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Abstract
The accurate and stable prediction of electricity consumption is essential for intelligent power systems in rapidly developing
countries. Grey prediction model is one of choices for prediction under the condition of limited historical data. Nonetheless,
it seems rather sceptical using single-variable grey prediction model to predict the dynamics of a complex system. This paper
presents a novel multivariable grey prediction model based on first-order linear difference equation for long-term electricity
consumption prediction. The proposed model solves the problem of parameter estimation and variable prediction deriving
from different approaches through rewriting the whitenization equation of multivariable greymodel (MGM(1,m)). To validate
the effectiveness of the proposed hybrid model, the electricity consumption is estimated and predicted over the data from
Shanxi province and Beijing city in China from 1999 to 2018. The results show that the hybrid model provides a better
estimation and prediction performance compared with other prediction model for predicting electricity consumption.
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List of symbols

Grey relational analysis

χ0(k) Reference data at time step k
χi (k) Comparative data of the ith influencing factor at time

step k
χ̃0(k) Normalized reference data at time step k
χ̃i (k) Normalized comparative data of the ith influencing

factor at time step k
ζ0i (k) Grey relational coefficient between χ̃0(k) and χ̃i (k)
ρ Distinguishing coefficient
γ0i Grey relational grade between reference and com-

parative data sequences

Multivariate greymodel

X (0) Matrix of original data sequence
X (0)
i Original data sequence of the variable i
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x (0)
i ( j) Original data of the variable i at time step j
X (1) Matrix of accumulated data sequence
X (1)
i Accumulated data sequence of the variable i

x (1)
i ( j) Accumulated data of the variable i at time step j
Z (1)(k) Vector of the background values at time step k
x̂ (1)
i (k) Estimated sequence of the variable x (1)

i at time step
k

X̂ (0)(k) Estimated sequence of the variable x (0)
i at time step

k

1 Introduction

1.1 Background

With the increase in population and large-scale industrial-
ization, electricity consumption around the world is rising
rapidly. Due to the non-storage of power resources and the
uncertainty of coal, hydro, wind, and solar power, electric-
ity consumption forecasting is very important for managing
power resources successfully and using energy effectively.
Excessive electricity supplying will lead to energy invest-
ment waste and energy dissipation, while insufficient elec-
tricity supplying will hinder economic development and
social progress. Hence, accurate and reliable electricity
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consumption forecasting is critical to sustainable energy
management [1]. Moreover, precise electricity consumption
forecasting can guide government strategies for future energy
usage and development.

1.2 Motivation and related work

There are various factors which affect electricity consump-
tion, such as seasons, holidays, electricity policy, electricity
price, human behaviours, social condition, political condi-
tions, economy, technological development level, and so on
[2], which makes the task of accurate prediction of elec-
tricity consumption more challenging. To tackle such tough
problem, lots of forecasting techniques have been developed.
These methods mainly include regression models [3–6], sta-
tistical models [7–10], machine learning methods [11–14],
and so on. However, these widely utilized and relatively
mature methods have a common limitation: requiring a great
deal of trainingdata. Practically, data for electricity consump-
tion along with its influencing factors appear to be limited.
Accordingly, the prediction model we use must be effective
under this constraint.

It is worth noting that the grey forecasting model devel-
oped by Deng [15] is famous for finding the inner law based
on incomplete information and few samples. Grey model
(GM) with first order and one variable referred to GM (1, 1)
has been utilized widely [16–23]. For example, Akay et al.
[16] proposed a grey predictionmodel of single variable with
rolling mechanism to predict the Turkey’s total and indus-
trial electricity consumption. Lee et al. [17] developed an
improvedgrey forecastingmodel of one variable,which com-
bines residual modification with genetic programming sign
estimation. Xiong et al. [18] proposed a novel GM (1, 1)
model based on optimizing initial condition according to the
principle of new information priority. The optimized model
and five other GM (1, 1) models are applied in the modelling
of China’s energy consumption and production. Hamzacebi
et al. [19] proposed an optimized GM (1, 1) forecasting tech-
nique called Optimized GM (1, 1) to predict total electric
energy demand of Turkey. The Optimized GM (1, 1) tech-
nique is implemented in direct and iterative manners. Zhu
et al. [20] proposed to establish a self-adaptive grey fractional
weightedmodel to predict Jiangsu’s electricity consumption,
which efficiently enhances the prediction quality of elec-
tricity consumption. This model introduced the fractional
weighted coefficients to design a novel initial condition,
which can capture the dynamic characteristics of the elec-
tricity consumption observations. Ding et al. [21] designed
a novel optimized grey prediction model based on the prin-
ciple of “new information priority”, which combines a new
initial condition and rollingmechanism.Wang et al. [22] pro-
posed a novel hybrid forecastingmodel based on an improved
grey forecasting mode optimized by multi-objective ant lion

optimization algorithm to obtain satisfactory forecasting
results with high accuracy. Xu et al. [23] proposed a novel
grey model with optimal time response function, in which
particle swarm algorithm is used to obtain optimal values
of unknown variables for shrinking simulation errors and
improving adaptability to characteristics of raw data.

However, realistic and complex systems are often con-
sisted of many variables which are not independent of each
other and have mutual correlation among them. Therefore,
GM (1, 1) with one variable is not suited to reflect more
complex dynamics behaviours of a system. To deal with
this issue, research on multivariable grey model (MGM(1,
m)) (m represents the number of variables and m ≥2) has
gained extensive attention [24–32]. For example, Wu et al.
[24] proposed a novel multivariable grey forecasting model
based on fractional-order accumulation. Senapati et al. [25]
proposed a multivariable grey model based on convolution
integral for solar energy generation prediction. Dang et al.
[26] proposed a new electricity demand prediction model
which is based on the development trend of multiple driving
variables. Zhong et al. [27] proposed a novel multivari-
able grey theory model for short-term photovoltaic power
generation volume forecasting in which particle swarm
optimization algorithm is used for background value opti-
mization. Bahrami et al. [28] proposed a newmodel based on
wavelet transform and grey model for electric load forecast-
ing in which the wavelet transform is used to eliminate the
high-frequency components of the previous data. Rasheed
et al. [29] developed an improved grey forecasting model
through combining background value’s interpolation opti-
mization with original data sequence’s data transformation
to predict electricity consumption. Wang et al. [30] pro-
posed to employ rollingmechanismanddifferential evolution
algorithm to improve the prediction accuracy of the original
grey model. Ayvaz et al. [31] proposed a nonhomogeneous
discrete grey model for predicting yearly net electricity con-
sumption inTurkey. Sun et al. [32] established amultivariable
grey model by combining particle swarm optimization with
improved grey theory to forecast electricity consumption in
Bayannur region.

Although the above research on multivariable grey model
has obtained great improvement in the performance of
electricity consumption prediction, there are still inherent
problems to be solved. One of the problems is that in these
models the parameters estimation and variables prediction
are solved through different approaches, which degrades
the accuracy of grey prediction model for some data [33].
If the parameters estimation and variables prediction are
derived from the same approach, the prediction error will
be greatly reduced. In this paper, based on the difference
equation [34], an improved MGM(1,m) is proposed through
rewriting thewhitenization equation ofMGM(1,m) as a first-
order linear difference equation with constant coefficients to
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make parameters estimation and variables prediction derive
the same approach; thus, the accuracy will be significantly
improved.

1.3 Contribution

Themain contributions and novelty of this paper can be sum-
marized as follows: (a) an improvedmultivariable greymodel
(IMGM(1,m)) is developed, which solves the problem of the
parameter estimation and variable prediction using differ-
ent approaches.(b) A hybrid forecasting model is developed
based on IMGM(1, m) for electricity consumption.

1.4 Article structure

The rest of the paper is organized as follows: Section 2 pro-
vides a brief description of existing techniques related to our
proposed method, including grey relational analysis, statisti-
cal correlation analysis, and MGM(1, m). Section 3 presents
the proposed improved multivariable grey model. In Sect. 4,
two cases of electricity consumption prediction including
Shanxi province and Beijing city are adopted to demonstrate
the performanceof the proposed approach. Someconclusions
and discussion of this study are drawn in Sect. 5. Figure 1
displays the schematic overview of the paper.

2 Materials andmethods

2.1 Grey relational analysis

Before performing the estimation of variables, correlation
analysis is required to do in order to quantitatively determine
the degree of correlation among factors. Grey relational anal-
ysis introduced by Professor Deng [15] is one of the most
widely used methods in grey system theory, which is appro-
priate for solving complicated interrelationships between
multiple factors and variables. In this paper, we use grey
relational analysis to quantitatively analyse the degree of
association among factors before performing estimation of
variables. The steps of grey relational analysis are as follows:

Step 1: Determine the reference sequence and the com-
parative sequence.

Supposeχ0(k) is the reference sequence;χi (k) is the com-
parative sequence, i� 1, 2, …, m; k� 1, 2, …, n; m is the
number of factors influencing on the reference variable; n is
the number of samples.

Step 2: Normalize reference sequence and comparative
sequence.

Since different factors have different physical meanings,
the scale of the data is not necessarily the same, which makes
later analysis and comparison more difficult. Therefore, data

must be normalized before relational analysis. The normal-
ization is calculated as follows:

χ̃i (k) �
χi (k) − min

1≤i≤m
χi (k)

max
1≤i≤m

χi (k) − min
1≤i≤m

χi (k)
(1)

in which k � 1, 2, …, n; i � 0, 1, 2, …, m.
Step 3: Determine the grey relational coefficient of refer-

ence sequence and comparative sequence.
The grey relational coefficient ζ0i (k) is computed by

means of Eqs. (2)–(5):

ζ0i (k) � �min + ρ�min

�0i (k) + ρ�max
(2)

�0i (k) � |χ̃0 − χ̃i |, i � 1, 2, . . . ,m (3)

�max � max
1≤i≤m

max
1≤k≤n

�0i (k) (4)

�min � min
1≤i≤m

min
1≤k≤n

�0i (k) (5)

in which ρ ∈ [0, 1] is the distinguishing coefficient which is
normally set to 0.5; k � 1, 2, …, n; i � 0, 1, 2, …, m; χ̃0

is the normalized reference sequence; χ̃i is the normalized
comparative sequence.

Step 4: Calculate grey relational degree.
Grey relational degree indicates the numerical measure

of similarity between reference sequence and comparative
sequence, which is done by averaging the grey relational
coefficients through Eq. (6):

γ0i � 1

n

n∑

k�1

ζ0i (k) (6)

in which k � 1, 2, …, n; i � 0, 1, 2, …, m.

2.2 Statistical correlation analysis

To further ascertain the level of association between the refer-
ence data and the compatibility data, the statistical correlation
analysis is performed, inwhich correlation coefficient is used
to examine the degree of correlation between two variables.
The greater the absolute value of correlation coefficients,
the stronger the correlation degree is; the closer the corre-
lation coefficient is to 1 or − 1, the stronger the correlation
degree is; the closer the correlation coefficient is to 0, the
weaker the correlation degree is. Generally, the correlation
coefficient was within the range of [0.8, 1.0], and the correla-
tion degree is considered as very strong. In this research, we
use Pearson correlation coefficient (PCC) to perform statis-
tical correlation analysis. The two variables can be defined
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Fig. 1 The schematic overview
of the paper

as X � [x1, x2, . . . , xn] and Y � [y1, y2, . . . , yn], and their
PCC is calculated as follows:

ρ(x, y) � X · Y − (∑n
i�1 xi

∑n
i�1 yi

)
/n·

√[∑n
i�1 x

2
i − (∑n

i�1 xi
)2

/n
]
∗
[∑n

i�1 y
2
i − (∑n

i�1 yi
)2

/n
]

(7)

where ρ (x, y) is the PCC of variables x and y, and−1 ≤ρ (x,
y)≤ 1. ρ(x, y) � −1 or 1 indicates completely negative and
positive correlation, respectively, and ρ(x, y) � 0 indicates
no correlation at all. Besides, the larger the value of ρ(x, y)
is, the stronger the correlation degree between x and y is.

2.3 Multivariable greymodel

Grey prediction theory is often used to handle with a sys-
tem which has sparse data and incomplete information. The
modelling procedures of the multivariable grey model are
presented as follows:

Step 1:Obtain the original and transformed sequences for
modelling.

Assume that X (0) �
(
X (0)
1 , X (0)

2 , . . . , X (0)
m

)
is

an original nonnegative sequence, where X (0)
i �(

x (0)
i (1), x (0)

i (2), . . . , x (0)
i (n)

)T
is the observation sequence

of the ith variable at times 1, 2, …, n. i� 1, 2, …,m;m is the
number of variables.

Then, the original sequence is processed using the
first-order accumulated generation operator (AGO). The

matrix X (1) �
(
X (1)
1 , X (1)

2 , . . . , X (1)
m

)
is the first-

order accumulating generation matrix of X (0). X (1)
i �(

x (1)
i (1), x (1)

i (2), . . . , x (1)
i (n)

)T
is the first-order accumu-

lating generation sequence of X (0)
i , where

x (1)
i ( j) �

j∑

k�1

x (0)
i (k), j � 1, 2, . . . , n, i � 1, 2, . . . ,m

(8)

Step 2: Establish the multivariable grey model.

The multivariable grey model (MGM(1, m)), which is
sometimes called the whitenization equations of MGM(1,
m), is established as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx (1)
1 (t)

dt � a11x
(1)
1 (t) + a12x

(1)
2 (t) + · · · + a1mx

(1)
m (t) + b1

dx (1)
2 (t)

dt � a21x
(1)
1 (t) + a22x

(1)
2 (t) + · · · + a2mx

(1)
m (t) + b2

· · ·
dx (1)

m (t)
dt � am1x

(1)
1 (t) + am2x

(1)
2 (t) + · · · + ammx

(1)
m (t) + bm

(9)

Let

X (1)(t) �
{
x (1)
1 (t), x (1)

2 (t), · · · , x (1)
m (t)

}T
(10)

A �

⎛

⎜⎜⎜⎝

a11 a11 · · · a11

a21
· · ·

a22
· · ·

· · ·
...

a2m
· · ·

am1 am2 · · · amm

⎞

⎟⎟⎟⎠, B �

⎛

⎜⎜⎜⎝

b1
b21
...
bm

⎞

⎟⎟⎟⎠ (11)

A is a developing greymatrix, andB is an endogenous control
grey matrix.

Then, the dynamical model (8) can be rewritten in matrix
form as Eq. (12):

dX (1)(t)

dt
� AX (1)(t) + B (12)

Step 3: Estimate the model parameters.
To identify parameter matrix A and vector B, Eq. (8) is

discretized as

X (0)(k) � AZ (1)(k) + B (13)

in which X (0)(k) �
{
x (0)
1 (k), x (0)

2 (k), . . . , x (0)
m (k)

}T
, and

Z (1)(k) �
{
z(1)1 (k), z(1)2 (k), . . . , z(1)m (k)

}T
is the mean

generation matrix of X (1), and the sequence Z (1)
i �
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(
z(1)i (2), z(1)i (3), . . . , z(1)i (n)

)T
is the generated mean

sequence of X (1)
i , in which

(14)

z(1)i (k) � 1

2

(
x (1)i (k) + x (1)i (k − 1)

)
, i

� 2, 3, . . . ,m, k � 2, 3, . . . , n

By the least square method, the parameter matrix A and B
can be obtained as

(A, B)T � (LT L)−1LT M (15)

where

L �

⎡

⎢⎢⎢⎣

z(1)1 (2) z(1)2 (2) · · · z(1)m (2) 1

z(1)1 (3) z(1)2 (3) · · · z(1)m (3) 1
· · · · · · · · · · · · · · ·

z(1)1 (n) z(1)2 (n) · · · z(1)m (n) 1

⎤

⎥⎥⎥⎦ M �

⎡

⎢⎢⎢⎣

X (0)(2)
X (0)(3)

...
X (0)(n)

⎤

⎥⎥⎥⎦

Step 4: Obtain the time response function for predicting
in the transformed domain.

Using the estimated parameters and x (1)
i (1) � x (0)

i (0), i�
1, 2,…,m, as the initial condition, the time response function
can be achieved:

x̂ (1)
i (k) � e− Â·(k−1)

(
x (1)
i (1) − Â−1 B̂

)
+ Â−1 B̂, (16)

where X̂ (1)(k) represents the prediction vector of X (1)(k).
Step 5:Obtain the fitted and forecasted values in the orig-

inal domain.
By using the first-level inverse accumulating generation

operator (I-AGO), the fitted and predicted values in the orig-
inal domain can be calculated by Eq. (17):

x̂ (0)
i (k) � x̂ (1)

i (k) − x̂ (1)
i (k − 1) (17)

in which x̂ (0)
i (k) represents the prediction vector of x (0)(k).

3 Proposedmethods

3.1 Improvedmultivariable greymodel

Although the grey prediction model has enjoyed high popu-
larity in many predicting applications, there are still inherent
limitations to be improved. One of the drawbacks is that the
estimation of parameters and the prediction of variables are
deriving fromdifferent approaches, which degrades the accu-
racy of grey prediction model for some data. If the parameter
estimation and variable prediction use the same approach,
the prediction error will be greatly reduced.

In the original multivariable grey model, the whiteniza-
tion equation of MGM(1, m) (Eq. (9)) is used to predict
variable values, while the estimation of parameters uses the
discretized equation (Eq. (13)). The estimated parameters by
Eq. (13) can only be regarded as approximate values of the
parameters in Eq. (9); thus, the accuracy of prediction would
be reduced due to adopting different methods to estimate
parameters and predict variables.

In fact, Eq. (13) can be written as follows:
(
X (1)(k) − X (1)(k − 1)

)
� A′(X (1)(k) + X (1)(k − 1)

)
+ B

(18)

Namely,

X (1)(k) � �X (1)(k − 1) + ψ (19)

in which � � 1−A′
1+A′ , ψ � B

1+A′ , A′ � A
2 ; Eq. (19) is a first-

order linear difference equation with constant coefficients. If
both parameter estimation and variable prediction are calcu-
lated using the same difference equation, the accuracy will
be significantly improved.

Definition 1 X (1)(k + 1) � AX (1)(k)+C(k) is the first-order
discrete grey model of constant coefficient nonhomogeneous
difference equation.

Theorem 1 If X (1)(t) meets X̂ (1)(k + 1) � AX̂ (1)(k) + C ,
then

X̂ (1)(k) � AX̂ (1)(0)Ak + 	 (20)

Here, 	 � E − E Ak , E � C
1−A , (A,C)T �

(QT Q)−1QT P

Q �

⎡

⎢⎢⎢⎣

x (1)
1 (1) x (1)

2 (1) · · · x (1)
m (1) 1

x (1)
1 (2) x (1)

2 (2) · · · x (1)
m (2) 1

· · · · · · · · · · · · · · ·
x (1)
1 (n) x (1)

2 (n) · · · x (1)
m (n) 1

⎤

⎥⎥⎥⎦ (21)

P �

⎡

⎢⎢⎢⎣

x (1)
1 (1) x (1)

2 (1) · · · x (1)
m (1)

x (1)
1 (2) x (1)

2 (2) · · · x (1)
m (2)

· · · · · · · · · · · ·
x (0)
1 (n) x (1)

2 (n) · · · x (1)
m (n)

⎤

⎥⎥⎥⎦ (22)

The fitted and forecasted values can be obtained by Eq.
(23) in the original domain:

X̂ (0)(k) � X̂ (1)(k) − X̂ (1)(k − 1) (23)

Theorem 2 If X (1)(t)meets X̂ (1)(k + 1) � AX̂ (1)(k)+C(k),
then

X̂ (1)(k) � Ak X̂ (1)(0) + 	′ (24)
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in which 	′ � ∑k
r�1 A

r−1C(k − r).
In particular, (1) when Ck � B0 + B1k, then

X̂ (1)(k) � Ak X̂ (1)(0) + 	′′ (25)

in which 	′′ � ∑k
r�1 A

r−1[B0 + B1(k − r)],
(A, B0, B1)

T � (QT Q)−1QT P

Q �

⎡

⎢⎢⎢⎣

x (1)
1 (1) x (1)

2 (1) · · · x (1)
m (1) 1 1

x (1)
1 (2) x (1)

2 (2) · · · x (1)
m (2) 1 2

· · · · · · · · · · · · · · · · · ·
x (1)
1 (n) x (1)

2 (n) · · · x (1)
m (n) 1 n

⎤

⎥⎥⎥⎦ (26)

P �

⎡

⎢⎢⎢⎣

x (1)
1 (1) x (1)

2 (1) · · · x (1)
m (1)

x (1)
1 (2) x (1)

2 (2) · · · x (1)
m (2)

· · · · · · · · · · · ·
x (0)
1 (n) x (1)

2 (n) · · · x (1)
m (n)

⎤

⎥⎥⎥⎦ (27)

(2) When Ck � B0 + B1k + B2k2, then

X̂ (1)(k) � Ak X̂ (1)(0) + 	′′′ (28)

Here, 	′′′ �
k∑

r�1
Ar−1

[
B0 + B1(k − r) + B2(k − r)2

]
,

(A, B0, B1, B2)
T � (QT Q)−1QT P

Q �

⎡

⎢⎢⎢⎣

x (1)
1 (1) x (1)

2 (1) · · · x (1)
m (1) 1 1 1

x (1)
1 (2) x (1)

2 (2) · · · x (1)
m (2) 1 2 2

· · · · · · · · · · · · · · · · · · · · ·
x (1)
1 (n) x (1)

2 (n) · · · x (1)
m (n) 1 n n2

⎤

⎥⎥⎥⎦ (29)

P �

⎡

⎢⎢⎢⎣

x (1)
1 (1) x (1)

2 (1) · · · x (1)
m (1)

x (1)
1 (2) x (1)

2 (2) · · · x (1)
m (2)

· · · · · · · · · · · ·
x (0)
1 (n) x (1)

2 (n) · · · x (1)
m (n)

⎤

⎥⎥⎥⎦ (30)

The fitted and forecasted values can be obtained by
Eq. (31) in the original domain:

X̂ (0)(k) � X̂ (1)(k) − X̂ (1)(k − 1) (31)

3.2 Hybrid predictionmodel

In the part, we integrate correlation analysis test and
improved multivariable grey model (IMGM) to construct a
hybrid prediction model of electricity consumption. First,
correlation analysis test is done using grey relational analy-
sis and statistical correlation analysis before performing the
estimation of variables of interest. Then, the values got from
correlation analysis test are processed using the first-order
accumulated generation operator (AGO). Finally, we input
the transformed sequence by AGO into the IMGM to get the
fitted and forecasted values. The detailed steps of this hybrid
model are shown in Fig. 2.

4 Experimental analysis

In this part, we predict the electricity consumption using our
hybrid IMGM approach to test the effectiveness and per-
formance of our approach. All the experimental data sets
are performed in the MATLAB R2016b environment on the
Microsoft Windows 7 Pro operating system. The hardware
environment is on a computer with Intel(R) Core(TM) i5-
4440 3.10 GHz CPU and 8-GB RAM.

The electricity consumption data are driving from Shanxi
province and Beijing city of China from 1999 to 2018 shown
in Fig. 3, which is available from National Bureau of Statis-
tics of China (http://data.stats.gov.cn/). It is noteworthy that
the electricity consumption can be affected by many influ-
encing factors such as gross domestic product (GDP), third
industry proportion, urbanization rate, mean annual temper-
ature, consumption level of urban residents, second industry
proportion, third industry proportion, total volume of retail
sales, permanent residents, fixed assets investment, urban-
ization rate, and so on [35]. In this research, we consider
six influencing factors including GDP, consumption level
of urban residents, second industry proportion, total volume
of retail sales, permanent residents, fixed assets investment
based on the grey relational grade and the statistical corre-
lations. The grey relational grade is to measure the degree
of correlation between the two factors according to the sim-
ilarity or difference of the two factors. The values of grey
relational grade within the range of [0.5, 0.9] are considered
moderate link among factors [39]. The statistical correla-
tion analyses the degree of connection between the two
factors. The degrees of the statistical correlations above 0.9
are marked a strong inter-correlation among the factors of
interest [40]. Here, we define the variableχ0 as the electricity
consumption, andχ1,χ2,χ3,χ4,χ5, andχ6 denote consump-
tion level of urban residents, second industry proportion, total
volume of retail sales, GDP, permanent residents, and fixed
assets investment, respectively, as shown in Table 1. The
data of electricity consumption and its influencing factors
are shown in Tables 2 and 3.

The data set is divided into two groups: the data from 1999
to 2013 are utilized as the training data set and 2014–2018 as
the testing data set. To verify the presented hybrid forecast-
ingmodel, we compare our proposed improvedmultivariable
grey model (IMGM) with the original multivariable grey
model (MGM), generalized regression neural networkmodel
with fly optimization algorithm (FOAGRNN) [36], grey pre-
diction model with convolution integral (GMC) [24], and
self-adaptive fractional weighted greymodel (SFOGM) [20].

The parameters of MGM model are calculated using the
least square method. The parameters of IMGM model are
estimated byEqs. (20)–(31). FOAGRNNmodel uses fly opti-
mization algorithm (FOA) for the parameter selection of the
generalized regression neural network (GRNN) model. The

123

http://data.stats.gov.cn/


Electrical Engineering (2021) 103:1031–1043 1037

Fig. 2 The proposed hybrid
prediction model

Yes
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Estimate the model 
parameters using first-order
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Obtain the fitted and 
forecasted values by 
Eq.(44) or Eq.(52).

Simulation results

Prediction
by IMGM(1,7)

The correlation test

Data collection

Fig. 3 The electricity consumption in Shanxi province and Beijing city
from 1999 to 2019

main parameters of FOA are the maximum iteration num-
ber (maxgen), the population size (sizepop), the initial fruit
fly swarm location (X_axis, Y_axis), and the random flight
distance range (FR). In this case, suppose maxgen � 100,
sizepop � 10, (X_axis, Y_axis)⊂ [0, 1], FR⊂ [− 10, 10].
SFOGM model utilizes particle swarm optimization (PSO)
to determine the parameters of the self-adaptive fractional
parameter and the input time parameter through minimizing
the mean absolute percentage error between the simulation
value and the actual value. The main parameters of PSO are

Table 1 Nomenclature of the reference variable and its influence factors

Variable names Description

χ0 Electricity consumption

χ1 Consumption level of urban residents

χ2 Second industry proportion

χ3 Total volume of retail sales

χ4 GDP

χ5 Permanent residents

χ6 Fixed assets investment

the acceleration factors (c1 and c2), population size (popsize),
iteration times (itetimes), the dimensions (Dim), and inertia
weight (w). In this experiment, set c1 �c2 � 2, popsize� 30,
itetimes� 1000, Dim� 2.

In multivariable grey model, the parameter estimation and
variable prediction are crucial; otherwise, this can lead to per-
formance degradation. The originalmultivariable greymodel
uses the whitenization equation of MGM(1, m) (Eq. 9) and
discretized equation (Eq. (13)) to estimate variable values and
parameter values. The parameters estimated through Eq. (13)
are approximate values of the parameters; thus, the accuracy
of predictionwill be reduced. In this study, a first-order linear
difference equation with constant coefficients is introduced
to compute both parameter estimation and variable predic-
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Table 2 Data of all factors from
1999 to 2018 for Shanxi
province

Year χ0 χ1 χ2 χ3 χ4 χ5 χ6

1999 459.34 4200 785.47 587.1 1667.10 3247 477.57

2000 501.99 4311 858.37 629.1 1845.72 3272 548.16

2001 557.58 3552 956.01 679.9 2029.53 3294 663.58

2002 628.82 4764 1134.31 755.4 2324.80 3314 813.36

2003 731.77 5172 1463.38 729.3 2855.23 3335 1100.86

2004 841.55 6441 1919.40 884.8 3571.37 3355 1443.88

2005 946.33 7104 2357.04 1410.7 4230.53 3375 1826.58

2006 1097.68 8143 2755.66 1635.4 4878.61 3393 2255.74

2007 1348.81 9252 3454.49 1953.3 6024.45 3411 2861.46

2008 1314.33 10,262 4242.36 2421.1 7315.40 3427 3531.16

2009 1267.54 10,617 3993.80 2809.0 7358.31 3574 4943.16

2010 1460.00 12,680 5234.00 3318.2 9200.86 3593 6040.54

2011 1650.41 14,055 6635.26 3903.4 11,237.55 3611 6063.17

2012 1765.80 15,091 6731.56 4506.8 12,112.83 3630 7073.06

2013 1832.30 16,341 6613.06 5139.3 12,665.25 3648 8863.30

2014 1822.63 17,189 6293.91 5717.9 12,761.49 3664 11,031.89

2015 1737.21 19,018 5194.27 6033.7 12,766.49 3682 12,354.53

2016 1797.18 19,724 5028.99 6480.5 13,050.41 3702 14,074.15

2017 1990.61 23,345 6778.89 6918.1 15,528.42 3718 14,197.98

2018 2160.53 24,000 7089.19 7338.5 16,818.11 3730 14,305.25

Table 3 Data of all factors from
1999 to 2018 for Beijing city Year χ0 χ1 χ2 χ3 χ4 χ5 χ6

1999 344.13 10,007 907.34 1313.3 2678.82 1350 1652.2

2000 384.43 10,145 1033.29 1443.3 3161.66 1364 1678.6

2001 399.94 10,301 1142.35 1593.5 3707.96 1385 1689.3

2002 439.96 12,505 1249.99 1744.8 4315 1423 1693.6

2003 461.24 13,826 1487.15 1916.7 5007.21 1456 1999.9

2004 510.11 15,438 1853.58 2191.8 6033.21 1493 2333

2005 570.54 16,478 2026.51 2911.7 6969.52 1538 2595.41

2006 611.57 18,185 2191.43 3295.3 8117.78 1601 3012.45

2007 667.01 20,320 2509.4 3835.2 9846.81 1676 3597.29

2008 689.72 21,872 2626.41 4645.5 11,115 1771 3520.95

2009 739.15 23,812 2855.55 5309.9 12,153.03 1860 4149.63

2010 809.9 26,949 3388.38 6340.3 14,113.58 1962 4916.53

2011 821.71 30,037 3752.48 7222.2 16,251.93 2019 5519.84

2012 874.3 32,857 4059.27 8123.5 17,879.4 2069 6064.86

2013 913.1 35,836 4292.56 8872.1 19,800.81 2115 6797.54

2014 937.05 38,515 4544.8 9638 21,330.83 2152 6873.44

2015 952.72 41,846 4542.64 10,338 23,014.59 2171 7446.02

2016 1020.27 52,721 4944.44 11,005.1 25,669.13 2173 7888.69

2017 1066.89 57,100 5326.76 11,575.4 28,014.94 2171 8307.33

2018 1142.38 59,325 5477.35 11,747.7 33,105.97 2154 8933.56

tion, as the parameter estimation and variable prediction use
the same approach, and the accuracy will be significantly
improved.

To verify the effectiveness of ourmethod,we use two eval-
uation criteria including the mean absolute error (MAE) [37]
and the mean absolute percent error (MAPE) [38]. MAE is
used to reflect the overall level of errors;MAPE is regarded as
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Table 4 Results of grey relational grade for Shanxi province

Variableχ0 χ1 χ2 χ3 χ4 χ5 χ6

χ0 1.0000 0.7089 0.8101 0.6819 0.7103 0.7575 0.6755

χ1 0.6787 1.0000 0.7286 0.8341 0.8171 0.6457 0.8160

χ2 0.7484 0.6900 1.0000 0.6609 0.6806 0.7301 0.6674

χ3 0.6400 0.8271 0.6928 1.0000 0.7526 0.6161 0.8979

χ4 0.7365 0.8558 0.7685 0.8092 1.0000 0.6757 0.7832

χ5 0.7560 0.6757 0.7894 0.6583 0.6447 1.0000 0.6867

χ6 0.5972 0.7815 0.6674 0.8821 0.6934 0.6125 1.0000

a measure of the prediction accuracy of a forecasting method
in statistics. The evaluation criteria are given as follows:

MAE � 1

N

N∑

i�1

∣∣yi − ŷi
∣∣ (32)

MAPE− � 1

N

N∑

i�1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ × 100 (33)

in which N is the number of forecasting data points, which
is 20 in our simulation, yi and ŷi represent the actual and
predicted values of electricity consumption, respectively, at
time i.

4.1 The correlation test

Before conducting the prediction of electricity consumption,
the correlation test is required to be done to determine the
variables for modelling. Tables 4 and 6 display the calcu-
lation results of the grey relational grade of two cases when
the distinguishing coefficient ρ equals 0.5. The overall values
change between 0.5 and 0.9with theminimumandmaximum
values being 0.5572 and 0.8979, respectively. This indicates
moderate link among factors [39]. To further ascertain the
level of association between the reference data and the com-
patibility data, the statistical correlations [40] are computed,
as shown in Tables 5 and 7. It is apparent thatmost correlation
degrees are above 0.9 which marks a strong inter-correlation
among the factors of interest. Both measures agree well with
each other which can therefore suggest that the factors con-
sidered in our model are reasonably correlated. Therefore,
we select six influencing factors including GDP, consump-
tion level of urban residents, second industry proportion, total
volume of retail sales, permanent residents, and fixed assets
investment in our prediction model.

4.2 Simulation results

According to the proposed IMGM, we first use the first-
order accumulated generation operator to process the original

Table 5 Results of statistical correlation for Shanxi province

Variableχ0 χ1 χ2 χ3 χ4 χ5 χ6

χ0 1.0000 0.9610 0.9738 0.9501 0.9832 0.9670 0.9134

χ1 0.9610 1.0000 0.9126 0.9924 0.9877 0.9612 0.9822

χ2 0.9738 0.9126 1.0000 0.9031 0.9618 0.9478 0.8464

χ3 0.9501 0.9924 0.9031 1.0000 0.9842 0.9644 0.9912

χ4 0.9832 0.9877 0.9618 0.9842 1.0000 0.9776 0.9565

χ5 0.9670 0.9612 0.9478 0.9644 0.9776 1.0000 0.9430

χ6 0.9134 0.9822 0.8464 0.9912 0.9565 0.9430 1.0000

Table 6 Results of grey relational grade for Beijing city

Variableχ0 χ1 χ2 χ3 χ4 χ5 χ6

χ0 1.0000 0.6650 0.7837 0.6734 0.6626 0.7240 0.7037

χ1 0.5572 1.0000 0.5923 0.7050 0.8773 0.6090 0.7743

χ2 0.7927 0.7018 1.0000 0.7599 0.6855 0.7486 0.7216

χ3 0.6567 0.7732 0.7358 1.0000 0.7729 0.6840 0.8317

χ4 0.5706 0.8860 0.5877 0.7217 1.0000 0.6101 0.7703

χ5 0.6291 0.6090 0.6536 0.5994 0.5931 1.0000 0.5640

χ6 0.6670 0.8173 0.6720 0.8159 0.8046 0.6308 1.0000

Table 7 Results of statistical correlation for Beijing city

Variableχ0 χ1 χ2 χ3 χ4 χ5 χ6

χ0 1.0000 0.9615 0.9952 0.9829 0.9801 0.9775 0.9851

χ1 0.9615 1.0000 0.9698 0.9762 0.9916 0.9112 0.9792

χ2 0.9952 0.9698 1.0000 0.9930 0.9848 0.9793 0.9939

χ3 0.9829 0.9762 0.9930 1.0000 0.9874 0.9731 0.9975

χ4 0.9801 0.9916 0.9848 0.9874 1.0000 0.9400 0.9918

χ5 0.9775 0.9112 0.9793 0.9731 0.9400 1.0000 0.9676

χ6 0.9851 0.9792 0.9939 0.9975 0.9918 0.9676 1.0000

sequence. And then based on the multivariable grey model,
the first-order linear difference equation with constant coef-
ficients (Eq. 19) is used to calculate the parameters of
developing grey matrix and endogenous control grey matrix.
Finally, using the estimated parameters and the first-order
accumulating generation sequence, the fitted and forecasted
values can be obtained by Eq. (31) in the original domain.

Table 8 lists results of MAPE and MAE for IMGM,
SFOGM,GMC, FOAGRNN, andMGMmodels in the exam-
ple of Shanxi province and Beijing city from 2014 to 2018,
where the values in bold represent the smallest values of
MAE and MAPE. According to the results of the above-
mentioned forecasting models listed in Table 8 and Fig. 4, it
can be observed that the proposed hybrid forecasting model
obtains the highest prediction accuracy (via the MAE and
MAPE criteria). We can see that the developed model signif-
icantly outperforms than the four compared models in most
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Table 8 Results of MAPE and
MAE for IMGM, SFOGM,
GMC, FOAGRNN, MGM
models in the example of Shanxi
province and Beijing city

Region Index MGM FOAGRNN GMC SFOGM IMGM

Shanxi MAE 151.5081 110.1308 131.295 97.0248 64.2708

MAPE 10.4578 5.6373 6.6547 4.0485 5.1667

Beijing MAE 155.3449 128.3347 151.4587 109.2398 95.0955

MAPE 11.0951 6.7878 10.2873 4.9212 5.3468

Fig. 4 The illustration of MAE, MAPE, RMSE of different models for
Shanxi province and Beijing city

indices, except for SFOGM model in the MAPEs index.
The MAPEs index of the developed model is 5.1667 and
5.3468% for Shanxi province and Beijing city, respectively.
For the original grey model of MGM, the prediction accu-
racy is poor because this model uses the different approaches
to estimate the parameters and variables; thus, the estimated
parameters are the approximate values of developing grey
matrix and endogenous control grey matrix, which degrades
the accuracy of grey prediction model. Among the four
compared forecasting methods of SFOGM, GMC, FOA-
GRNN, andMGM, SFOGM gets higher prediction accuracy
when comparedwithGMC, FOAGRNN, andMGM, because

SFOGM uses the particle swarm algorithm to estimate the
adjustable fractional weighted coefficients and correspond-
ing time parameter of the initial condition, which promotes
the forecasting precision. In addition, this model introduces
the fractional weighted coefficients to design the optimized
initial condition that captures the dynamic characteristics of
the electricity consumption observations. SFOGMandGMC
perform better than MGM in both cases. However, when
comes to the forecasting models using optimization algo-
rithm, such as FOAGRNN and SFOGM, GMC still shows
large forecasting errors. The MAPEs of the SFOGM, FOA-
GRNN, and GMC are 4.0485, 5.6373, and 6.6547% for
Shanxi province and 4.9212, 6.7878, and 10.2873% for Bei-
jing city, respectively. The grey forecasting model using
optimization algorithm, i.e. SFOGM, obtained more reliable
and accurate electricity consumption forecasting results than
GMC and MGM, both of which are not using optimization
algorithm. The forecasting results of SFOGM are more con-
sistentwith the actual values; however, SFOGMestimates the
parameters and variables using different approaches, which
degrades the accuracy of grey predictionmodel. All in all, the
proposed model is more suitable than the others to forecast
annual electricity consumption.

Table 9 and Fig. 5 give the forecasting results of electricity
consumption with the IMGM, MGM, FOAGRNN, GMC,
SFOGM models. Table 9 also lists the relative errors of the
five forecasting models. According to Table 9 and Fig. 5, it
can be clearly seen that all of the five forecasting models
capture the changing trend, but the performance of IMGM,
SFOGM, GMC, and FOAGRNN is better than the MGM
model.

Table 10 gives the number of the relative errors falling in
the scope of [− 3, + 3%] and the number of the relative errors
falling in the scope of [− 1, + 1%]. Table 10 also presents the
maximum and minimum relative errors. The error range [−
3, + 3%] is always considered as a standard to measure the
performance of the forecasting model [41]. Therefore, this
paper uses this range to compare the five forecasting models.

From Table 10, it can be seen that the relative errors of
IMGM, SFOGM, GMC, and FOAGRNN models are in the
scope of [− 3, + 3%]. The number of the relative error in [−
1, + 1%] using IMGM, SFOGM, GMC, FOAGRNN model
is 3, which means 60% of forecasting points are in [− 1, +
1%]. Using MGM models, the number of the relative error
in [− 1, + 1%] is 2, which means 40% of forecasting points
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Table 9 Forecasting results of electricity consumption using IMGM, SFOGM, GMC, FOAGRNN, MGM models

Region Year Actual
value

MGM FOAGRNN GMC SFOGM IMGM

Result Error (%) Result Error (%) Result Error (%) Result Error (%) Result Error (%)

Shanxi 2014 1822.63 1823.58 1.536 1823.80 1.838 1823.69 1.687 1822.87 0.536 1822.66 1.235

2015 1737.21 1736.15 − 1.281 1736.36 − 0.996 1737.60 0.744 1736.07 − 0.403 1736.51 − 0.786

2016 1797.18 1800.42 4.736 1798.44 0.964 1797.87 0.163 1797.46 0.591 1798.35 1.834

2017 1990.61 1990.43 − 0.048 1992.66 2.972 1990.16 − 0.428 1989.40 − 1.489 1989.91 − 0.781

2018 2160.53 2160.50 0.152 2161.22 0.165 2162.51 2.967 2161.60 1.693 2160.50 0.157

Beijing 2014 937.05 937.93 1.614 938.05 0.807 937.96 1.649 937.27 0.552 937.01 0.138

2015 952.72 951.74 − 1.369 951.99 − 0.961 953.12 0.835 951.72 − 0.394 952.08 − 0.820

2016 1020.27 1023.16 4.824 1021.39 0.991 1020.85 0.134 1020.57 0.684 1021.25 1.731

2017 1066.89 1066.77 0.002 1068.73 2.938 1066.44 − 0.516 1065.84 − 1.480 1066.3 − 0.737

2018 1142.38 1142.34 0.139 1143.04 1.263 1144.06 2.882 1143.34 1.735 1142.38 1.195

Fig. 5 Forecasting results of Shanxi’s annual electricity consumption
from 2014 to 2018

are in [− 1, + 1%]. The maximum error using IMGMmodel
is 1.834%, smaller than that of 3 models containing MGM,
FOAGRNN, and GMC model. The minimum relative error
using IMGM is − 0.157%, better than that of three models
containing FOAGRNN, GMC, and SFOGM model.

Figure 6 describes the error analysis of the five forecasting
models. From Fig. 6, the deviation between the forecasting
results and the actual value can be captured, which shows
the performance of IMGM, SFOGM, GMC, FOAGRNN is
better than the MGM model.

Fig. 6 Error analysis for Shanxi province

Table 11 lists the electricity consumption of Shanxi
province and Beijing city in 2019 and 2020 forecasted by
the five models.

5 Conclusion and discussion

This paper primarily focuses on the prediction of electricity
consumption. We use the grey forecasting model since it can
achieve prediction based on restricted number of available

Table 10 The maximum and
minimum relative errors and the
number of the relative error in
[− 3, + 3%] and [− 1, + 1%], in
which
rate_1 � Points in[−1,+1%]

Total Points ,

rate_3 � Points in[−3,+3%]
Total Points

Region Index MGM FOAGRNN GMC SFOGM IMGM

Shanxi Maximum relative errors 4.736% 2.972% 2.967% 1.693% 1.834%

Minimum relative errors − 0.048% 0.165% 0.163% 0.403% 0.157%

rate_1 2/5 (40%) 3/5 (60%) 3/5 (60%) 3/5 (60%) 3/5 (60%)

rate_3 4/5 (80%) 5/5 (100%) 5/5 (100%) 5/5 (100%) 5/5 (100%)

Beijing Maximum relative errors 4.824 2.938 2.882 1.735 1.731

Minimum relative errors 0.002 0.807 0.134 − 0.394 0.138

rate_1 2/5 (40%) 3/5 (60%) 3/5 (60%) 3/5 (60%) 3/5 (60%)

rate_3 4/5 (80%) 5/5 (100%) 5/5 (100%) 5/5 (100%) 5/5 (100%)
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Table 11 Forecasting results of electricity consumption of Shanxi
province and Beijing city in 2019 and 2020

Region Year MGM FOAGRNNGMC SFOGM IMGM

Shanxi 2019 2267.64 2267.38 2271.12 2271.27 2271.11

2020 2345.29 2348.42 2345.62 2345.00 2349.20

Beijing 2019 1171.79 1173.13 1172.23 1169.72 1174.54

2020 1206.67 1205.9 1201.14 1204.32 1201.01

data. Since realistic and complex systems are often con-
sisted of many variables which are not independent of each
other and have mutual correlation among them, we focus
on research on multivariable grey model. Different from
the original multivariable grey model, which uses different
approaches for parameters estimation and variables predic-
tion thus degrading the prediction accuracy, the proposed
improved multivariable grey model used the same first-order
linear difference equation with constant coefficients for both
parameters estimation and variables prediction so that the
accuracy is significantly improved.

To investigate the performance of the proposed methods
in the prediction and estimation of electricity consumption,
other driving factors of the system are first acquired. These
include consumption level of urban residents, second indus-
try proportion, total volume of retail sales, GDP, permanent
residents, and fixed assets investment. Grey relational anal-
ysis and statistical correlation analysis are used to justify
their strong relations. Using 1999–2018 historical data, it is
found that IMGM, SFOGM, GMC, and FOAGRNN models
have superior estimation performance over theMGMmodel.
For training data, the MAPE of traditional MGM model is
10.4578, that of GMC model is 6.6547, that of FOAGRNN
is 5.6373, and that of IMGM is 5.1667. IMGM is best. For
the out-of-sample data in 2014, the relative error of MGM
model is 1.614, that of SFOGMmodel is 0.807, that of GMC
is 1.649, that of SFOGM is 0.552, and that of IMGM is 0.138.
IMGM is the smallest. Therefore, it can be used for other real
cases for electricity consumption forecasting. In theory, the
grey forecasting model is suitable for addressing the limited
sample forecasting problems [42]. Limited sample is suit-
able for short-term projection. In practice, the trends of these
relative factors may change or the relationship between the
reference series and comparison series may vary in the long
term, so the IMGM is also applicable for short-term projec-
tion.

Although the proposed model got the competitive per-
formance, one of limitations is that this model cannot deal
with the conflict between prediction accuracy and general-
ization ability well. The first-order linear difference equation
with constant coefficients used for both parameters estima-
tion and variables prediction lacks generalization ability. In
future studies, we will devote to studying first-order non-

homogeneous difference equation with variable coefficients
and second-order nonhomogeneous difference equation with
variable coefficients, which can be used to study more com-
plex models.
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