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Abstract
Fast and accurate online dynamic security analysis (DSA) is the key enabler for secure operation of modern power systems.
Real-time assessment of the current power system operating state and increased awareness about plausible future insecurity
can enable necessary operational and control measures to ensure secure operation. This paper proposes an ensemble decision
tree (DT)-based online DSA method for large-scale interconnected power system networks using wide area measurement
(WAMS) with phasor measurement units (PMU). A novel attribute selection method has been demonstrated for optimizing
PMU installation at strategic buses in large-scale power networks. Multi-stage screening of the initial measurements has
been done to minimize the data acquisition cost and computation overhead, which are the key challenges in real-time DSA.
The ensemble DT classifier was trained offline using data from the operational model of the power system under different
system loading and contingency conditions. The trained classifier provides online security assessment and classifies the power
system’s current operating state as secure or insecure based on real-timemeasurements of the key attributes by selective PMUs.
The proposed scheme was tested on IEEE 118-bus system, and the results demonstrate that it has the potential to be used as
a reliable online DSA method.

Keywords Power system transient stability · Dynamic security analysis · Pattern classification · Ensemble Decision Tree

1 Introduction

Modern power systems are often less secure than the sys-
tems of the past due to various reasons like operation of the
power system near its security limits, unpredictable power
transfer driven by market activities, increased intermittency
due to integration of renewable energy sources and adop-
tion of special protection systems and complex controls,
which often result unusual system behaviour. Further, power
systems recurrently experience disturbances like outage of
generating units and other power supply equipment (contin-
gencies), short-circuits in power transmission lines (faults)
and combination of these events, which have the potential
to risk power system security. Security analysis is therefore
imperative to assess, how robust a system is, relative to large
variety of severe, yet plausible disturbances [1]. Power sys-
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tem security studies can be broadly categorized as: static
security analysis (SSA) and dynamic security analysis (DSA)
[2]. Since change in operating condition (state) is imminent
after any major contingency, it is important that the system
finally settles to a new state of operation, which is stable.
In SSA, transition to new stable operating state is presum-
ably accomplished and the analysis is focused on assessment
of whether any physical and/or security constraints were
violated in the post-contingency steady-state operating con-
dition [3]. However, in the event of a severe disturbance, fast
transition to a new steady-state operating point is infeasible.
This may result in quasi-stable system operation for substan-
tially long duration of time, which can trigger unintended
operation of system protection and control devices, eventu-
ally leading to cascaded tripping and outages and disrupting
system security. Online dynamic security assessment (DSA)
is one solution to ensure security of the power system in
near real time [4, 5]. The major difficulty against online and
real-time assessment of dynamic security is the computation
complexity. Insecure states of operation of electric power sys-
tem, which can potentially lead to large-scale blackouts, are
often unique, and there is no single algorithm to effectively
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reveal such insecure conditions fast enough, to be useful in
real-time security assessment. Therefore, there is an acute
need for developing a fast and reliable method for real-time
security monitoring and assessment of the current security
level of large power systems.

1.1 Existing DSAmethods

Nonlinear time-domain simulation (TDS) is considered one
of the most accurate methods for dynamic security analysis
under large disturbances (transient stability) [5]. The method
requires mathematical modelling of a power system by sets
of nonlinear time-domain differential/algebraic equations,
which can represent the dynamic behaviour of the gener-
ators and other power system components. These equations
are then solved using numerical integrationmethods to assess
the dynamic behaviour of a system under credible sets of dis-
turbances and to ascertain whether transient stability would
bemaintained or lost, for a given disturbance. Themajor crit-
icism against TDS is the requirement of intensive time- and
resource-consuming numerical integrations, making it diffi-
cult to use online. A recent work in [6], however, reported a
novel methodology to calculate transient stability at the ear-
liest time using TDS. Relative stability of a power system is
often considered more important than assessing absolute sta-
bility. For example, degree of severity of a given contingency
(contingency ranking) can be judged by its impact on system
security relative to others. TDS can provide different metrics
such as critical clearing times (CCTs), or maximum swing
under different scenarios and these metrics can be used for
calculating degree of severity of a given contingency. TDS
method is computationally intensive, but still it is the most
trusted method for DSA in the electric power industry at
present [7, 8].

Analternative approach to transient stability analysis is the
direct method, which uses transient energy function [9, 10]
to determine the stability of the post-contingency operating
point of a power system. The direct method is less compu-
tationally demanding compared to the numerical integration
approach, but considered less accurate than TDS as it uses
reduced order modelling of the post-contingency system. A
recent approach in [11] generalized the idea of energy meth-
ods and extended the concept of energy function to a more
general Lyapunov functions family (LFF) to alleviate some
of the drawbacks of classical energy method. Until recent
time, direct method used to be considered impractical for
large-scale power system stability analysis. However, [12]
reported a real-world application of direct methods for online
DSA of large-scale power system. This evaluation study is
the largest in terms of system size, involving 14,500-bus,
3000 generators.

Some pioneering research works in the late 1980s [3,
13] adopted artificial intelligence (AI) and machine learning

methods (ML) to develop ‘fast’ and ‘intelligent’ DSA sys-
tems by mapping the inherent relationship between system
operating conditions and the dynamic security state of the
system. Once such relationships were successfully mapped,
new dynamic stability cases could be assessed and operating
pre-conditions,which led to potential system insecurity could
be traced back with minimal computational efforts. Decision
tree and learning method was used in [14, 15]. In a recent
paper [16], ‘cascaded convolution neural network’ was pro-
posed for ‘fast transient stability’ assessment, while a ‘deep
learning framework’ for transient stability assessment has
been suggested in [17]. Another recent paper [18] has used
an ‘improved SVM’ for real-time transient stability assess-
ment of power system. These research works established that
use of AI andML can effectively alleviate the real-time com-
puting burden and make online dynamic security assessment
feasible.

While existing research proves that application of the
machine learning for DSA is promising, the methods still
lack rigorous support for their feasibility and reliability.
One aspect which is critically important for the ML/pattern
recognition (PR)-based DSA systems to be commercially
viable is that the data acquisition cost (PMU installation)
and computation overhead must be reasonable for real-time
power systems. The motivation of this work is derived from
critical review of the publishes researches till recent time,
which reveals that while researches on online DSA have
been primarily focused on the deployment of newer and
more powerful ML/PR techniques, little attention has been
given to optimize the measurement and data acquisition
cost. For example, a continuous ‘online monitoring system
(OMS)’ for power system stability based on PMU measure-
ments has been proposed in [19], where the proposed OMS
assumed PMUmeasurements of all the generator buses avail-
able at a central location, which is cost inefficient and may
be infeasible for a large-scale system. Another recent work
[20] described a new DSA model, termed as: ‘multi-branch
stackeddenoising autoencoder (MSDAE)’.The case studyon
IEEE 50-machine system demonstrated in this paper again
considered voltage trajectories of all the 50 generator buses
obtained by PMU measurements, which can be slow, inef-
ficient and costly. A more recent work in [21] proposed a
‘hierarchical deep learning’ model for online transient sta-
bility prediction. The case study on IEEE 39-bus system
demonstrated in this paper again considered that raw PMU
measurements and PMU-based dynamic state estimation at
all generator buses are available. Review of these research
works reveal that there is scope for optimizing the measure-
ment and acquisition of power system attributes to improve
the online DSA performance and its cost effectiveness.
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1.2 Contribution

The main contribution of this paper is the novelty in the
optimal selection and precise location of the PMUs whose
measurements are critical for the online DSA. This effort
is primarily aimed at reducing the data acquisition or PMU
installation cost and to reduce the computation overhead and
was achieved by discovery of the ‘most dominant’ variables
or ‘critical attributes’ to be measured by the PMU’s through
step-by-step screening of the initial measurements. Further,
the present paper addresses two critical issues involved in
ML-based online DSA that can result in inaccurate security
prediction. First, the PMU measured operating conditions
can be dissimilar to those simulated offline, due to inaccurate
modelling of the power system. Second, change of network
topology can occur due to the outage of generators, trans-
formers or transmission lines. To develop robust ML-based
online DSA schemes, efforts have traditionally been given
to prepare the initial knowledge (operating condition) base
as exhaustive and realistic as possible. Limited efforts, how-
ever, have been reported in dealingwith variation in operating
conditions and topology change. Reference [22] proposed to
build a completely new DT or replace a sub-tree of the DT
with newly built corrective DT if the existing DT fails to rec-
ognize the variation in operating conditions correctly, while
[23] used adaptive ensemble learning to re-train theDT adap-
tively by adding new training cases to the knowledge base to
handle the changes in operating condition or system topol-
ogy. Both the approaches require tracking network topology
change in real time, which is impractical for large system.

This present paper suggests a novel method to create
an exhaustive knowledge base that can handle variations
in system topology by using a correlation-based approach
in selecting the attributes that are independent of topology.
As such it is almost impossible to find a common set of
attributes having same degree of correlation with system’s
dynamic security under all probable operating condition and
topology. An acceptable solution to this dilemmawas arrived
by deploying an efficient attribute selection method to opti-
mally choose the most critical set of system-wide variables,
directly measurable by PMU’s, which can be perceived as
the ‘common useful features’ with high average correlation
with system’s dynamic security, independent of initial con-
dition and system topology. The proposed attribute selection
method is highly beneficial in optimizing PMU installa-
tion in large power networks. If the system-wide critical
variables can be identified, PMU’s can be installed only at
specific buses for a given system to monitor only these criti-
cal variables, independent of operating condition and system
topology. This significantly reduces the data acquisition cost
and computation overhead for online DSA and improves pre-
diction accuracy and reliability of the online DSA.

PMU-based measurement has been used in this paper
due to several advantages of synchrophasor technology
over asynchronous and slower ‘supervisory control and
data acquisition (SCADA)’-based measurements. Fastness
of measurement is critically important in DSA, where deci-
sion making needs to be as fast as a few cycles to maintain
system stability. Further, DSA requires post-fault dynamic
state information and measurement of dynamic system vari-
ables, such as frequently changing bus voltages and relative
voltage angles. Many post-fault control actions, such as the
response of fast exciters, play crucial role in determining the
post-fault system dynamics, which further influence the sys-
tem’s transient stability. Even though the static features are
available through SCADA, the dynamic state information of
post-fault power systems can only be acquired by PMUs.

Ensemble decision tree (DT) classifier has been proposed
[23, 24]. The reason for choosing ensemble DT as the secu-
rity predictor is its proven capability of DT’s to form reliable
decision rules for fast and accurate prediction of power sys-
tem’s operating states in a real-time and online environment
and high interpretability of the classification decisions [14,
15, 22]. The underlying offline analysis has been made as
extensive as possible, by training the classifier offline using
results obtained from themost tedious and accurate TDS.The
ensemble DT classifier trained with exhaustive set of power
system pre-contingency operating conditions and large vari-
ety of credible contingencies outperformed other equivalent
classifiers such as method of least square (MLS), neural
network (NN), vector quantization (VQ) and support vec-
tor machine (SVM)-based classifiers when implemented in
IEEE 118-bus system, owning to its novel framework and
efficient selection of attributes that are critically important to
predict future dynamic state of a power system.

2 Background of Ensemble Decision Tree

Ensemble decision tree (DT) is a collaborative assembly of
individual decision trees, where each single tree structure
is built on classification and regression models [14, 25]. A
decision tree may be perceived as a method of dissecting
data sets into more minute subsets with increase in the depth
of a hypothetical tree. A tree usually comprises of ‘decision
nodes’ and ‘leaf nodes’ where numerous branches may fall
on each decision node. A classification or decision is repre-
sented by a leaf node. The node corresponding to the best
predictor is termed as the root node. A single decision tree
can, however, rarely generalize the data it was not trained
on. Combining the predictions of large number of decision
trees can result in very accurate predictions. Such method of
combining individual decision trees is known as an ‘ensem-
ble method’. Mathematically speaking, a decision tree has
low bias and high variance. Ensemble of many decision trees
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reduces the variance while maintaining the same low bias.
The ensemble approach can be viewed as an extension of the
bagging idea [26, 27]. Bagging tries to implement parallel
learning of similar learners on small sample populations and
then takes a mean of all the predictions. A collective deci-
sion is finally obtained by using an elementary ‘committee’
method which classifies an object according to the decision
of most of the base learners. One of the progressive bagging-
based approaches is the method called random forest [23].
‘Boosting’ is another popular technique [27, 28] for improv-
ing the accuracy of a predictor by applying the prediction
repeatedly in a series and then combining the weighted out-
put of each predictor, so that the total error of the prediction
is minimized. In many cases, the prediction accuracy of such
a series greatly exceeds the accuracy of the base predictor
used alone. The tree boost algorithm [27] is used for improv-
ing the accuracy of models built on decision trees. Research
[28] has shown that models built using tree boost are among
the most accurate of any known decision tree models. The
tree boost algorithm is functionally similar to ‘Decision Tree
Forests’ [23, 29] because it creates a tree ensemble, and it uses
randomization during the tree creations. However, a random
forest [24] builds the trees in parallel and they ‘vote’ on the
prediction, whereas ‘tree boost’ creates a series of trees, and
the prediction receives incremental improvement by each tree
in the series.

3 Proposed ensemble DT-based online DSA
scheme

The objective behind the development of an online DSA
scheme is to enhance system operator’s awareness about the
current operating condition by assessing its potential tomake
a system transiently unstable in the events of fault or major
outage. For this purpose, an ‘ensemble DT security classifier
(ENSC)’ has been trained offline to recognize the present
dynamic operating condition from real-time measurement of
system attributes via PMU and classify the system’s dynamic
states into secure or insecure classes in near real time.

A secure class represents the set of operating conditions
without possibility of existence of any ‘critical line faults’,
which can cause potential instability. An insecure class, on
the other hand, represents those operating states, which have
at least one (or more) ‘critical line fault’ having the potential
to cause dynamic instability. A critical line fault is usually a
3-phase line fault (or in some case any other asymmetrical
fault) that may enforce dynamic instability in at least one
of the generators present in the system. Figure 1 depicts the
conceptual diagram of the proposed ENSC.

Simulation of Dynamic Secure and 
Insecure Operating Cases

Selection of primary variables and generation of 
primary pattern vectors (Xp) 

Ensemble DT building and off-line training 

Evaluation of Robustness of ENSC 

Validation and on-line implementation of ENSC

Training Cases Test Cases 

Critical attribute selection and creation of feature vector (XV) 

Dynamic model of Power System 

Real-time PMU 
measurements

Mapping of measured inputs for 
 security prediction by ENSC

On-line DSA results

Fig. 1 The conceptual model of the developed scheme for real-time
power system dynamic security assessment

4 Illustrative example of implementation
of the proposed scheme

The main steps of implementing of the proposed online
DSA scheme, including knowledge-base preparation, criti-
cal attribute selection for strategic PMU measurement and
offline ensemble training, have been demonstrated in this
section using a test system. Finally, the results of robustness
test under changed operating conditions have been presented.

The IEEE 118-bus test system is chosen as an illustra-
tivemedium to large-scale system considering its topological
spread and intricacy. The test system contains 54 generators
including35 synchronous condensers, 186 lines, 9 transform-
ers and 91 load buses. A schematic single line diagram of the
system is presented in “Appendix”.

4.1 Knowledge-base preparation for the ENSC

The success of the proposed method largely depends on ade-
quacy of training, in terms of both ‘quality’ and ‘quantity’ of
training exemplars. ‘Quality’ refers to the following:
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(a) Consideration of diverse and well-dispersed operating
conditions including topology changes due to contin-
gency. The operating points must effectively represent
the whole operating space of the power system includ-
ing base case and contingencies, keeping in mid the
fact that the machine learning approaches are usually
more efficient in interpolation rather than extrapolation
of data.

(b) Accuratemodelling of the post-fault dynamic behaviour
of the system given the fact that the system moves
away from the pre-fault equilibrium point and experi-
ences transient post-fault dynamics. A realistic model
of power system should include dynamics of the gener-
ator excitation system, nonlinearity of the network and
dynamic response of the load against changing voltage
and frequency.

(c) Judicious choice of attributes which can represent
dynamic characteristic of the system and are correlated
with post-fault system security. This usually refers to a
set of variables representing current state of the system
(such as load-generation level, line flows, bus voltage
magnitudes and bus voltage angles). PMU measure-
ments allow synchronized monitoring of these variables
and their variationwith changing systemconditions, and
therefore, they are considered good candidates to repre-
sent dynamic state of a power system.

‘Quantity’, on the other hand, refers to the total num-
ber of observations or number of samples used for training,
where each observed sample corresponds to a unique pre-
contingency operating condition. Though there is no guide-
line regarding how many observations should be considered
‘adequate’ for a given problem, the rule of thumb is to start
with sample size, at least 10 times the number of features
present in the data, and update the sample size incremen-
tally, if the training accuracy is not up to the expectation.

Adynamicmodel of the IEEE118-bus test systemwas cre-
ated in PSAT [30] for simulation of operating conditions and
contingencies. Dynamics of the generator excitation system
and dynamic voltage and/or frequency dependent load mod-
els were considered. However, nonlinearity of the network
elements could not be considered due to inadequate informa-
tion. Creation of large number of diverse and well-dispersed
operating points was achieved by multiple load-flow sim-
ulations with variable initial conditions such as generation
and load variations, as well as with changed network topolo-
gies due to generator, line and transformer outages and their
combinations. This illustration considers only 54 number
(N-1) generator contingencies and 186 number (N-1) line
and transformer contingencies. In real-time deployment, a
contingency list can be prepared by the grid operator to
account for probable (N-k) contingencies depending on sys-
tem size and criticality of the contingency and the new cases

Dynamic model of Power System Network 

Change of operating condition  
and network topology 

Load 
variation 

Generator 
contingency

Line and Transformer 
contingency 

Evaluation of static security 

Static security 
criteria violated 

Simulate 3-Phase line faults and assess dynamic security on the 
basis of DSA metric

Separate and store dynamic secure and insecure cases based on 
DSA results 

Yes  

No  

Fig. 2 Knowledge-base creation for the ENSC through offline computer
simulation

can be incrementally added in the knowledge base. Figure 2
demonstrates how offline simulation was used to create the
knowledge base for the ENSC.

4.1.1 Simulation of operating conditions and contingencies

In order to simulate the most credible operating scenarios,
load-change was considered in approximately 14% of the
total number of system load buses simultaneous. Out of the
total 91 load buses, set of 13 buses were randomly selected
as candidates for simultaneous load-change in 5 discrete
steps of 0.5, 0.75, 1.0, 1.25 and 1.5 p.u. of the base loads
at these buses. The process was recurrently followed for
further sets of 13 randomly chosen buses which are not com-
mon with either of the previously selected buses, until all the
system buses were considered. This generated 5×7=35 dis-
tinct, well-dispersed and yet credible load-generation cases.
Each of these 35 load-generation conditions was then com-
bined with single-generator outage cases. Considering 54
number generators in the IEEE 118-bus system, and ‘no
generator outage’ as yet another scenario, a total of 35×55
� 1925 unique load-generation-generator outage scenarios
were simulated. Single line-outage cases were also consid-
ered for the 186 lines/transformers on these lines, and taking
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Table 1 Distribution of dynamic stable and unstable operating cases in
the knowledge base of ENSC

‘no line-outage’ as one more condition and combining 186
single line-outage cases with 35 load-generation patterns,
187×35 � 6545 exclusive combinations load-generation-
line-outage conditions were simulated. Thus, all together
1925 + 6545� 8470 mutually exclusive, yet credible operat-
ing cases were simulated for representation of the complete
operational space of the IEEE 118-bus test system. Rig-
orous TDS revealed that out of these 8470 cases, 3735
load-generation-outage combinations caused generator and
line loading limit violations or voltage level violations (static
security criteria) and hence they were disregarded as credi-
ble operating points. Finally, the 4715 remaining qualifying
operating cases (OCs) were considered as candidates for the
knowledge base of ENSC.

4.1.2 Simulation of dynamic secure and insecure cases

After the 4715 initial conditions referred above (and their
corresponding 898 operating variables listed in Table 2) were
archived in the knowledge base, 3-phase line faults were sim-
ulated in each of the 186 lines of the test system, and dynamic
security of the post-fault system in each case was assessed
by TDS and using the DSA metric explained in Sect. 4.3B.
Table 1 summarizes the results of the TDS and the distribu-
tion of dynamic stable and unstable operating cases in the
knowledge base of the ENSC.

All numerical simulations were performed on a computer
with an Intel Core i7 CPU working at 3.4 GHz and 8 GB
RAM. The overall ENSC knowledge-base creation time is
estimated as follows: TDS over 20-s horizon for checking
limit violation for each of the 8470 initial OCs took on aver-
age 2–5 s, totalling approximately 7 h. Further post-fault
DSA by TDS for the 186 three-phase line faults over 10-s
horizon and step size 10 ms for each of the 4715 knowledge-
base candidate cases took 20 s on average, totalling another
26 h. There is scope for reducing the simulation time propor-
tionately by using parallel computation onmultiple CPU’s or
distributed computing, since each simulation is independent.

4.2 Dynamic security assessment criteria

The post-fault rotor angle deviation has been used as the indi-
cator of dynamic stability of the power system. Rotor angle
trajectory of all the generator buses during fault and post-
fault clearance were obtained by TDS for each of the 4715
operating cases. The dynamic stability status was evaluated
by observing the absolute values of bus voltage angle dif-
ference between any two generator buses in the system over
the chosen TDS horizon [0, ts]. The system is considered
dynamically unstable if the angle separation between any
two generator buses in (1) exceeds a certain threshold at any
TDS time-step.

�δi j � ∣
∣δi − δ j

∣
∣ > δmax; i, j ∈ BG and i �� j (1)

where δ is the bus voltage angle, BG is the set of generator
buses, and δmax is the predetermined threshold or maximum
allowable generator rotor angle separation for secure oper-
ation. δmax was set to 120 degree [31]. TDS horizon ts was
chosen as 10 s, and 10ms step size was chosen for each TDS.
A dynamic security index (SI) is proposed in (2) to assess the
relative criticality of an operating condition following a dis-
turbance

SI � 1 − δmax − δi j (ts)
∣
∣δmax + δi j (ts)

∣
∣

(2)

where δi j (ts) is the final rotor angle separation between any
two generators at the end of TDS horizon. Finally, SI-based
DSA criteria can be defined as: SI<1: secure and SI≥1:
insecure.

4.3 Selection of critical attributes for strategic PMU
measurement

Choice of input is crucial to effectively train the ENSC.
As mentioned earlier, the biggest challenge in developing
a robust online DSA system is handling frequent variations
in operating conditions like change of load, re-scheduling
of generators and occasional topology changes due to the
forced outage of generators, transformers or transmission
lines. While some attributes or variables may be critical in
deciding system security under one operating scenario, the
same attributes may not be equally important in changed sit-
uations. Selecting proper variables for training and real-time
measurement of those variables for DSA has a number of
challenges: first, how to decide critically important variables
forDSAunder a given operating condition and topology? For
a large system, it is impractical to consider that every sys-
tembuswill havemeasuring devices likePMUspre-installed;
secondwhen criticality of attributes changes under new oper-
ating conditions and changed topology, how to practically
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measure the new set of critical variables with fixed installa-
tion of PMUs?; and third how to re-train the ML-algorithm
adaptively with new inputs every time? The present paper
suggests a novel approach to deal with the above challenges.

First, a correlation-based feature screening approach is
used in selecting optimal set of attributes which have high-
est correlation with system’s dynamic security under a given
operating condition and topology (case specific optimiza-
tion).

Second, the optimization is extended for all probable oper-
ating condition and topology to obtain a globally optimum
set of attributes that are independent of operating condition
and topology. It is unlikely that a common set of attributes
will have same degree of correlation with system’s dynamic
security under all probable operating condition and topology.
It is therefore important to optimally choose the most crit-
ical set of system-wide variables, which have high average
correlation with system’s dynamic security, independent of
operating condition and topology by deploying an efficient
attribute screeningmethod and train the proposed ENSPwith
these globally optimum set of attributes.

When a global set of critical variables is identified, it is
not difficult to decide the strategic buses where PMUs need
to be installed for measurement of these critical variables
independent of operating condition and system topology. The
method therefore suggests a practical way to decide optimal
installation of PMU for reliable online DSA and significantly
reduces the data acquisition cost and computation overhead.
The following section illustrates a practicalmethod of feature
screening for selection of critical attributes. The sequence
of steps implemented for the proposed attribute selection is
illustrated in Fig. 3.

4.3.1 Selection of primary variables

Primary variables are those which can adequately represent
dynamic characteristic of the system and have correlation
with post-fault system security. These selected variables
should preferably be PMU measurable or derivable from
PMU measurements obviating the need of extensive com-
putation for fast online DSA. Based on experience of the
previous researchers [32, 33], a set of PMU-measurable vari-
ables S was created with the initial attributes:

Active generation : {PGi; i∈BP}

Reactive generation : {QGi; i∈BP}

Active load power : {PLi; i∈BP}

Reactive load power : {QLi; i∈BP}

Bus voltage magnitude : {VBi; i∈BP}

Bus voltage angle : {δBi; i∈BP}

Line active power flow : {Pi j; i, j∈BP} and i> j

Line reactive power flow : {Qi j; i, j∈BP} and i> j

Off-line computer simulation and determination of 
dynamic security states

Selection of PMU measurable ‘primary variables’ 
representing dynamic characteristic of the system 

Selection of system wide ‘critical attributes’ 
with high average correlation with system’s dynamic 

security independent of operating cases 

Power System Network 

Strategic PMU installation for 
measurement of ‘critical attributes’

Fig. 3 The sequence of steps implemented for critical attribute selection
for strategic PMU measurement

Table 2 The initial pre-selected primary system variables

Primary system variables Symbol used Number of variables

Active generation PG 54

Reactive generation QG 54

Active load power PL 91

Reactive load power QL 91

Bus voltage magnitude VB 118

Bus voltage angle δB 118

Line active power flow P 186

Line reactive power flow Q 186

Total 898

where BP is the set of buses having PMU. Initially, BP

contains every system bus. Exact candidate buses for BP

are decided later on the basis of attribute screening result.
Table 2 illustrates the 898 primary variables constituting the
set S={PGi, QGi, PLi, QLi, VBi, δBi, Pij, Qij} for the IEEE
118-bus system. These variables are calculated by solving PF
for each of the 4715 operating cases and passed on to feature
screening algorithm for selection of globally optimum set of
critical variables referred earlier.

4.3.2 Critical attribute selection

The critical set of global attributes with high average correla-
tionwith system’s dynamic security independent of operating
condition and topology was selected by ‘Gini Index (GI)’
[34]-based feature screening method. ‘Feature’ refers to the
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distinctive attributes which can broadly represent a system.
GI uses a correlation-based criterion, which attempts to esti-
mate a feature’s ability to aid classification. Themethod finds
wide use as a splitting criterion in many decision tree algo-
rithms [35]. The Gini split criterion can be described as:

GI (tK ) �
∑

i

P

(
tk
Ci

)2

· P
(
Ci

k

)2

(3)

where P
(

tk
Ci

)

is the probability that the feature tk occurs in

category Ci and P
(
Ci
k

)

refers to the conditional probability

that the feature tk belongs to the categoryCi when the feature
tk occurs. The method proposes to choose the feature tk if it
produces highest impurity reduction in the next split.

4.3.3 Strategic PMU installation

Since the correlation of critical variables change with change
in operating condition, topology and faults., it was therefore
necessary to compute ‘average correlation’ of the 898 pri-
mary variables in ‘S’ for all probable operating conditions,
topology and fault andfinally select aminimal set of ‘n’ (n∈S)
globally optimized variables, which can be perceived as the
‘common critical variables’ with high average correlation
with system security under all operating conditions. ‘n’ needs
to be decided by a trade-off between PMU installation/data
acquisition cost and reliability/accuracy of the online DSA.
An illustrative example of relative criticality of the variables
is presented in Fig. 4 with the highest correlated variable
scaled to 100%.As such, no heuristic or analytical algorithms
were used to optimize the selection, and rather the selection
was based on meticulous review of the average correlation
of the variables as in Fig. 4. Since the average correlation of
the 15th variable (VB89) already fell to just 8% in a scale
of 0–100%, choosing n >15 was not considered prudent, as
the variables with still lesser correlation would hardly ben-
efit the DSA classification, while unnecessarily increasing
the computation load. Therefore, n � 15 was used in this
illustrative case study. There exists scope for using heuristic
or analytical algorithms to optimize ‘n’ and it may be possi-
ble that n <15 also provide ‘satisfactory results’. However,
such optimization further needs to consider ‘observability’
of the system and ‘PMU contingency’. Since out of these
15 critical variables, 8 are dynamic variables (7 relative bus
voltage angles and one bus voltage magnitude, which keep
changing frequently in post-fault scenario), for online DSA,
synchronizedmeasurement with PMUs are necessary. PMUs
are required to be installed at strategic buses to monitor these
final set of critical variables, independent of operating con-
dition and system topology. For practical PMU installation,
additional constraints like ‘observability’ of the system and
‘PMUcontingency’ needs to be taken into consideration. The
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Fig. 4 Correlation of the critical variables with system security

‘critical attribute vector’ C={C1, C2, C3, … C15} is finally
formed with each critical variable (Ck) as member of C for
preparing the knowledge base of the ENSC.

4.4 Offline DT building and training

The ENSC was developed in Python, scikit-learn by ensem-
ble of DTs, where individual DTs were built upon classifica-
tion and regression tree (CART) model [36]. The DTs were
trained using a training set and a test set to classify the oper-
ating cases (OCs) into ‘secure’ and ‘insecure’ classes (for
two-class classification). The classification may be extended
to (I + 1) classes if ‘insecure’ class needs to be sub-divided
further into I classes depending on relative criticality of the
insecure operating cases. Initially, 2/3rd of the operating
cases (3143 OCs in Table 1) served as the training set for a
single decision tree. For each of the 3143 training OCs, indi-
vidual DTs were trained with corresponding unique ‘critical
attribute vector’ C. Each of these individual decision trees
can vote in favour of one output class (‘secure’ or ‘insecure’)
for a given operating case.

Pre-selection of the critical attributes (in Sect. 4.3.2) and
use of the critical attribute vector ‘C’ of reduced dimension
n � 15 (Sect. 4.3.3) in lieu of all the 898 primary variables
in ‘S’ offered significant performance benefit during offline
DT building and training. There was noticeable advantage
both in terms of the commutation overhead and time. With
the 3143 training OCs and ‘C’ as input, the Intel Core i7
3.4 GHz CPU accomplished DT training and met the mis-
classification error criteria in 3707 epochs taking a total time
of 5.6 h with average run time of 5.4 Sec/epoch. In compari-
son, the DT building and training took 5233 epochs to meet
the same misclassification error criteria, when all the 898
variables in ‘S’ were used as input and took a total training
time of over 57 h with average run time of 39.3 Sec/epoch.
Thus, training time decreased by more than 90% when using
reduced order critical attribute vector ‘C’ as input in lieu of
full set of primary variables ‘S’.

Final class prediction then follows the ‘majority voting’
principle, where the class receiving maximum number of
votes by individual decision trees is finally considered as
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the output security class for the operating case under con-
sideration. In the second stage, assessment of correctness of
the decisions made by various DTs in the ensemble of DTs
was done by calculating misclassification rate. This assess-
ment was performed on the remaining 1/3rd data (1572 OCs
in Table 1) to estimate prediction error and focus was to
minimize the misclassification rate. If the results were unsat-
isfactory, or splitting data into just two parts (2/3rd and 1/3rd)
did not result good prediction, cross-validation [37] was used
to improve prediction accuracy. Tenfold cross-validationwas
used in this illustration to determine optimal tree height and
optimal number of DTs. The training data were randomly
partitioned during training into 10 subsets of equal size. For
a given tree height and given number of trees, the classifier
model was trained with 10 − 1 � 9 data subsets and tested
with the remaining one subset. The training process was then
repeated 10 times with each of these 10 subsets used once
and only once as test subset. The overall misclassification
error was calculated by averaging the prediction error of 10
training instances. The final optimal values of tree height and
number of trees were accepted when the average misclassi-
fication error dropped below 1%.

5 Performance of different DTModels
in offline DSA

Performance of different trained DT models in the offline
DSA was evaluated and compared for the 1572 test OCs
in Table 1 containing 927 (59%) secure and 645 (41%)
insecure cases, with the objective to select the better per-
forming dynamic security predictor model for the IEEE
118-bus system. Among the ‘boosting-DT’ models [27], the
‘stochastic gradient boosting (SGB)’ [38] was considered,
where in each iteration a sub-sample of the training data was
drawn at random from the full data set without replacement.
The randomly selected sub-sample was then used to train
the individual base learners [23]. In the ‘adaptive boosting-
DT’ category, the ‘Ada Boost (AB)’ [39] model was tested,
which is an ensemble model that attempts to create a ‘strong
classifier’ from a number of ‘weak classifiers’ [15]. In the
‘bagging’ [27] category, ‘random forest (RF)’ was tested,
which is a decision tree model where individual trees have
structural similarities, but the algorithm trains the sub-trees
in a manner that reduces the correlation between the predic-
tion results of the individual sub-trees. The confusion matrix
[40] for each DT model is presented in Table 3 for the train-
ing cases and in Table 4 for the test cases, which illustrate the
results of the security classifier over several trials against the
actual known security classes of the items in the data set, and
thus offers a convenientway to evaluatewhich dynamic secu-
rity classes are being correctly/incorrectly classified. Among

Table 3 Confusion matrix for the 3143 knowledge-base training cases

Actual Classified as

Secure Insecure

RF AB SGB RF AB SGB

Secure 1745 1702 1681 109 152 173

Insecure 64 71 76 1225 1218 1213

Table 4 Confusion matrix for the 1572 test cases

Actual Classified as

Secure Insecure

RF AB SGB RF AB SGB

Secure 880 848 833 48 95 116

Insecure 31 32 34 613 597 589

the trained DT models, RF is found to perform better in this
illustration.

The classification decisions are of the following types: (1)
CS (correct secure): A secure OC is correctly classified as
secure; (2)WS (wrong secure): A secure OC is wrongly clas-
sified as insecure; (3)CIS (correct insecure): An insecure OC
is correctly classified as insecure and (4) WIS (wrong inse-
cure): An insecure OC is wrongly classified as secure. The
composite classification accuracy ‘CCA’ of the classifier is
defined as the probability of a correct classification decision,
which is the ratio of the number of correct classifications
(correct secure + correct insecure) to the total number of test
OCs:

CCA � (CS + CIS)/NOC (4)

where NOC is the total number of test OCs. The misclassi-
fication rate can be defined as: e � 1 − CCA which is the
probability of making an incorrect classification. A number
of other metrics have also been used to evaluate the perfor-
mance of the security classifier:

Secure misclassification rate: SMR � WS/(CS +WS) (5)

Insecure misclassification rate : IMR � WIS/(CIS + WIS)
(6)

In power system security classification, misclassification
of secure OCs only raises false alarm without much harm
to normal system operation. But, misclassification of inse-
cure OCs is potentially hazardous, as it results in lack of
remedial actions and plausible system outage. It is, therefore,
important to design a security classifier to keep IMR at mini-
mal. Table 5 illustrates the performance of different ensemble
DT classifiers in terms of the metrics defined in (4)–(6) and
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Table 5 Comparison of performance different classification methods

Classification methods Classifier performance metrics

CCA (%) SMR IMR

Ensemble methods

RF 94.97 0.034 0.07

AB 91.92 0.036 0.137

SGB 90.45 0.039 0.164

Single learner methods

SVM 88.6 0.063 0.177

MLS 86.9 0.079 0.195

LVQ 85.6 0.083 0.21

PNN 83.4 0.089 0.24

KNN 81.2 0.097 0.31

compares the classification results with results of different
single learner classification methods, such as ‘support vector
machine (SVM)’ [41], ‘method of least squares (MLS)’ [42],
‘learning vector quantization (LVQ)’ [43], ‘probabilistic neu-
ral network (PNN)’ [44] and ‘Kohonen’s neural network
(KNN)’ [45]. It is apparent from these classification results
that the use of a reduced order critical attribute vector ‘C’
for DT building and training did not have any noticeable
impact on the classification performance, but the suggested
technique significantly reduced computational overhead and
training time.

6 Conclusion

The paper presented a real-time dynamic security assessment
scheme for large-scale power systems based on ensemble
decision tree using selective PMU measurement data. An
ensemble decision tree (DT) classifier was developed and
trained offline to recognize the present dynamic operating
condition of the power system from real-time measurement
of important system attributes by PMUs and classify the sys-
tem’s current dynamic state into secure or insecure class. The
scheme identified a critical set of PMU-measurable attributes
with high average correlation with system’s dynamic secu-
rity independent of operating condition and topology and

accordingly suggested a practical method for strategic PMU
installation in wide area power system networks considering
the trade-off between PMU installation/data acquisition cost
and reliability/accuracy of the online DSA. The scheme was
tested on IEEE118-bus systemunderwide range of operating
conditions and credible set of contingencies. The test results
demonstrated that the ensemble decision tree (DT)-based
classification method is more accurate, reliable and compu-
tationally efficient than other equivalent methods built upon
‘support vector machine (SVM)’, ‘method of least squares
(MLS)’, ‘learning vector quantization (LVQ)’, ‘probabilis-
tic neural network (PNN)’ and ‘Kohonen’s neural network
(KNN)’ classifiers in offline simulation.
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System Description: 
118 Buses 
186 Branches 
  91 Load Sides 
  54 Thermal Units 

Phasor Measurement Unit (PMU) 

Fig. 5 IEEE 118-bus power system with strategic PMU installations
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