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Abstract
Usage of electrical vehicles (EV) is increasing at high rate due to their great benefits to the community well-being. However,
EVshave considerable impacts to electrical power networks and especially to the lowvoltage side of the distribution network. In
order to determine the impacts of EVs accurately, uncertain behaviors of drivers weremodeled usingMonte Carlo simulations.
This method is proven to be a robust tool for the evaluation of stochastic processes and getting deterministic results out of it.
Furthermore, real-world traffic pattern data were used to model drivers’ behaviors. Return home time of EVs was used as a
charging start time, and average commute distance of drivers was used to determine the charging duration. Also, residential
area was taken as a pilot network. Hourly basis transformer loading data were obtained and used to realistically reflect the
base load of the pilot network. Load flow analysis was performed for non-EV and with-EVs scenarios. The results of the
analysis were represented in a probabilistic approach. Violations of results were investigated according to power quality
limits. Consequently, impacts of the EV charging load to the low voltage side of distribution network were analyzed in terms
of voltage drops, transformers’ loadings, power losses and voltage unbalance. This study showed that with a 50% penetration
rate of EVs, the probability of voltage violation increases by approximately 25%.

Keywords Distribution network · Electrical vehicles · EV impacts · Load flow analysis ·Monte Carlo simulation

1 Introduction

Uncertain gas prices andglobalwarming are themain reasons
for the electric vehicles (EV) becoming inevitable option
against vehicles which contain internal consumption engine
(ICE) [1]. Studies assert that EVswill take 86%of the vehicle
sales by 2030 owing to the changing prices of oil and vehicles
[2]. As the demand for EVs is increasing, more EV charging
stations will be installed. Growing number of EV charging
stations in the low voltage side will have an impact on the
distribution network. If the EV charging stations will not
integrate to the distribution network properly, future of EVs
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eyubogluo@itu.edu.tr

Önder Polat
onder.polat@siemens.com

Ömer Gül
gulomer@itu.edu.tr

1 Siemens, Istanbul, Turkey

2 Department of Electrical and Electronic Engineering, Istanbul
Technical University, Istanbul, Turkey

technology will not be reliable. When EV charging stations
considered as loads, there will be changes in the distribu-
tion network parameters. In the literature, there were many
studies that have been done to mitigate the future impacts
of the EVs. Sortomme et al. [3] minimized the variations
of loads, in order to obtain the minimum power losses and
the maximum loading factor in their study. Kempton et al.
[4] have forecasted that the system with insufficient energy
storages will create an unbalanced in between demand and
supply. Putrus et al. [5] examined impacts of the EVs, and
they stated that the EVs have increased the peak load by 18%.
Nyns et al. [6] investigated the EVs’ charging load impacts
to the 34 nodes IEEE test system. They stated that the grid
components should be replaced. Gong et al. [7] investigated
the impact of EVs to the distribution grid with the Monte
Carlo method. The study showed that the life expectancy of
transformer is calculated only as 6.7 years due to insulation
degradation by the uncontrolled charging techniques. How-
ever, this might be increased to the 83.07 years by using
the controlled charging techniques. Also, studies [8, 9] show
that it decreased the reliability indices. Hadley et al. [10]
predicted the unit price of the generation of electrical energy
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by taking the penetration levels of EVs as 25% and 60% of
population for the 13 states of USA. Unit price of the elec-
trical energy was increased about 200% of itself in some
states. Scharrenberg et al. [11] determined probabilities of
the EVs charging points, return home times and distance that
traveled by Monte Carlo method for a distribution grid in
Holland. Thereafter, EVs probabilities of the battery con-
sumption and start time of the charging was calculated by
Monte Carlo Simulation in the another study [12]. Studies
show that when the percentage of the battery swapping tech-
nique has increased, peak load demand also decreased. Leuo
et al. [13] compared the deterministic and stochastic load
models with Monte Carlo Simulation in the IEEE 13 node
test feeder. As a result of the study, stochastic load models
are more efficient for the modeling the distribution network.

In this study, voltage profile and transformer loading
changes were investigated by improved models in order to
predict the impact of EVs to the low voltage side of the dis-
tribution network. The novelty of the paper is that real-world
data were used to model the behaviors of drivers and elec-
trical distribution network. Uncertain parameters are used as
inputs in the modeling of EV charging loads. The impacts of
EVs to the grid were investigated byMonte Carlo simulation
which is an efficient way to analyze the stochastic events.
Thereafter, a load flow analysis was done for the system in
different penetration levels of EVs to forecast the impact in
the future. Consequently, probabilities of voltage limit viola-
tions and transformer overloads were obtained for different
penetration levels of EVs. Eventually, results of voltage drops
violations were compared to the national electrical energy
quality standard which is [14].

This paper is structured so that the introduction is fol-
lowed by the proposed methodology explained in Sect. 2,
the modeling of the grid and results are given in Sect. 3, and
the conclusions are summarized in Sect. 4.

2 Proposedmethod

In order to investigate the impact of EVs to the low voltage
side of the distribution network, charging load profiles that
form the extra load to the grid were obtained and modeled.
While creating the EVs charging load profile, factors that
affecting the load profile directly were taken into consider-
ation. In this study, impact of EVs is analyzed with Monte
Carlo simulation in order to predict the stochastic processes.

2.1 Modeling EVs charging load profile and driver’s
behavior

EVs charging profile is the load curve that depends on time,
and it consists of information about connection of vehicles to
the lowvoltage grid. It is depended onmany uncertain param-

Table 1 Parameters that used for creating the EVs charging loads

Fixed parameters Variable parameters

Number of EV Start time of the charging

Battery consumption (kWh/km) Charging duration

Charging power Charging points and phases

eters related with charging such as start–end time, duration,
power consumption or connection phase. Furthermore, these
parameters should be calculated as much as random due to
the uncertain decisions of consumers. Nevertheless, some of
the parameters were taken as fixed values in order to make
simplifications in the charging load model. Parameters that
are used as fixed or variable to create the charging load are
shown in Table 1.

“Battery consumption” and “charging power” were
selected as 0.2 kWh/km 3.7 kW, respectively. Number of
EVs was taken as a multi-state fixed parameter. Three states
were created by differentiating the penetration levels of EVs
by 10%, 30% and 50% for the “number of EV” parameter.
Therefore, it can be stated that those three parameters are
fixed in nature. To determine start time of the charging and
charging duration for a specific EV, municipality transporta-
tion master plan study was used [15].

Charging load profile fully depends on the behavior of
driver. Due to the fact that drivers in the residential areas
usually travel for the purpose of going to the work, residents
were considered that they traveled two times in a day. There-
fore, EV’s return time to home is taken as the start time of
the charging owing to the residential area consumer behav-
iors. After the EVs are plugged in the charging stations, it
is considered that battery will be fully charged until the next
morning. In order to obtain the precise charging load profile,
return time of the residents are received from the guideline
of Istanbul Municipality Transportation Master Plan (IUAP)
report [15]. In this report, probability density function of
arrival times of vehicles is given in hourly time basis.

Additionally, duration of charging is another crucial
parameter that affects the charging load profile.However, this
parameter is fully related to the distance that EVs traveled.
Therefore, duration of charging will be longer for the EVs
that traveled more distance. With the aim of predicting the
exact situation, daily average commute distance information
is taken to calculate the state of charge in battery. Average
distance that vehicles traveledwas obtained from the Istanbul
Municipality, and it was converted to a continuous probabil-
ity function to be used an input parameter. Probability of the
arrival times, average commute distance, charging point and
phase connection are shown in Fig. 1.

“Charging connection points” and “connected phases”
variables are created using uniform distribution probability
density function. It means that connection probability of an
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Fig. 1 Probability density functions of the random variables
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Fig. 2 Calculation process of the start time of the EVs charging

EV to any phase of grid is equal (Phase 1, Phase 2 or Phase
3). This approach is also valid for the connection point.

To produce stochastic outputs from these probability den-
sity functions, quantile function conversion technique was
used. This process is visually summarized in below depic-
tion (Fig. 2).

Process that is defined above was implemented in order
to determine the random variables of parameters. Steps of
this process are explained below. This was implemented to
charging start time of EVs and the distance traveled by them.

• Probability density function is converted to the cumulative
distribution function.

• Inverse of cumulative distribution function is taken which
is the quantile function.

• A data set is created using uniform distribution density
function. In this data set, number of data points is equal to
the number of electric vehicles.

• Value of these random numbers is taken as parameter of
the related quantity.

1. Read network and EV data

2. Specify charge start and finish times of EVs

3. Determine charging points and phases of EVs

4. Create charging load profile

5. Combine base load profile with charging load profile

6. Run power flow

End of day?

 End of trials?

Finish

No

No
Yes

Yes

Fig. 3 Flowchart of the Monte Carlo simulation

2.2 Monte Carlo simulation and load flow analysis

In order to reflect mobile nature of the charging load and
obtain more accurate results, stochastic modeling technique
which includes uncertain parameters of EV charging was
used. Monte Carlo simulation is the method that creates a
set of random sampling and repeats the simulation in large
number of times. Probabilities of events can be calculated in a
deterministic system. Consequently, Monte Carlo simulation
is awell-suitedmethod for investigating uncertain events like
the impacts of EV charging load on distribution network.

Outputs of Monte Carlo simulation were taken as input
parameters for load flow analysis. Main purposes of the load
flow analysis are (i) obtaining the power loss of the lines,
(ii) calculating equipment loadings in terms of ampacity and
(iii) calculating voltage magnitudes and angles on busbars
and terminals. One of the many power flow techniques is the
Forward–Backward Sweep. It is a widely used method for
distribution systems having high R/X ratios. Applicability of
this technique and mathematical expressions can be found
in [16]. Load flow analysis was performed for non-EV and
withEVs scenarios. Charging load profile of EVswas created
with the stochastic process and base load profilewas gathered
from a field study. Total number of 1000 different charging
load profile was created with a resolution of 1 min. Aggre-
gated load profiles were used in load flow studies. Flowchart
of the Monte Carlo simulation is shown in Fig. 3.

To perform this process, based on the process of theMonte
Carlo Simulation in Fig. 2, an algorithmwas created inMAT-
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LAB. This algorithm consists of one main function and the
two assisting functions. The main function was used to take
inputs from users and cooperates the assisting functions to
create the results. Accordingly, one of the assisting functions
calculates the EVs arrival times, average commute distance,
charging points and phases in the stochastic process. Further-
more, the other one calculates the load flow with the method
of forward–backward sweeping method. In the MATLAB
module, there are user inputs that are needed to perform
the study which are; the number of EVs, number of trials,
charging power, time intervals and battery consumption in
this algorithm. Number of EVs is the percentage of the pop-
ulation that uses an electric car. This number was used to
create different scenarios. Number of trials determines the
howmany times load flowwill be calculated with the random
variables. Also, time interval input is needed for determining
the howmany equal parts a day will be divided. Additionally,
probability density functions are the inputs for the assisting
function that creates the random variables for stochastic pro-
cesses. At last, base load profile and the line impedances are
the inputs for the other assisting function. Basically, these
inputs were accessed via an excel file which has the data on
low voltage side of the distribution grid.

3 Creating networkmodel and its analysis

A residential area was chosen as the pilot network for EV
impact analysis. Impedance data and loading of the distribu-
tion transformer were obtained during a field study. In the
analysis, “Base Model” represents a scenario where no EVs
are connected to the network. Only hourly basis transformer
loading data which do not contain charging loads were used
for basemodel analysis. In addition, three scenarioswere cre-
ated for EV impact analysis for different penetration levels.
The results of the scenarios were compared with power qual-
ity limit values for the purpose of determining the possibility
of violations of the evaluated outputs. Evaluated outputswere
classified as; voltage drops, voltage unbalance, transformer
loading.

3.1 Modeling of residential area

Electrical network parameters of the pilot area and hourly
averaged load profile of the MV/LV distribution transformer
were obtained from a field study. This is important, because
realistic effects of EV charging stations can only be actual-
ized using the real data. In the chosen residential area, there is
one distribution transformer which has 14 LV feeders. It sup-
plies power to 15 blocks that has 662 residential customers.
It is assumed that each household owns one vehicle. This
indicates that total number of vehicles in pilot area is also
662.

Feeder-1

Feeder- 2
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Fig. 4 One-line diagram of the residential area

Fig. 5 Transformer loading data

One-line diagram of the residential is shown in Fig. 4.
There are totally 15 blocks and 13 of them connected from
a dedicated feeder and two blocks are feed through a com-
mon LV line. Additionally, number of the households in the
blocks is depicted in red brackets. Also, line impedances of
each feeder are shown in Fig. 4. Loading data of the dis-
tribution transformer that supplies energy to the residential
area were received from the automatic meter reading sys-
tem which is shown in Fig. 5. As we have only the 24-h
load profile of the distribution transformer and not having
any consumption data of individual feeders, a top-down load
allocation technique was applied.

Total transformer load is distributed to each feeder in a
way that feeders having a higher number of households will
demand more power from the transformer.

3.2 Results of implementation

In this study, simulations were performed for different pen-
etration levels of EVs. Furthermore, voltage drop, voltage
unbalance and transformer limit violations were evaluated,
and the results were examined based on the national stan-
dard [14]. First scenario was conducted for base load without
any EVs. Thereafter, analyses were performed with the addi-
tional charging loads that EVs created. Number of EVs
was assumed to be 10%, 30% and 50% of total 662 vehi-
cles. Monte Carlo algorithms and forward–backward sweep
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Fig. 6 Probabilities of the voltage in p.u. at the transformer

load flow method were developed in MATLAB environ-
ment.Also, simulationswere performed, and depictionswere
obtained using the same tool. The tests were executed by
sequentially running the code blocks on a dual processor of
an Intel Core 5 with 2.5 GHz and 4 GB of RAM. For each
scenario, execution of code blocks lasted 9.75 s. The time
interval of the load profile data is 60 min. However, analyses
were performed with per minute resolution as the charging
load profiles were created in 1-min basis. Number of trials
was taken as 1000 for all the simulations.

In Fig. 6, voltage magnitudes in per unit (p.u.) are shown
for 4 different cases. The red line represents the lower limit
value of voltage violation threshold which is defined as 0.95
p.u. This limit value was obtained from the national power
quality standard [14]. It can be said that probability of viola-
tions is increasing with the growing number of EVs. The
voltage violation probabilities exceed 13% with 30% EV
penetration and approach to 25% violation risk in case of
50% EV penetration level.

In Fig. 7, voltage drop violations were evaluated for all
phases of feeders. Number of voltage drop violations is con-
siderably higher in the transformer feeders of 1, 8 and 12

Fig. 7 Percent of the voltage drop violations in feeders

than the others. The reason for this issue is that those lines
have higher impedances due to low cross section and high
cable lengths. Feeder 3 has the greatest power demand com-
pared to others because it supplies energy to the two different
blocks. However, length of the line is shorter, and thus line
impedances aremuch lower. Therefore,magnitude of voltage
drop violation is low for the Feeder 3.

Probability of exceeding the nominal power of the dis-
tribution transformer is shown in Fig. 8. Loading of the
transformer is calculated for theminimum, average andmax-
imum loadingvalues of the 1000 trials byperminute. It can be
seen from the figure that the transformer overloading prob-
ability is 8.5% for the scenario in which 50% of residents
use an electric car. In addition, overloading risk might be
neglected for 10% and 30% EV penetration scenarios, as the
violation probabilities are near to zero. Although overloading
probabilities seem to be considerable low in general, major-
ity of these violations are aggregated at the peak times. For
this reason, it could be a crucial problem for the distribution
grid operators especially in the cases where EV penetration
level approaches to 50%.

Loading of the distribution transformer in hourly basis
is shown in Fig. 9. When all the results are examined, the
loading of the transformer is higher at the times when EVs
are returning to homes. The peak load is experienced at the
time between 16:00 and 21:00.

Moreover, maximum simultaneity was calculated by
dividing the maximum number of EVs charging at the same
time to the total number of EVs. In addition to, total power
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Fig. 8 Probability density of the distribution transformer

Fig. 9 Loading of the distribution transformer in hourly basis

losses of the lines are calculated for minimum, average and
maximum values in the analyses. The results are shown in
Table 2.

Table 2 Results of the analyses

Base 10% 30% 50%

Voltage (pu) Min. 0.9571 0.881 0.8098 0.7669

Avg. 0.9752 0.9731 0.9688 0.9643

Max. 0.9898 0.9898 0.9898 0.9898

TR (kVA) Min. 126.3 126.3 126.3 126.3

Avg. 272.9 299.2 352.5 407.6

Max. 392.8 495.2 677.6 866.1

TR loading (%) Min. 20 20 20 20

Avg. 43.3 47.4 55.9 64.7

Max. 62.3 78.6 107.55 137.4

Voltage violation
probabilities (%)

0 3.48 13.805 23.988

TR overloading
probabilities (%)

0 0 0.0377 8.557

Balance violation
probabilities (%)

0 0 0.0152 0.1573

EVs simultaneously (%) – 56.06 41.41 39.27

Power losses (kWh) 189.76 242.12 367.46 526.83

The results shows that power losses are increasingwith the
growing number of EVs as expected. Technical losses were
nearly tripled in the 50% EV penetration scenario compared
to base case. This issue should also be monitored by distri-
bution network operators and market regulatory authorities.
Minimum, average and maximum values are given for volt-
age magnitudes at end nodes and transformer loading. The
results indicate that voltage level may decrease to 0.76 p.u.
level which can easily cause malfunction of end-user equip-
ment. This risk emerges for 50% EV penetration scenario. In
the same scenario, it can also be observed that there is pos-
sibility of 137% loading of the distribution transformer. As
the distribution transformers are generally designed to with-
stand 120% overloading in steady state, this issue might be
problematic if the damage curve of equipment is violated.

4 Conclusions

In this study, impacts of the EV charging stations to the low
voltage side of the distribution grid were investigated. There
are many uncertain parameters in EV charging load phenom-
ena due to dynamic nature of drivers’ behavior. Therefore,
Monte Carlo simulation was used to make accurate predic-
tions. Start and end time of the charging, distance that EVs
traveled, connected phase and connection points are the ran-
dom variables that were used in the stochastic processes for
the modeling.

Like as most scientific researchers did, simplifying
assumptions have been made for modeling due to lack of
information about real distribution networks. As result of
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this simplification, difference between real and modeled sys-
tem results is an expected result. In this study, dynamic EV
charging stations were not used for modeling due to there is
not any data regarding the charging stations in the residential
distribution networks.

Load flow analysis was performed using Forward–Back-
ward Sweeping method which is developed in MATLAB.
One limitation of the study is that forward–backward calcu-
lation method is generally not much effective in large-scaled
electrical grids with high loads.

The results of the simulations showed that when 10% of
residents have an EV, loading of distribution transformer did
reach to its rated apparent power even though the voltage
drop violation probability is uncritical. On the other hand,
simulation results for 30% and 50% EV penetration sce-
narios showed that voltage drop violations may reach to
critical values especially in the evening times. Besides, aver-
age transformer loading does exceed the nominal power of
transformer for 50% of EV population. Transformer capac-
ity should be upgraded before half of conventional vehicles
are replaced with EVs for this case study. Nevertheless, con-
sidering the fact that 30% and 50% penetration EV levels
are expected to be actualized approximately in 20–30 years,
equipment should have been already renewed in distribu-
tion networks. As a result, this situation will not affect the
increasing costs.Moreover, simultaneity factor has been eval-
uated. This data can be used for to determine the number of
the charging stations depending on the number of residents.
Also, therewill be an increase in the technical losses. In order
to mitigate the need for the new equipment and reduce the
line power losses, distribution operator should find state-of-
art solutions. Additionally, there might be different paying
options such as real-time schedules in order to reduce the
peak loads at the nighttimes. Likewise, with the commu-
nications systems, EV drivers could be directed to another
charging point which is supplied from a transformer with
less loading ratios. Finally, controlled charging techniques
could be used. Charging will be controlled from operator to
regulate the demands.
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