Administration
(NASA)/GoddardSpaceFlightCenter [47].All the data gath-
ered from two different sources were preprocessed to ensure
error-free prediction. The overall electricity load data from
2016 upto September 2019 had some missing values which
were filled up bymost probable average valuesmanually. The
following attributes were finally considered: datetime, tem-
perature, pressure, humidity, air density, wind speed, wind
direction, and Agt_load (total energy consumed). The distri-
bution of the important parameters in the dataset is shown in
Fig. 2.

4.2 Selection of model inputs

The Pearson correlation heatmap is used to detect the most
influencing parameters of past data on future energy con-
sumption. The electricity consumption load has, of course,
the greatest similarities at the same hour of previous days (in
case of 24 h ahead prediction). This plot tends to push for
every hour of the day to build a model for 1-day, 1 week,
and 1 month predictions. Therefore, the consumption load
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Fig. 2 The distribution of load,
temperature, and pressure from
2016 to 2019

of all the days at every particular hour is selected as input of
the model. In addition, two peak hours of a day (Hour_x and
Hour_y), Day_of_week, Day_of_year, and peak seasons of
the year (Day_of_year_x and Day_of_year_y) are chosen as
inputs. The other method to ensure the collinearity between
variables is the feature importance plot which is computed in
terms of F-score. It is found that few parameters are weakly
correlated enclosing poor F-score likeMonth, Day_of_week,
etc. can be safely dropped. The parameters with a high score
are usually chosen as the input of the model. However, the
immunity of the machine to irrelevant inputs is ensured.
The Pearson correlation heatmap and Feature importance are
plotted and discussed in the subsequent sections.

4.3 Model selection and implementation

The prediction for electricity load in a state is very essen-
tial; this helps the operator conserve power and reduce waste.
Because the noisy disturbance and predictability are not obvi-
ous, the accurate forecast of electricity load does not seem
to be easy. In this paper, we propose a model for predic-
tion of the electricity load in Agartala, Tripura based on a
machine learning ensemble called RF-XGBoost. We have
used the XGBoost regressor for this work because it was
the fastest and strongest model for supervised learning to
predict the use of electricity in Agartala. We have com-
pared other approaches such as SVM, neural network, lone
RF, and Adaboost to perform the prediction process but the
results achieved were less accurate than results obtained with
XGBoost. Also, the reasons for the selection of an XGBoost

regressor include the ability to simultaneously predict future
values of more than one variable and to model the nonlinear
relationship in the data structure.

Initially, the dataset is split into training and test data
in a fivefold CV strategy. Fast algorithms, like decision
trees, are frequently seen in ensembles. The RF are deci-
sion tree ensemble that enhances the variance of base models
by incorporating the principle of bagging with random sub-
spaces (CART), enhancing this model ’s efficiency. In the
proposed model, multiple RF is built on the training data
which is further trained by XGBoost. Generally, XGBoost
is used to train gradient-boosted decision trees that perform
well only on training data and sometimes cause overfitting
because of the flexible model. Hence, in this study, RF is
trained by XGBoost since RF randomly select data points
when building trees and considers random subsets of features
while splitting nodes. The optimal split finding algorithm,
as well as the loss reduction after the split, are similar to
the ideas referred in Ref. [10]. The best split implementa-
tion is carried out in XGBoost that supports the exact greedy
algorithm. The following parameters are set for XGBoost
training: learning rate (eta)� 1, booster� ‘gbtree’, ’subsam-
ple’ and ’colsample_bynode’ � 0.8. The ’max_depth’ � 5,
’num_parallel_tree’� 100 is preferred. To prevent themodel
from boosting multiple random forests, num_boost_round is
set to 1. The model has been further validated with a ten-
fold CV strategy, which is an established practice to evaluate
model performance. The experiments are executed onPython
environment on Windows GPU platform with an Intel Core
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Fig. 3 The overall prediction model

Fig. 4 Pearson correlation heatmap

i7-4790 processor, 3.6 GHz with 16 GB RAM. The overall
prediction model is shown in Fig. 3.

5 Experimental results

Pearson correlation heatmap is plotted to obtain the corre-
lations between the parameters of two datasets (i.e. depen-
dencies among electricity load andweather parameters). Few
parameters are excluded from the heatmap (showsweak rela-
tionships among the variables), while few attributes like year,
month, day, week, hour, etc. are additionally plotted to search
for correlations and added for future training. The plotted
heatmap is shown in Fig. 4.

Feature importance graph corresponds to a technique that
allows input parameters to be assigned a score to a prediction
model that shows the relative significance of each variable
to predict. The feature importance is therefore crucial for the
parameters within the dataset to weed out irrelevant data and
identify the most significant features in the dataset as shown
in Fig. 5.

From the plotted heatmap and feature importance graph,
attributes that have a considerably low influence on energy
consumption are not included for training. From the correla-
tion heatmap, it is revealed that there exist correlations among
various parameters. Hence, a bivariate correlation is plot-
ted in which the Agt_load is chosen as a function of all the
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Fig. 5 Feature importance graph
of parameters with F score

Fig. 6 Bivariate density matrix

attributes. The Bivariate matrix for major attributes of the
dataset is shown in Fig. 6.

From the above correlation plot, it is expected to show
strong linear correlation of Energy consumption with tem-
perature humidity, air density, and pressure. Recalling the
most correlated features, we plot Agt_load as a function of
Temperature, Humidity, Air density, and Pressure on the var-
ious timescales (mean hourly andweekly) as shown in Fig. 7.

After obtaining the correlation of variables, the model
is trained on selected parameters using the proposed RF-

XGBoost ensemble with parameter settings as discussed
earlier. Figure 8 shows the comparisonof actual andpredicted
values of the model while attempting 24 h ahead forecast for
1 day (01/07/2019).

To predict energy consumption, a simple practice is fol-
lowed. We separated the target variable i.e. ‘Agt_load’ from
the features matrix containing Temperature, Humidity, Air
density, Pressure, Hour etc. for representing strong corre-
lations in the graph. Then, a fivefold CV procedure was
executed on themodel for predicting future energy consump-
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Fig. 7 Graph of Agt_load with Temperature, Humidity, Air density and Pressure on the various timescales

Fig. 8 One day (24 h) ahead
forecast for 1 day (01/07/2019)

tion (i.e. Agt_load) for multiple time horizons separately.
The graphical comparison of actual and predicted values of
Agt_load for multiple time horizons (i.e. 1 day, 1 week, and
1 month) is shown in Fig. 9.

5.1 Evaluation of model performance

To assess the execution of the proposed model, mainly two
different measures that best suits the model (RF_XGBoost)
are used, the coefficient of determination (R2) and root mean
square error (RMSE) [48–50]. R2 signifies the percentage

variation of prediction values whose range is between 0 and
1. It is given by,

R2 � 1 −
∑

(Actual − Predicted)2
∑

(Actual − Mean_actual)2
(10)

RMSE is the variability test of the predicted values and
the actual values of the model. It is defined as the square root
of the mean squared error given by,
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Fig. 9 Comparison of actual and
predicted values for 1 day,
1 week, and 1 month

Table 1 Performance evaluation
of RF-XGBoost model with
other standard models for 24h,
1 week, and 1 month electrical
energy consumption prediction

Model 1 month prediction 1 week prediction 24-h prediction

R2-score RMSE R2-score RMSE R2-score RMSE

Support vector regression 0.277 4.913 0.276 4.915 0.286 4.856

Neural network 0.367 3.461 0.371 3.312 0.379 3.241

Random forest 0.576 3.219 0.580 3.111 0.588 3.172

Tuned random forest 0.580 3.221 0.581 3.213 0.624 2.817

AdaBoost regressor 0.659 3.992 0.667 2.917 0.725 2.686

XGBoost 0.711 2.914 0.713 2.886 0.762 2.463

RF-XGBoost (proposed) 0.814 1.997 0.879 1.132 0.914 0.955

RMSE �
√

∑ (Predicted − Actual)2

N
. (11)

A comparison of the different models in terms of R2 and
RMSE for 24h, 1 week, and 1 month prediction is shown in
Table 1.

The comparative analysis resulted in a higher rating of
the proposed RF-XGBoost ensembles than other models for
the short-term (1 day–1 week) and the long-term (1 month)
electricity consumption forecast. Therefore, for both short-
and long-term electrical energy consumption predictions,
the proposed RF-XGBoost ensemble seems to be a superior
option.

6 Conclusions and future work

This paper proposes a new ensemble model for the predic-
tion of overall electrical energy consumption in Tripura. The
ensemble of RF and XGBoost, which are among machine
learning techniques, are used to create the model. The model
has examined multiple parameters such as Temperature,
Humidity, Air density, and Pressure which could affect the
electricity load directly and shown to be a useful and promis-
ing criterion in the current prediction of overall electrical
energy consumption. Also, it showed how data analyses dif-
ferentiated by time of the day could significantly improve the
accuracy as reflected in the test results. The study attempted
to advance the new idea of using RF instead of decision trees
with XGBoost. The R2 score of 0.914 reflects the accuracy
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and revealed that this approach was successful to provide
valuable statistics in connection with the Tripura power con-
sumptionprediction.Theproposedmodel has been compared
with other renowned machine learning algorithms, including
SVR, NN, and Adaboost on the same data using various
statistical measures. The obtained result suggests several
conclusions of RF-XGBoost ensemble: (1) The efficiency in
comparison with single structure or other analogousmethods
is much higher. (2) The model is suitable for multiple time
horizon ( short-term, medium-term, and long-term) predic-
tions.

We are presently investigating various options of integrat-
ing renewable sources of power and accumulating data to
extend this work to improve its accuracy. We are also explor-
ing other possible ensembles of machine learning towards
the above-mentioned areas.
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