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Abstract
The usage of electric vehicles is daily increasing. It is predicted that the penetration of electric vehicles in the electrical 
network will grow steadily during the next few years. This growth of penetration causes major challenges for power system 
users, especially the distribution network. Firstly, increasing load consumption, especially during peak hours, and secondly, 
increasing the cost of developing a network to provide load, along with the operation moved away from the optimum point, 
are the major challenges of the penetration of electric vehicles. In this research, a solution is proposed not only to resolve these 
challenges but also to make an opportunity to improve the network parameters. In this study, the charging and discharging 
strategy along with two price-based and voltage-based load management programs are proposed to manage the penetration of 
electric vehicles for economic and technical purposes. The proposed plan is implemented by GAMS and MATLAB software 
on the distribution network, and finally, the results are evaluated.
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List of symbols

Indices
t	� Index for time
i, j	� Index for bus
E	� Index for electric vehicle
�	� Phase index studied in the three-phase distribu-

tion network

Sets
St	� The time horizon studied set
Si	� The network buses set
S�	� The network phases set
SE	� Electric vehicle set

Parameters
Vref	� The magnitude of nominal voltage
�	� Electricity price
A1	� Phase and electric vehicle incidence matrix
A2	� Phase and electric vehicle incidence matrix
G	� Network conductance matrix
B	� Network susceptance matrix
Cmax	� The maximum battery capacity of EV
W min	� Minimum energy stored in the battery
Bmax	� Maximum power exchange capability between 

the network and the EV battery
�	� The maximum voltage difference between the 

two phases
EDR	� Price elasticity of demand
Vmin	� Minimum allowable bus voltage
Vmax	� Maximum allowable bus voltage
CL	� Maximum line capacity
�EV	� Efficiency of charge/discharge converter 

between the vehicle and the network
P min	� Minimum active load participation in the 

demand response program
Pmax	� Maximum active load participation in the 

demand response program
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Qmin	� Minimum reactive load participation in the 
demand response program

Q max	� Maximum reactive load participation in the 
demand response program

Variables
PDR	� Customer’s active power after demand response
PDR0	� Customer’s active power before demand 

response
QDR	� Customer’s reactive power after demand 

response
QDR0	� Customer’s reactive power before demand 

response
PLOSS	� The active power loss of network
PEV	� Active exchange power with electric vehicle
V 	� Network voltage
�	� The phase angle of the bus
P	� Active power passing through in the line
Q	� Reactive power passing through in the line
PL	� Total load active power consumption in each 

bus
QL	� Total load reactive power consumption in each 

bus
PG	� Injective active power from the substation in 

each bus
QG	� Injective reactive power from the substation in 

each bus
PEV	� Exchange active power between charge/dis-

charge converter and network
BEV	� Exchange power between the vehicle battery 

and charging/discharging converter
PLE	� Charge/discharge converter losses
P
E,t

G2V
	� Active power of the electric vehicle in the 

charge state
P
E,t

V2G
	� Active power of the electric vehicle in the dis-

charge state
XEV	� Binary variable to indicate the status of the 

charge and discharge of electric vehicles
WE	� Energy stored in the battery
k1, k2, k3	� Binary variables of the demand response 

program
D	� Traveled distance by EV (for hybrid vehicles 

solely in electric mode)
AD	� The maximum distance that EV can go with a 

single charge
SOC	� The charge state of the EV
Ec	� The required energy to fully charge the battery

Abbreviations
BEV	� Battery electric vehicle
G2V	� Grid-to-vehicle
PEV	� Plug-in electric vehicle
PHEV	� Plug-in hybrid electric vehicle

SOC	� State of charge
V2G	� Vehicle-to-grid

1  Introduction

The automotive industry has led to the advance of the global 
economy and has provided an easier life for humans. How-
ever, many vehicles that use an internal combustion engine 
cause serious problems including air pollution, global warm-
ing, and the rapid drain of oil and gas resources. Govern-
ments have therefore begun to reduce their dependence on 
fossil fuels by increasing the efficiency and usage of clean 
vehicles [1]. The use of electric vehicles as an alternative to 
internal combustion vehicles is one of the solutions offered 
in the transportation sector to reduce energy consumption 
and help with environmental crises. Electric vehicles receive 
energy from the grid (grid to vehicle) and store it in their 
battery, and converting it into mechanical energy. By using 
two-way converters in electric vehicles, it is possible to cre-
ate the ability to transfer energy from the vehicle battery to 
the network (vehicle to grid) in the vehicle [2].

An electric network is used to charge the batteries of elec-
tric vehicles. An element called the charger exists between 
the battery and the electric network. The charger consists of 
two AC/DC and DC/DC converters, which is responsible 
for converting AC to DC [3]. Electric vehicles are generally 
connected to the network for charging from 14:00 to 24:00 
and are on the go from 5:00 to 10:00 and do not connect to 
the network. According to the stated hours, the charging time 
of electric vehicles with peak electricity consumption over-
laps in the network. Therefore, because the vehicle charg-
ing time is mainly done during peak hours, if the electric 
vehicle is connected to the power grid without management 
and coordination, the amount of energy requested from the 
network increases greatly during peak hours. This not only 
causes price jumps during peak hours but also increases 
losses, the probability of network instability due to the volt-
age drop of the buses more than allowable value and makes 
the power of the lines exceed the allowable value and as a 
result their outage occurred [4].

Therefore, the penetration of these vehicles into the power 
network, especially the distribution network, causes some 
challenges. Without efficient power management of electric 
vehicles, power demand increases during peak load times. 
And consequently, the voltage of all buses decreases, and the 
network losses increase. Hence, network stability becomes 
an important problem [3]. Neglecting the challenges of high-
energy demand during peak hours causes the network indi-
ces, both in terms of stability and reliability, to tend to an 
inappropriate situation. To resolve these challenges, some 
researchers have been done and some solutions have been 
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proposed to reduce the problems caused by the usage of the 
electric vehicles in the distribution network.

In [5], the synchronous charging of electric vehicles is 
proposed to reduce the variance of the distribution system 
load by considering uncertainty. In [6], the effects of elec-
tric vehicle charger connection on the smart network are 
investigated and a solution is presented to reduce the loss 
and to improve the voltage characteristic of the charger. The 
paper [7] discusses the use of distributed generation sources 
(DGs) in reducing losses and improving voltage profiles in a 
smart network with charging stations. Distributed generation 
(DG) resources have been proposed to reduce the radius of 
movement of machines to charge and improve the voltage 
profile, especially at the endpoints of buses. The work in [8], 
a new method based on probabilistic techniques for predict-
ing the charge load curve of electric vehicles in the future of 
Iranian electricity distribution networks was presented. The 
parameters of the probabilistic distribution functions used in 
this method to model the charge load of future electric vehi-
cles are estimated by processing the information obtained 
from the owners of current conventional vehicles. In [9], the 
authors studied the effect of charging an electric vehicle on a 
distribution network. In this study, the effect of the different 
magnitudes of electric vehicle charging on the distribution 
network from two aspects of network loss and voltage drop 
was investigated. In [10], given the physical forces applied 
to a moving vehicle, a method is presented to develop and 
implement the physical and electrical model of an electric 
vehicle. In [11], the role of distribution transformers in smart 
networks with coordinated charging of electric vehicles was 
studied. Intelligent network communication networks play 
an important role in plug-in electric vehicle (PEV) opera-
tions. Based on the PEV charging algorithm and sugges-
tions, the effect of coordinated charge loading and distribu-
tion transformer performance was investigated. In [12], the 
authors studied the integration of PEVs and energy sources 
distributed in power distribution systems. Distributed energy 
resources help to improve the reliability and controllability 
of power distribution systems, as well as facilitate the inte-
gration of distributed generation. In [13], the authors con-
ducted a study titled analysis and modeling of voltage–power 
transmitter distribution based on rechargeable electric vehi-
cles. The method used in this study was Newton–Raphson’s 
load flow. The paper [14] investigates the effect of battery 
charging of electric vehicles on distribution transformers. 
In [15], the synchronous charging of hybrid electric vehi-
cles is studied to reduce the loss of the distribution network. 
To minimize power loss and improve voltage profile, the 
straight away synchronization of charging plug-in hybrid 
vehicles in smart networks is studied in [16]. The work in 
[17] presents a new method for simultaneous locating and 
measuring separate charging stations and EVs and also for 
managing the vehicle charging process. In [18], a real-time 

charging scheme has been presented to coordinate the elec-
tric vehicle charging at the parking station. This charging 
planning has been performed as a binary optimization prob-
lem. In [19], a model prediction-based control approach is 
designed to handle the planning of shared charging of PEV 
(plug-in electric vehicle) and power control to minimize 
PEV charging costs and power generation costs. In [20], a 
smart charging strategy is presented for the PEV network 
that offers different charging options. For PEVs that require 
charging facilities, they model the problem of finding the 
optimal charging station as a multi-objective optimization 
problem that aims to find a station that guarantees the mini-
mum charging time, travel time, and charging cost.

In the present study, an optimal design will be imple-
mented to manage the presence of electric vehicles in the 
distribution network. The first step is to provide integrated 
and efficient modeling for power management of electric 
vehicles and the mathematical expression of the problem. 
After modeling, to manage charge in electric vehicles, and 
coordinate with responsive loads, the optimization problem 
is designed to minimize the cost of load and network losses 
and minimize the energy purchase of electric vehicles on the 
planning horizon. In this study, two practical tools have been 
proposed. The first tool is the optimal and managed use of 
the V2G mode of electric vehicles. The second tool in this 
study is the responsive loads and the management program 
of these loads. Minimizing the cost of purchasing energy 
of electric vehicles, the cost of load supply and the cost of 
power losses from the optimal amount is considered as the 
objective function of the optimization problem. According 
to this objective function, electric vehicles receive power 
from the network at a time when the electricity price is 
low, and demand responses are used to reduce costs and 
losses. In general terms, this study presents the modeling 
and simultaneous management of electric vehicle power and 
demand response, which will improve distribution network 
performance.

2 � Methodology

In this section, a model is presented to manage the charge 
and discharge of electric vehicles in the distribution network. 
In this model, the multi-objective optimization problem is 
designed to improve the network parameters and also the 
energy cost management in the distribution network. The 
objective functions of the problem are designed to simul-
taneously manage and navigate several basic network 
parameters.

These objectives are as follows:

1.	 Reducing the cost of energy supply for consumption 
loads.
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2.	 Reducing the cost of line losses.
3.	 Managing exchangeable energy with electric vehicles.
4.	 Reducing the voltage deviation of the network buses.

2.1 � Proposed optimal operation model

In the proposed model, for the electric vehicle, the fol-
lowing factors are considered:

1.	 The exchange and balance of power between vehicle bat-
tery and distribution network

2.	 Technical limitations of electric vehicle charging
3.	 Energy consumed or stored in electric vehicles

In this model, demand response management, along 
with electric vehicles, is also proposed to help improve 
distribution network performance, especially during 
peak load times. This management plan expresses the 
load behavior against incentives and uses it to improve 
network operation. Responsive loads are modeled in two 
ways:

1.	 Cost-sensitive loads
2.	 Voltage-sensitive loads

The management of electric vehicles is based on the 
following three assumptions:

1.	 Electric vehicles are connected to the network in the 
household parking lot for charging or discharging.

2.	 Electric vehicles return to the parking lot and they are 
connected to the network after being used during the 
day.

3.	 Electric vehicles are connected to the network only once 
a day, for charging or discharging. In other words, the 
frequent interconnection of vehicles throughout the day 
is ignored.

The decision variables considered in the plan of the 
distribution network management with the penetration of 
electric vehicles and demand response are:

1	 Charging and discharging power of electric vehicles
2	 Active and reactive power of responsive loads

Therefore, exchanging power with the electric vehicle 
and the load’s participation rate in the demand response 
program are the two main tools that change the process of 
operation of the distribution network. The other network 
variables such as bus voltage, power passing through the 
lines, etc. are dependent variables.

2.2 � The objective function of the optimization 
problem

The four main objectives, in the proposed management 
plan, are considered as follows:

1.	 Minimizing the cost of energy supply needed for net-
work load on the planning horizon

2.	 Minimizing the cost of network losses in the planning 
horizon

3.	 Energy management of exchanges between electric vehi-
cles and the upstream network in the planning horizon

4.	 Minimizing the deviation of the voltage magnitude from 
the nominal value in the planning horizon

The first two objectives are to manage the distribution 
network economically. The demand response program is 
used as an efficient tool to reduce the cost of energy sup-
ply. The third objective is to manage the penetration of 
electric vehicles in the distribution network and to mini-
mize the cost of supplying the required energy to the first 
two objective functions. Finally, the fourth objective func-
tion is designed to improve the buses voltage as one of the 
basic parameters of the network and, as far as possible, to 
reach their nominal value. The objective function of the 
proposed model is expressed as follows:

The first part of the objective function represents the 
minimization of the voltage deviation of all buses at all 
simulation times (planning horizon) and for all the net-
work phases of nominal value. The second part of the 
objective function addresses the cost of providing active 
load and the cost of network losses. The price element ρ 
is considered as a variable at different times. As energy 
prices change or the voltage of the buses diverges from the 
nominal value, according to the demand response strategy, 
some or all of the network loads respond to these changes 
and change their active and reactive power. It should be 
noted that the price of losses per kilowatt-hour is equal 
to the cost of demand per kilowatt-hour. The third part of 
the objective is to model the purchase price of electricity 
by electric vehicles. �1,�2,�3 are the objective function 
of weighting coefficients, which are selected according 
to the operator’s preference for operating the distribution 
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network. The larger weight factor is multiplied into any 
part of the objective function which has higher priority.

2.3 � Constraints and limitations of the proposed 
model

The optimal response will be valid if it satisfies the network 
constraints. In other words, due to the limitations of the power 
transmission in the network and the technical constraints of 
different types of equipment, the optimization problem should 
be solved and the final solution must be extracted.

2.3.1 � Power flow constraints

The equilibrium of produced and consumed power is the most 
important principle of stability in the power system. At this 
constraint, at each bus, the summation of injected power from 
the lines, load power, and power injected from the upstream 
network must be zero.

The active and reactive power which passes from the bus i 
to the bus j is calculated by the following equation:

where Gi,j and Bi,j are i-th rows and j-th columns array of the 
conductance and susceptance matrix, respectively.

According to the above equations, in the proposed model, 
the summation of the injective power to the bus i from all 
the lines connected to this bus is calculated by the following 
equations:

According to the equilibrium power constraint per bus, we 
have:

(2)Pi,j = ViVj
(
Gi,j cos

(
�i − �j

)
+ Bi,j sin

(
�i − �j

))
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(
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In the above equations, the equilibrium of power injected by 
lines and substations and power consumed by the load (elec-
tric vehicles and loads) in each bus is evaluated. The power 
consumed per bus includes the load demanded and the power 
exchange with the electric vehicle. It should be noted that all 
network loads participate in the demand response program.

2.3.2 � Electric vehicle constraints

Electric vehicle constraints fall into three categories:

1.	 Limitation of the exchange power of the vehicle with the 
network

2.	 A technical limitation of the vehicle battery
3.	 Energy-related restrictions on vehicle batteries

The first category examines the exchange power between 
the vehicle and the network and the vehicle-network con-
verter. According to the equilibrium power constraint, the 
summation of power exchanges between vehicle and network 
and the converter losses (between vehicle and network) must 
be zero. So we have:

where PEV is the exchange power between charge/discharge 
converter and network and BEV is the exchange power 
between the vehicle battery and charging/discharging con-
verter and PLE is the charge/discharge converter losses. This 
schematic is PG2V if the electric vehicle is in the charge state 
(G2V) and PV2G if it is in the discharge state (V2G). So at 
every hour for every vehicle we have:

Due to the efficiency between the vehicle and the network 
( �EV ), its loss is calculated as follows:

Depending on the power exchange between the battery 
and the network, the maximum charge and discharge will 
be managed by the following equation:

To indicate the status of the charge and discharge of elec-
tric vehicles, the binary variable XE,t

EV
 is considered.
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The limitations for the energy balance of an electric vehicle 
are as follows:

In other words, the energy stored in the battery is equal to 
the primary energy in the battery (when the vehicle is con-
nected to the network) plus the energy exchanged with the 
network. The minimum energy stored in the battery is also 
limited as follows:

2.3.3 � Demand response program constraints

As explained in the previous section, two types of demand 
response programs including cost-sensitive and voltage-sen-
sitive loads are considered in the proposed model.

According to the above equations, active loads participate 
in both demand response (voltage-sensitive and cost-sensitive) 
programs. In this formula, k1, k2, and k3 are binary variables. 
If the load has participated in the demand response program, 
then k3 is equal to one, otherwise, it is equal to 0. If k1 is equal 
to one, then the load is cost-sensitive and if k2 is equal to one, 
it is voltage-sensitive. According to the following equation, 
reactive power is only voltage-sensitive.

The values of α and β are determined by the type of load 
according to Ref. [21]. The following equations manage the 
minimum and maximum participation of loads in the demand 
response program.
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2.3.4 � Network technical constraints

The network constraints which include the capacity of the 
lines and the voltage limitations of the buses are expressed 
in the following equations:

The values of P(i,j),�,t and Q(i,j),�,t are calculated by 
Eqs. (2) and (3). The constraint of the voltage difference 
between the phases is applied to avoid instability and 
unbalance reduction in the proposed scheme. In other 
words, the voltage difference between the three phases A, 
B, and C in the three-phase distribution network is man-
aged as follows:

Finally, according to the objective function, the amount 
of loss, active and reactive demand of the whole system is 
calculated by the following equations:

3 � Simulation and numerical results

To evaluate the effectiveness of the proposed approach, 
the model is implemented on GAMS software on the low-
voltage distribution network and evaluated by various tests 
described below. First, the introduction of the test net-
work and its related data and information about the electric 
vehicles under study are given. Then the final results were 
evaluated by applying various tests, taking into account 
the proposed intelligent charging method along with the 
demand response program and without considering it.
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3.1 � Introducing a test network

The test network used in this study is the 37 buses low-
voltage network shown in Fig. 1. The voltage of this net-
work is 400 V and its power reference is 100kVA. The 
upstream substation’s nominal capacity is 800 kVA. The 
allowed voltage range is also 0.9 pu to 1.05 pu. The net-
work loads are residential and equipped with an electric 
vehicle parking lot. The information on the maximum load 
of this network is shown in Table 1. The load variations of 
the network during different hours of the day are shown in 
Fig. 2 based on the load factor. According to the concept 
of the load factor, this graph shows that the amount of load 
per hour is how much of the network peak load. Electricity 
prices are also divided into three tariffs. The three tariffs, 
according to the curve in Fig. 3, are the hours of low load, 
intermediate load, and full load. The energy price based 
on $/MWh is shown in Fig. 3.

Fig. 1   The studied network (37 IEEE buses)

Table 1   Test network load 
information

Load no. Phase A Phase B Phase C

Active power 
(kw)

Reactive 
power (kvar)

Active power 
(kw)

Reactive 
power (kvar)

Active power 
(kw)

Reactive 
power 
(kvar)

27 4 3 5 2 6.4 2.5
26 4.2 2.5 5 2 6 3
14 5.2 3 3 2 4 2.5
25 6.1 2.5 5.6 3 7 2
13 7.1 2 8 1 7.5 1.5
20 6.2 3 7 1 8 4
5 5.1 3.2 8.4 4.2 9 3.4
1 46.1 30 28 15 34 20
7 8.3 3.2 8.3 4.1 9 3.3
6 5.7 2.8 4 2 4.4 2.3
8 6.2 3 7 3.5 8 4.5
11 3.1 1.5 2.8 2 3.3 1
15 6.2 2.6 7 3.5 8 4
16 6.1 3 2.5 0.25 6 4
9 1.2 0.6 3.3 0.9 5.5 0.7
17 4.2 2.5 5 1 7 1.9
23 8.2 3 2.5 0.25 6 4
24 6.1 3.5 7.4 3.5 8 4
28 4.1 1.55 5 1.2 6.5 1.65
31 6.6 2 7.6 3 9 2.5
32 4.1 1.5 7 1.1 8 0.5
30 4.2 2 6 1.8 5.4 2.5
33 4.1 2.6 7.2 1.6 4.8 1.8
35 5.1 1 6 2.2 7 2.6
36 6.1 3 8 2.4 7 3.5
Total 173 89 172 69 199 84
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3.2 � Electric vehicles information

The information of electric vehicles is divided into several 
distinct categories described as follows.

3.2.1 � Number of electric vehicles

Here, it is assumed that vehicles are decentralized and dis-
tributed in residential parking lots. There are two EVs per 
network bus. With 25 residential buses in the network, there 
are a total of 150 electric vehicles in the network.

3.2.2 � Time of entrance and exit of vehicles

These data depend on the behavior of the owners of elec-
tric vehicles. Following [21], it is assumed that each vehicle 
will be connected to the network after the last day of use. 
Vehicle-network connection behavior at different times of 
the day is uncertain and must be modeled randomly. The 
behavior of electric vehicles in connection to the network is 
shown in Fig. 4 according to the normal probability density 
function. According to Fig. 5, the peak of the presence of 
EVs in the network overlaps with the peak load. According 
to these figures, the time of most exits of EVs from the net-
work is between 5 am and 10 am.

3.2.3 � The amount of the energy consumption of electric 
vehicles battery throughout the day

There is a direct relationship between energy consumption 
(Ec) of electric vehicles and the distance traveled by them. 

Ec is the required energy to fully charge the battery. Ec 
represents the chemical energy consumed in the battery. 
The energy consumption of EV is calculated according to 
the following equations:

where D is the traveled distance by EV (for hybrid vehicles 
solely in electric mode) and AD is the maximum distance 
that EV can go with a single charge. Cmax is the maximum 
battery capacity and SOC is the charge state of the EV 
that expresses the amount of energy of the battery at each 
moment.

The relationship (31) is dependent on the distance trave-
led by the EV. The value of this distance is investigated by 
the normal probability density function addressed in Ref. 
[21]. According to this reference, electric vehicles travel 
an average of 25–30 miles per day.

3.2.4 � Technical information of EVs

Technical information on EVs including efficiency, battery 
capacity, and maximum charging rate is given in Table 2.

(30)SOC =

(
1 −

D

AD

)
,

(31)Ec = (1 − SOC).Cmax

Fig. 2   Load factor 24 h a day

Fig. 3   Hourly electricity price

Fig. 4   An example of the presence of the electric vehicles at different 
hours of a day [21]

Fig. 5   Number of vehicles connected to the network at different times 
based on maximum penetration coefficient
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3.3 � Information of demand response

Two types of voltage-sensitive and cost-sensitive loads have 
been used in this study. For voltage-sensitive loads, the coef-
ficients α and β are 0.92 and 4.04, respectively. Informa-
tion on price-sensitive loads according to the load profile 
in Fig. 2, the energy price signals in Fig. 3, and the price 
elasticity of demand are presented in Table 3.

3.4 � Investigation of the effect of EVs penetration 
into the network without the proposed strategy

In this test, after connecting to the network, the EVs per-
form the charging process (grid to vehicle) immediately at 
maximum charge rate and they are fully charged after 4 h 
based on the battery specifications. The number of vehicles 
connected to the network per hour is shown in Fig. 5. This 
test was conducted regardless of the smart charging and dis-
charging strategy, and ignoring demand response.

The power demand curve from the upstream network to 
supply the load is illustrated by changing the EV penetration 
level to 0%, 25%, and 50% in Fig. 6.

According to Fig.  6, unmanaged charging of EVs 
increases the network peak and consequently increases the 
power demand during peak hours of the upstream network. 
According to the network capacity limit (upstream sub-
station), lines, and buses voltage, with a 50% penetration 
level of electric vehicles, i.e., 75 vehicles are connected 
to the network, the apparent power of the network reaches 
the nominal power of 8 pu. In this situation, further vehi-
cle connection is impossible. On the other hand, the net-
work is at risk, and no capacity is left to cover any pos-
sible increase in load; thus, the reliability of the network 
is reduced. Therefore, because of the significant increase 
in peak load, without a smart and controlled charging 

strategy, it is impossible to connect half of the vehicles. To 
connect these new loads, upgrading the network is needed, 
which requires considerable time and costs.

Naturally, as the peak load power increases, the bus 
voltage drop also increases relative to the EV-free mode. 
The effect of increasing the level of penetration of EVs in 
the network on the bus voltage drop is shown in Fig. 7. In 
this figure, bus number 1 is the reference bus and its volt-
age value is 1pu. The increase in voltage drop in this form 
is quite obvious.

Since the load distribution is unbalanced between dif-
ferent phases, the voltage drop of each phase in each bus 
varies from other phases. In other words, there is an imbal-
ance between phases. The voltage drop of the different 
phases in each bus is shown in Fig. 8. According to this 
figure, the worst case of voltage drop is related to bus 
36, which is the farthest bus from the power supply, as 
shown in Table 4 of values. This bus is considered in the 

Table 2   Technical information of the studied electric vehicle

Maximum EV charging rate 4.65 kVA
Charging efficiency 0.9
Battery capacity 16 kW
Full charge time 4 h

Table 3   Price elasticity of demand between different hours

Transfer interval Peak load hours Intermedi-
ate load 
hours

Low load hours

Peak load hours − 0.1 0.016 0.012
Intermediate load 

hours
0.016 − 0.1 0.01

Low load hours 0.012 0.01 − 0.1

Fig. 6   Hourly demanded power (load profile) at various EV penetra-
tion coefficients

Fig. 7   Voltage magnitude of different buses at different penetration 
coefficients of EVs
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following section as an indicator to investigate the effect 
of charge control of EVs on voltage drop.

The amount of losses in the network is also shown in 
Table 5 for 24 h. As expected, with the increase in loads due 
to the charging of EVs and consequently the increase in the 
line passing current, losses have also increased significantly.

The network was evaluated technically in the above 
description. Economically, according to Fig. 3, the cost of 
power supply needed by the network in 24 h based on the 
level of EV penetration is presented in Table 6. Certainly, as 
the cost of purchasing energy is high during peak hours of 
consumption, the cost of supply has also increased consider-
ably with the increase in peak demand.

3.5 � Investigating the effect of EVs penetration 
into the network without charge control 
strategy and with regard to demand response 
management

In this test, the effect of the demand response management 
program on network performance is evaluated. Since this 
study applies two types of voltage-sensitive and cost-sensi-
tive loads, this section is divided into three sub-sections to 
investigate the effectiveness of each demand management 
program. In the first section, only voltage-sensitive loads 
are considered. In the second sub-section, price-sensitive 
loads, and in the third sub-section, both types of loads are 
considered. The effect of each management strategy on the 
network parameters is discussed below.

3.5.1 � Voltage‑sensitive loads management

In this case, the coefficients k1 and k2 are considered to be 0 
and 1, respectively. In this section, active and reactive loads 
are considered as decision variables in the optimization 
problem. The power demand variations of the network with 
respect to the different penetration levels are shown in Fig. 9.

According to this figure, the management of voltage-sen-
sitive loads alone does not have much impact on the release 
of micro-grid capacity and the increase in EVs penetration 
coefficient. Managing these loads reduces the apparent net-
work power slightly at all hours and ,consequently, increases 
the EVs penetration to 4%. Lack of network capacity for 
connecting all the electric vehicles, lack of free network 
capacity, and dramatically increased peak load are still evi-
dent. Therefore, managing these loads does not affect the 
daily load curve greatly.

Figure 10 shows the effect of the management of all these 
loads on the voltage drop of the network. According to this 

Fig. 8   Voltage of different phases in each bus

Table 4   Phases voltage difference of bus 36 in different penetration 
coefficients of EVs

Voltage differ-
ence (v)

Penetration 0% Penetration 
25%

Pen-
etration 
50%

AB 2.1 1.7 1.3
AC 5.21 5.3 5.7
BC 3.3 3.7 4.5

Table 5   Losses (kwh) in the network at different penetration coeffi-
cients of EVs

Penetration 0% Penetration 25% Penetration 50%

39 47.8 58

Table 6   Cost of electricity ($) to supply the network load per day 
understudy at different penetration coefficients of EVs

Penetration 0% Penetration 25% Penetration 50%

198.54 214.36 230.6

Fig. 9   Hourly demanded power (load profile) in different EV penetra-
tion coefficients
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figure, the management of these loads has reduced the volt-
age drop of the network.

The voltage difference between the different phases in bus 
36 is expressed in Table 7, and network losses are expressed 
in Table 8.

To better evaluate the effectiveness of voltage-sensitive 
load management, a comparison between the results of the 
previous section with this section at a constant penetration 
level of 50% for EV is presented in Table 9. According to 
this table, peak load power has been reduced by 2.5%, which 
has increased the EV penetration rate by 4%. On the other 

hand, network losses have been dropped by about 7%. Buses 
voltage drop and the voltage difference between phases, 
which reflects network imbalance, have also been reduced.

3.5.2 � Cost‑sensitive loads management

In this case, the coefficients k1 and k2 are considered as 
1 and 0, respectively. In this sub-section, active load and 
energy prices are considered as decision variables in the 
optimization problem. The management of the power 
demand variations of the network for different penetration 
levels is shown in Fig. 11.

According to this figure, the management of cost-sen-
sitive loads has increased the penetration rate of electric 
vehicles up to 22%. This increased penetration states the 
efficiency of the proposed management approach on the 
reduction in peak load. However, the network still needs to 
be developed to supply all 150 electric vehicles, and the sur-
plus power of the network, to cope with the possible power 
increase, which is equal to 0.

Figure 12 shows the effect of the management of these 
loads on the voltage drop of the network. According to this 
figure, the management of these loads has reduced the volt-
age drop of the network. This reduction is less than the pre-
vious state (voltage-sensitive load management).

The voltage difference between the different phases in 
bus 36 is expressed in Table 10, and the network losses are 
expressed in Table 11.

To perform a better evaluation of the efficiency con-
stant of voltage-sensitive load management, a comparison 
between the results of the previous section with this sec-
tion at a penetration level of 50% for EV is presented in 
Table 12. According to this table, peak load power has been 
reduced by about 12%, which has increased the EV pen-
etration coefficient by 22%. This reduction in the peak is 
remarkable. Network losses, on the other hand, decrease to 
about 7 percent. Buses voltage drop and the voltage differ-
ence between phases which causes network imbalance has 
also been reduced.

Since the penetration of electric vehicles has a great 
impact on peak load and the cost of the power supply is 
high during peak hours, the management of cost-sensitive 
loads, in comparison with voltage-sensitive loads, is much 
more effective on improving network parameters.

Fig. 10   Voltage magnitude of different network buses at different 
penetration coefficients of EVs

Table 7   Phases voltage difference of bus 36 in different penetration 
coefficients of EVs

Voltage 
difference(v)

Penetration 0% Penetra-
tion 25%

Penetra-
tion 50%

Pen-
etration 
54%

AB 2.1 1.7 1.3 1.3
AC 5.21 4.1 5.3 5.3
BC 3.3 2.4 4.1 4.1

Table 8   Losses (kwh) in the network at different penetration coeffi-
cients of EVs

Penetration 0% Penetration 50% Penetration 54%

37 54 55

Table 9   Improvement in 
the percentage of network 
parameters at 50% constant 
penetration coefficient

Title The voltage difference 
between phase A and C (V)

Network bus 
voltage (pu)

Network 
losses (KWh

Power (pu)

Without demand response 5.6 0.924 58 8
With demand response 5.2 0.927 54 7.8
Improvement percentage 7.15 0.32 7 2.5
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3.5.3 � Simultaneous management of cost‑sensitive 
and voltage‑sensitive loads

In this case, the coefficients k1 and k2 are both equal to 1. 
Here, active load, reactive load, and energy price are con-
sidered as decision variables in the optimization problem. 
Managing power demand variations of the network accord-
ing to different penetration levels is shown in Fig. 13.

According to this figure, the management of cost-sensi-
tive and voltage-sensitive loads has increased the penetration 
rate of electric vehicles up to 25%. This increase in penetra-
tion is higher than the previous two cases and indicating 
(demand response) DR’s effectiveness in significantly reduc-
ing peak load. However, the network still must be expanded 
to supply all 150 electric vehicles, while the network surplus 
capacity to cope with potential increases is zero.

Figure 14 shows the effect of the management of these 
loads on the voltage drop of the network. According to this 
figure, the management of these loads has reduced the volt-
age drop of the network. This reduction is less than the pre-
vious ones (managing voltage-sensitive and cost-sensitive 
loads alone).

The voltage difference between the different phases in bus 
36 is stated in Table 13 and the network losses are stated in 
Table 14.

In Table 15, a comparison between the results of the 
previous section with this section at a constant penetration 
level of 50% for EV is performed to evaluate the effective-
ness of managing voltage-sensitive and cost-sensitive loads. 
According to this table, peak load power has been reduced 
by about 14%, which has increased the EV penetration rate 
by 25%. This reduction in peak is considerable. Network 
losses, on the other hand, have decreased to 13 percent. This 
demonstrates the remarkable impact of load management on 
reducing network losses. Buses voltage drop and the voltage 
difference between phases which indicate network unbalanc-
ing have also been reduced so that the voltage imbalance 
between different phases is improved up to 21%.

As can be seen from the results of this section, the 
(demand response) DR program is indeed very effective in 
improving network parameters but it alone cannot manage 
this level of penetration of EVs in the network. In the above 
description, the network was evaluated technically. Econom-
ically, according to Fig. 3, the cost of power supply needed 
by the network in 24 h based on the level of EV penetration 
is presented in Table 16. As the cost of purchasing energy 
is high during peak hours of consumption, due to transfer of 
some part of the load from low load to full load, the cost of 
load supply is also reduced by applying a responsive loads 
management strategy.

Fig. 11   Hourly demanded power (load profile) in different EV pen-
etration coefficients

Fig. 12   Voltage magnitude of different network buses at different 
penetration coefficients of EVs

Table 10   Phases voltage difference of bus 36 in different penetration 
coefficients of EVs

Voltage 
difference(v)

Penetration 0% Penetra-
tion 25%

Penetra-
tion 50%

Pen-
etration 
73%

AB 2.1 1.3 0.4 0.5
AC 5.21 4.1 4.9 5.7
BC 3.3 2.9 4.5 5.3

Table 11   Losses (kwh) in the network at different penetration coef-
ficients of EVs

Penetration 0% Penetration 50% Penetration 73%

36 54 64
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3.6 � Investigating the effect of Ev’s penetration 
on the network by the proposed charge 
control strategy along with demand response 
management

This test considers the strategy of charging and discharg-
ing electric vehicles along with managing responsive loads. 
According to the proposed charging strategy, vehicles can 
be charged and discharged, which means they operate in 
V2G and G2V and they do not charge as soon as they are 
connected to the network [22, 23]. Charging and discharg-
ing operations are managed based on the network param-
eters and set of objectives in the previous section. Due to 
the high energy price during peak hours of consumption and 
increased losses and voltage drop due to high demand, the 
control strategy in these hours is to discharge operations and 
to charge vehicles during low load hours.

It should be noted that charging and discharging opera-
tions depend on the vehicle being connected to the network. 
Therefore, the vehicle may not be possible to charge in some 
hours of the day despite the low-load network, because it is 
not connected to the network. As explained in the previous 
section, the study is based on the assumption that the vehi-
cles leave the network between 5 am and 10 am and they 
navigate the route at this time.

In addition to the charging and discharging strategy, price 
and voltage-sensitive loads have also been used to improve 
the network parameters in this test. Therefore, the decision 
variables in this test, in addition to the active and reactive 
loads, are also the active power stored in the EVs battery.

Given the 100% penetration coefficient (150 vehicles), 
the total number of vehicles connected to the network for 
different hours of the day is shown in Fig. 15.

The start time of the simulation process in this test is 10 am. 
Since the objective function consists of three parts, voltage 

Table 12   Improvement percent 
of network parameters at 50% 
constant penetration coefficient

Title The voltage difference 
between phase A and C (V)

Network bus 
voltage (pu)

Network 
losses (kWh)

Power (pu)

Without demand response 5.6 0.924 58 8
With demand response 4.8 0.93 54 7
Improvement percent 14 0.76 7 11.85

Fig. 13   Hourly demanded power (load profile) in different EV pen-
etration coefficients

Fig. 14   Voltage magnitude of different buses at different penetration 
coefficients of EVs

Table 13   Phases voltage difference of bus 36 in different penetration 
coefficients of EVs

Voltage 
difference(v)

Penetration 0% Penetration 
25%

Penetration 75%

AB 1.2 0.8 0.14
AC 3.7 4.4 5.2
BC 2.4 4 4.80

Table 14   Losses (kwh) in the network at different penetration coef-
ficients of EVs

Penetration 0% Penetration 25% Penetration 75%

33 50 61
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drop, and imbalance between phases, cost of energy supply 
and losses and cost of energy supply of EVs; therefore, the 
weighting coefficients of the objective function must also 
be adjusted. These coefficients are set so that the amount of 
changes in each part of the objective function is equal to each 
other. In other words, the degree of importance of all three 
parts is the same. For this purpose, the distance between the 
minimum and maximum values of each part of the objective 
function must be equal to the other parts. The weighting coef-
ficients are obtained from the following equations, where F min 
and Fmax are the minimum and maximum values of the objec-
tive function, respectively, and the indices 1, 2, and 3 represent 
the deviations of voltage, charge supply, and loss cost, and 
energy supply cost of EVs, respectively. So, the weighting 
coefficients are obtained from the following equations.

(32)
�1

�2

=
Fmax

1
− F min

1

Fmax

2
− F min

2

,

(33)
�1

�3

=
Fmax

1
− F min

1

Fmax

3
− F min

3

According to the above explanations and relationships, 
the coefficients �1 , �2 , and �3 are considered as 1, 0.12, 
and 0.17, respectively. The network demand load with the 
maximum penetration coefficient of the EVs considering the 
demand response is shown in Fig. 16.

According to this figure, by applying the proposed strat-
egy, unlike the two previous tests, it is possible to connect 
all vehicles (100% penetration coefficient) without impos-
ing very high costs for network development. Besides, the 
effect of the proposed strategy in flattening the load curve 
is quite evident.

EVs depending on their presence charge between hours 
12 and 17. They perform discharge operations in the full 
load hours to reduce energy supply costs and help improve 
network parameters. This has caused a reduction in the peak 
load consumption or clipping peak of the load curve due to 
EV discharge during peak hours, and valley filling due to 
discharge during low and intermediate load hours. By this 
proper management, not only is the need for network expan-
sion to supply new loads is eliminated but also some net-
work capacities remain empty despite the connection of all 
EVs. This residual capacity increases the reliability of power 
supply, especially in conditions of unexpected increases in 
demand.

The value of the voltage amplitude is shown in Fig. 17 
as per unit in the various buses. Table 17 also shows the 
phases of voltage and the amount of losses. According to 
these results, despite the 100% penetration of electric vehi-
cles in the network and the significant load being added at 

Table 15   Improvement percent 
of network parameters at 50% 
constant diffusion coefficient

Title Voltage difference between 
phases A and C (V)

Network bus 
voltage (pu)

Network losses 
(KWh)

Power (pu)

Without demand response 5.6 0.924 58 8
With demand response 4.4 0.93 50 6.9
Improvement percentage 21 0.76 13 13.35

Table 16   Cost of electricity ($) to supply the grid load per day under-
study of different penetration coefficients of EVs

Title Penetration 0% Penetration 25% Pen-
etration 
75%

Without demand 
response

198.54 360.6 –

With demand response 188 223 242
Improvement percentage 10 137 –

Fig. 15   Number of vehicles connected to the network at different 
times based on maximum penetration coefficient

Fig. 16   Hourly demanded power (load profile) per hour at 100% EV 
penetration coefficient
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different times, the rate of loss, voltage drop, and imbalance 
between phases have decreased as peak power consump-
tion. The amount of loss at 0% penetration rate was 39 kWh 
(according to the first test), with 150 vehicles connected to 
the network, the amount of losses was only about 2 kWh, 
indicating the efficiency of the proposed model in reducing 
losses. It should be noted that according to the first test if 
the proposed strategy was not used, only 75 vehicles would 
increase the amount of energy losses by about 20 kWh. In 
addition to the losses, even with 150 vehicles connected to 
the network, the imbalance between phases is significantly 
reduced compared to 0 penetration levels.

In the above description, the network was evaluated tech-
nically. Economically, according to the figure, the cost of 
power supply needed by the network in 24 h for various 
tests and based on the maximum EV penetration level is 
presented in Table 18. The results of this table illustrate 
the effectiveness of the proposed method. Given that the 
proposed strategy plays an effective role in flattening the 

load curve (shifting the load from full load to intermediate 
and low load) and on the other hand, the cost of purchasing 
energy that is high during peak hours, the cost of supplying 
the load will reduce a lot by 150 vehicles connected to the 
network and a significant increase in load, much less. This 
is the concept of turning the challenge into an opportunity. 
The results showed that by properly managing the penetra-
tion of electric vehicles along with responsive loads, not 
only were the network parameters not compromised and the 
penetration of all the vehicles was managed without the need 
for network development, but also by applying the proposed 
strategy, the network parameters were improved.

4 � Conclusion

In this study, a comprehensive management strategy has 
been introduced to manage the penetration of electric vehi-
cles along with demand response. The strategy followed sev-
eral goals, including reducing the cost of supply of power 
and load, reducing the cost of charging EVs, and improv-
ing network parameters, including voltage and imbalance 
between phases. Two practical tools have been proposed. 
The first tool is the optimal and managed use of the V2G 
mode of electric vehicles. The second tool is the responsive 
loads and the management program of these loads. Accord-
ing to the results, the proposed approach has made the chal-
lenge of the penetration of electric vehicles an opportunity 
to improve network parameters and even reduce the cost 
of energy supply. Managing the charge of EVs at low load 
and intermediate load times (G2V) and using the remaining 
energy in the EVs battery during the full load hours (V2G), 
along with the cost-sensitive and voltage-sensitive loads 
management program will lead to a great reduction in the 
cost of power supply and load characteristic is flattened. To 
smooth the daily load curve, the shift of energy consumption 
from peak hours to other hours has been used with respon-
sive load management tools and the strategy of controlling 
the charge and discharge of electric vehicles. On the other 
hand, decreasing the network peak and load distribution 
at different times along with the management of voltage-
sensitive loads has resulted in an unbalanced improvement 
between the phases and the voltage drop, especially at the 

Fig. 17   Voltage magnitude of different network buses in different 
penetration coefficients of EVs

Table 17   Phases voltage 
difference of bus36 at 20 h 
(peak load) and energy losses 
at 100% EVs penetration 
coefficient

Energy 
losses 
(KWh)

Voltage differ-
ence (phase to 
phase) (V)

BC AC AB

40 1.5 3 1.2

Table 18   Comparison of cost and maximum penetration rate of EVs and maximum peak load in different tests

Title Amount of the network 
peak (pu)

Cost of energy sup-
ply  ($)

Maximum penetration rate

Without the demand response program (First test) 8 230.6 50% 75 EVs
Alone with demand response program (Second Test, Part 3) 8 242 75% 112 EVs
With the proposed strategy (charge and discharge management and 

demand response program) (Third test)
5.05 185 100% 150 EVs
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terminal buses of the network. As can be seen from the 
results, without the proposed approach, it is impossible to 
manage the penetration of all EVs without network develop-
ment. Besides, with the same level of penetration, the net-
work capacity is completely occupied, which, in addition to 
reducing reliability, has a negative impact on the network 
parameters. The effectiveness of the proposed approach is 
fully supported by the results.
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