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Abstract
An improved adaptive sliding mode controller (ASMC) based on a combined state/disturbance observer (CSO) is proposed
for the high-performance control of permanent magnet synchronous motor (PMSM). In order to estimate the unknown state
and the disturbance including the parameter uncertainty and the external disturbance, the CSO is proposed. Different from the
extended state observer (ESO) or generalized ESO (GESO), the CSO uses the linear combination of the extended high-order
states to construct the new estimation. The CSO resolves the contradiction between the estimation accuracy and the noise
insensitivity, so it is more applicable to time-varying disturbances. Then, the CSO and the ASMC are integrated in the PMSM
speed controller by the feed-forward compensation to enhance the system robustness. A simple nonlinear adaptive law is
presented to solve the unknown upper bound of the estimation error and minimize the chattering. The theoretical analysis
shows that the global stability of the closed-loop system is strictly guaranteed. The simulation and experimental results are
presented to demonstrate the effectiveness of the proposed control method.

Keywords Permanent magnet synchronous motor · Sliding mode control · State/disturbance observer · Adaptive law ·
Disturbance rejection control

1 Introduction

Permanent magnet synchronous motor (PMSM) has been
widely used in high-performance motion control due to the
advantages, such as high power density, high efficiency,
and low inertia [1–3]. PMSM is one of the systems with
strong nonlinearity, uncertain parameters and disturbances.
The classical linear controlmethods, for example, PI scheme,
cannot quickly and effectively reject the uncertain and
time-varying disturbances, which will degrade the control
performance. In order to meet the requirements of high-
performance control for PMSM, many nonlinear control
methods, such as adaptive control [4–6], sliding mode con-
trol (SMC) [7], observer-based control [8], and intelligent
control [9, 10], have been studied in recent years.

Because of the insensitivity to the uncertainties and the
implementation simplicity [11–17], SMC is regarded as an
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efficient control method for PMSM speed servo system. In
spite of the good robustness, the main drawback of SMC is
the well-known chattering which is originated by the switch-
ing control. The high-order SMC can effectively reduce the
chattering [18–20]. But the upper bound of sliding function
derivative is required in parameter design, which brings dif-
ficulties in implementation.

A feasible solution is introducing a disturbance feed-
forward compensation into controller [3, 14, 21]. In this
way, it is not necessary to select too large switching gain
for guaranteeing the stability, and thus the chattering can
be fundamentally reduced with good disturbance rejection.
In real applications, it is impossible to directly measure the
disturbance, so the observer-based SMC could be a desir-
able scheme. The extended state observer (ESO) [22] [or
its generalization (GESO)] and the disturbance observer
(DOB), as the proven disturbance estimation techniques,
have been successfully applied in industrial control systems
[14, 21, 23–26]. Since in the actual PMSM system, the mea-
surement noise of the speed sensor is inevitable, the effect
of disturbance compensation, to some extent, depends on
the estimation accuracy and the noise insensitivity of the
observer. For the existing ESO (or GESO) and DOB, it is dif-
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ficult to simultaneously improve the estimation accuracy and
the noise insensitivity [27, 28]. The estimation accuracy and
the noise insensitivity have to compromise in the observer
design. Especially when the disturbance is time-varying, this
contradiction will be more serious, which limits the appli-
cation of the observer-based schemes. Therefore, to enhance
the control performance of PMSM, it is of significance to
develop a new disturbance estimation technique which can
simultaneously achieve the satisfactory estimation accuracy
and the noise insensitivity.

On the other hand, it is difficult to determine an appro-
priate switching gain of SMC since the upper bound of the
disturbance or the disturbance estimation error is unknown.
To reduce blindness of selecting switching gain, some adap-
tive sliding mode control (ASMC) methods are developed
to adjust the switching gain real timely [29–32]. Plestan and
Shtessel propose a linear adaptive law which can ensure the
switching gain against over-estimated [33]. But, the adaptive
law in [33] may lead to an excessively large transient value
of the switching gain when the states are far from the sliding
surface, and lead to a very slow convergence rate when the
states are close to the sliding surface.

Motivated by the above discussion, the main contribu-
tions of this work are described here: Based on the analysis
of GESO, a combined state/disturbance observer (CSO) is
proposed to estimate the lumped disturbance of PMSM and
the speed derivative. In the CSO, the linear combination of
the extended high-order states is used to construct the new
estimation. Compared with the GESO (or other disturbance
observer, e.g., linear disturbance observer used in [26]), the
CSO resolves the contradiction between the estimation accu-
racy in low frequency and the noise insensitivity in high
frequency. Based on the CSO, a sliding mode controller
for PMSM speed control is designed. And a simple nonlin-
ear adaptive law is proposed to eliminate the limitation that
the upper bound of the estimation error must be known in
advance. The adaptive law avoids the aforementioned prob-
lems in [33] and minimizes the chattering. The effectiveness
of the proposed method is verified by the simulations and
experiments.

The rest of this paper is organized as follows. The math-
ematical model of PMSM is presented in Sect. 2. The CSO
is proposed and analyzed in detail in Sect. 3. In Sect. 4, the
adaptive sliding mode controller for PMSM speed control
is designed. Then, the simulations and experiments are car-
ried out and the results are given in Sect. 5. Finally, some
conclusions are given in Sect. 6.

2 Problem formulation andmodel dynamics

The model of surface-mounted PMSM in the d–q-axis can
be expressed as

Fig. 1 Block diagram of PMSM control system
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where ud , uq, id , iq andω are, respectively, the d–q axes stator
voltages, the d–q-axis stator currents and the rotor speed; Ls,
Rs andψ f are the stator inductance, stator resistance and rotor
flux linkage; TL, np, J,B and de are the unknown load torque,
the number of pole pairs, the moment of inertia, the friction
coefficient and the external disturbance.

Figure 1 shows the structure of field-oriented vector con-
trol of PMSM. Here, we focus our attention on the speed
controller. The motion equation of PMSM is given as

ω̇ � giq + d(t) (2)

where g � 1.5npψf
/
J , and d(t) � −(B

/
J )ω −

(TL + de)
/
J . In the general PMSM speed controller design,

the motion Eq. (2) is replaced by ω̇ � gi∗q + d(t) where i∗q
is the q-axis reference current. Owing to neglecting the cur-
rent error, the speed control performance will be degraded.
So in this paper, a more precise second-order model is
adopted, which directly describes the relation between i∗q
and ω according to [21]. From the PI controller of the q-axis
current loop, one has

uq � kp(i
∗
q − iq ) + ki

∫ t

0
(i∗q − iq )dt (3)

where kp and ki are the proportional and the integral coeffi-

cients. From (3), iq � i∗q − (uq − ki
∫ t
0 (i

∗
q − iq )dt)

/
kp can

be obtained, and substituting it into (2), it yields

ω̇ � g(i∗q − (uq − ki

∫ t

0
(i∗q − iq )dt)

/
kp) + d(t) (4)
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Taking the derivative of (4), we have

ω̈ � gi̇∗q + g
ki
kp

i∗q − g
ki
kp

iq − g

kp
u̇q + ḋ(t) (5)

From (2), we get iq � [ω̇ − d(t)]
/
g. Then substituting it

into (5), it yields

ω̈ � − ki
kp

ω̇ + u + D(t) (6)

where u � gi̇∗q +g(ki
/
kp)i∗q and D(t) � −(g

/
kp)u̇q + ḋ(t)+

(ki
/
kp)d(t). Equation (6) is the second-order motion model.

D(t) is considered as the lumped disturbance including the
parametric uncertainties, the unmodeled dynamics and the
load disturbances.

Assumption 1 D(t) is bounded, i.e.,|D(t)| ≤ M1, and there
exists a tF , when t> tF , the n-order derivative of D(t) exists
and is bounded, i.e.,

∣∣dnD(t)
/
dtn

∣∣ ≤ M2, n≥1.

3 The CSO and its performance analysis

To estimate the speed derivative and the lumped disturbance
D(t), theCSO is proposed in this section. It iswell-known that
in an actual PMSM system, the high-frequencymeasurement
noise which comes from the sensor is inevitable [34, 35]. If
the noise restraining ability of the observer is poor, the mea-
surement noise will be amplified through the observer and
influence the stator currents, thus the control performance
will be severely degraded. So, the estimation accuracy and the
noise insensitivity are two important indexes of the observer.

3.1 Brief analysis of GESO

Since the CSO in this paper is developed on the basis of
GESO, first, a brief analysis of GESO is given (it should be
noted that the performance of DOB is similar to conventional
ESO, and conventional ESO can be regarded as a special
case of GESO). If Assumption 1 holds, defining x1 � ω,
x2 � ω̇ + (ki

/
kp)ω, and x3 � D(t), Eq. (6) can be extended

as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 � x2 − (ki
/
kp)x1

ẋ2 � u + x3
ẋ3 � Ḋ(t)
...
ẋn+2 � D(n)(t)

(7)

Fig. 2 Frequency characteristics of the GESO with different values of
n. a z̃3(s)/D(s), b z3(s)/D(s)

where n is the extended order. Then, design the following
system as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ż1 � z2 − (ki
/
kp)x1 − l1e1

ż2 � u + z3 − l2e1
ż3 � z4 − l3e1
...
żn+1 � zn+2 − ln+1e1
żn+2 � −ln+2e1

(8)

where e1 � z1 − x1, li � kiωi
0 > 0 (i� 1, 2, …, n+ 2)

in which ki � (n + 2)! /[i!×(n + 2 − i)! ] and −ω0 is the
desired pole. In GESO, zi (i� 1, 2, …, n+ 2) is regarded as
the estimation of xi. Then, we can analyze the performance of
GESO through the transfer function between z3(s) and D(s)
which is given as

z3(s) � l3sn−1 + l4sn−2 + · · · + ln+2
sn+2 + l1sn+1 + · · · + ln+2

D(s) (9)

and the estimation error z̃3(s) � z3(s) − D(s) is given as

z̃3(s) � sn+2 + l1sn+1 + l2sn

sn+2 + l1sn+1 + · · · + ln+2
D(s) (10)

Figure 2 shows the frequency characteristics of the GESO
using (9) and (10) with different values of extended order n,
here ω0 is chosen as 100. Figure 2a shows that by increasing
1 of n, the slope of z̃3(s)/D(s) in low frequency increases
20 dB/dec. Thus, the estimation error decreases with n
increasing. On the other hand, from Fig. 2b, as n increases,
the frequencymagnitude of z3(s)/D(s) shifts to the right, and
the slope of z3(s)/D(s) in high frequency remains constant
(− 60 dB/dec). Thus, the sensitivity of the observer to the
high-frequency noise increases with n increasing. Therefore,
the extended order n is limited by this fact, and the estimation
accuracy and the noise insensitivity have to be compro-
mised. Especially when the disturbance is time-varying, the
higher extended order is required for enough accuracy [28],
so the contradiction between accuracy and noise insensi-
tivity becomes more acute, which limits the application of
observer-based control methods.
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3.2 The CSO

From (9), it can be known that the reason of above con-
tradiction is that in transfer function of GESO, the degrees
of the denominator and the numerator cannot be separately
designed. If we change the value of n, the degrees of both
the denominator and the numerator will be synchronously
changed. So it is difficult to attain a trade-off between esti-
mation accuracy in low frequency and noise insensitivity in
high frequency.

Therefore, in order to simultaneously improve the estima-
tion accuracy and the noise insensitivity, we need to add a
degree of freedom to separately design the denominator and
the numerator of transfer function. Note that in GESO, only
the state z3 is employed to estimate D(t), and the other states
(z4, z5, . . . , zn+2) are not fully used. Based on this idea, the
following CSO is proposed.

By subtracting (7) from (8), the error dynamics can be
expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ė1 � e2 − l1e1
ė2 � e3 − l2e1
...
ėn+2 � −ln+2e1 − D(n)

(11)

where ei � zi − xi . Via Laplace transform of (11), we have

e1(s) � − snD(s)

sn+2 + l1sn+1 + l2sn + · · · + ln+2
(12)

Substituting e1(s) into the Laplace transform of (8), it yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn+2(s) � ln+2sn−1

sn+2+l1sn+1+l2sn+l3sn−1···+ln+2 D(s)

zn+1(s) � ln+1sn−1+ln+2sn−2

sn+2+l1sn+1+l2sn+l3sn−1···+ln+2 D(s)

zn(s) � lnsn−1+ln+1sn−2+ln+2sn−3

sn+2+l1sn+1+l2sn+l3sn−1···+ln+2 D(s)

...

z3(s) � l3sn−1+l4sn−2···+ln+2
sn+2+l1sn+1+l2sn+l3sn−1···+ln+2 D(s)

(13)

Then, we will show that by using the linear combination
of zi (i� 3, 4, …, n+ 2), the better transfer function between
x̂2(s) and x2(s), D̂(s) and D(s) can be constructed. For con-
venience, the more compact form of (13) is given.

Z (s) � L1F(s) (14)

where Z(s) � (zn+2(s), zn+1(s), …, z3(s))T, F(s) �(
sn−1D(s)

sn+2+···+ln+2 ,
sn−2D(s)

sn+2+···+ln+2 , · · · ,
D(s)

sn+2+···+ln+2
)T

, and L1 �

⎛
⎜⎜⎜⎜⎜⎝

ln+2 0 0 0 . . . 0
ln+1 ln+2 0 0 . . . 0
ln ln+1 ln+2 0 . . . 0

...
l3 l4 l5 · · · ln+1 ln+2

⎞
⎟⎟⎟⎟⎟⎠
. Note that L1 is invertible,

F(s) can be calculated byF(s)� L−1
1 Z(s), soF(t)� L−1

1 Z(t).
With F(t), and define L2 � (l2, l3, . . . , lr1+1, 0, . . . , 0) and
L3 � (l3, l4, . . . , lr2+2, 0, . . . , 0) where r1 and r2 are inte-
gers and 0≤ r1 <n+1, 0≤ r2 <n, the new x̂2(t) and D̂(t) are
given as

x̂2(t) � z2(t) − L2F(t) � z2(t) − L2L
−1
1 Z (t) (15)

and

D̂(t) � z3(t) − L3F(t) � z3(t) − L3L
−1
1 Z (t) (16)

where Z (t) � (zn+2(t), zn+1(t), . . . , z3(t))T. The proposed
CSO consists of Eqs. (8), (15) and (16). It can be noted that
whenω0 is fixed, L2 and L3 are only determined by r1 and r2.
And theGESOcan be regarded as a special case ofCSOwhen
r1 � r2 � 0. The next section will show the performance
improvement behind this difference.

3.3 Performance analysis of the CSO

To analyze the performance of CSO, the transfer functions
between x̂2(s) and x2(s), D̂(s) and D(s) are given by

x̂2(s) � lr1+2s
n−r1 + lr1+3s

n−r1−1 + · · · + ln+2
sn+2 + l1sn+1 + l2sn + · · · + ln+1s + ln+2

x2(s)

+
sn+1 + l1sn + · · · + lr1+1s

n−r1

sn+2 + l1sn+1 + l2sn + · · · + ln+1s + ln+2
u(s) (17)

and

D̂(s) � lr2+3s
n−r2−1 + lr2+4s

n−r2−2 + · · · + ln+2
sn+2 + l1sn+1 + · · · + ln+2

D(s) (18)

respectively. And the estimation errors are given as

x̃2(s) � x̂2(s) − x2(s)

� − sn+2 + l1sn+1 + · · · + lr1+1s
n−r1+1

sn+2 + l1sn+1 + · · · + ln+1s + ln+2
x2(s)

+
sn+1 + l1sn + · · · + lr1+1s

n−r1

sn+2 + l1sn+1 + · · · + ln+1s + ln+2
u(s) (19)

and

D̃(s) � D̂(s) − D(s)

� − sn+2 + l1sn+1 + · · · + lr2+2s
n−r2

sn+2 + l1sn+1 + · · · + ln+2
D(s) (20)
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Fig. 3 Frequency characteristics of GESO and CSO with different val-
ues of n and r1,2. a D̃(s)/D(s), b D̂(s)/D(s)

Fig. 4 Frequency characteristics of the CSO where r1,2 �
0.5n. a D̃(s)/D(s), b D̂(s)/D(s)

where x̃2(s) and D̃(s) denote the estimation errors. From (17)
(or (18)), we can see the degree of denominator is n+ 2, and
the degree of numerator is n − r1 (or n − r2 − 1). There-
fore, by adjusting n and r1,2, we can separately design the
degree of denominator and numerator of transfer function.
Using (17)–(20), the frequency characteristics of CSO with
different values of n and r1,2, where ω0 is chosen as 100,
is presented. From Fig. 3, it can be observed that if r1,2 is
fixed (see Fig. 3a), with the increase in n, the estimation error
decreases in low frequency, thus the estimation accuracy is
improved. And if n is fixed (see Fig. 3b), with the increase in
r1,2, the high-frequency attenuation of D̂(s)/D(s) increases,
thus the insensitivity to high frequency noise is improved.

Further, from Fig. 4, where the proportion relation
between r1,2 and n is fixed (i.e., r1,2 � 2, n� 4, r1,2 � 3,
n� 6, and r1,2 � 4, n� 8), it can be seen if r1,2 � 0.5n, every
increase 2 of n (and meanwhile, increase 1 of r1,2), the slope
of D̃(s)/D(s) increases 20 dB/dec in low frequency; and
meanwhile, the slope of D̂(s)/D(s) increases − 20 dB/dec
in high frequency. Therefore, by tuning the value of n and
r1,2, both the estimation accuracy and the noise restraining
effect can be simultaneously improved.

From above discussion, we can see a striking advantage
of CSO is that the degree of denominator and numerator of
the transfer function are decoupled and can be separately
designed. So the estimate ability of the observer is greatly
enhanced. Furthermore, the proposedCSOcan be easily real-
ized by (8), (15) and (16), which does not greatly increase
the computation complexity compared with GESO.

3.4 Stability analysis of the CSO

Theorem 1 For the given system (6), a CSO is constructed by
(8), (15) and (16), if Assumption 1 holds, the estimation error
will be bounded uniformly and ultimately, there are limt→∞∣∣x̂2 − x2

∣∣ ≤ O(εn+1−r1 ) and limt→∞
∣∣∣D̂ − D

∣∣∣ ≤ O(εn−r2 )

where 0≤ r1 <n + 1, 0≤ r2 <n, and ε� 1/ω0.

The proof of Theorem 1 is presented in Appendix A.

4 Adaptive slidingmode controller

Based on the CSO, an adaptive sliding mode controller is
designed for PMSM in this section.

4.1 Controller design

The objective of the speed controller is to force the PMSM
rotor speed to track the reference. To do this, the sliding
manifold is defined first

σ (t) � ˆ̇e(t) + c · e(t) (21)

where e(t) � ωr(t) − ω(t), ωr(t) represents the speed refer-
ence, c is a positive constant, and ˆ̇e(t) � ω̇r (t)− ˆ̇ω(t) inwhich
ˆ̇ω(t) is obtained by CSO ( ˆ̇ω � x̂2 − (ki

/
kp)ω). The sliding

manifold (21) can ensure the speed error e(t) converges to
zero as long as σ (t) � 0. In order to make σ (t) converge to
zero, the control law is designed as

u � ω̈r + (ki
/
kp) ˆ̇ω + c ˆ̇e + ksgn(σ ) + ksσ − D̂(t) (22)

where k>0, ks>0, ˆ̇ω and D̂(t) are provided by CSO. Accord-
ing to the analysis in Sect. 3, the accurate and smooth ˆ̇ω and
D̂(t) can be obtained. The derivative of σ with respect to
time is deduced as

σ̇ � ë + cė − ˙̃x2 � ω̈r + (ki
/
kp)ω̇ − D(t) − u + cė − ˙̃x2

(23)

Substituting the control law (22) into (23), it yields

σ̇ � −ksσ − ksgn(σ ) + Γ (t) (24)

where Γ (t) � D̃(t)+
(
c − ki

kp

)
x̃2 − ˙̃x2. It can be noted that if

k ≥ Γ (t) is satisfied, there is σ σ̇ ≤ 0, so σ (t) will converge
to zero. However, the upper bound of Γ (t) is hard to obtain,
which brings difficulties for implementation of the control
law. To overcome this problem, a simple nonlinear adaptive
law is proposed as follows:

k̇ �
{
km |σ |psgn(|σ | − ε1) k > μ

μ k ≤ μ
(25)
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Fig. 5 Block diagram of the designed PMSM speed controller

where μ and ε1 are nonzero positive constants, km>0 and
0<p<1. The parameter μ is used to ensure k>0. There-
inafter, Theorem 2 indicates that the control law (22) with
the adaptive law (25) can ensure that the PMSM speed tracks
its reference, and k is not overestimated. Since the chatter-
ing of SMC is originated by the switching term ksgn(σ ), the
avoidance of over-estimation of k minimizes the chattering.

From (25), when the system is in transient state (e.g., start-
ing phase), |σ | is larger, but ∣∣k̇∣∣ will not be too large because
0<p <1, thus avoiding the excessively large value of k in
transient process. And when the system states are close to
the sliding manifold, the convergence of k will be fast owing
to 0<p <1. So the steady and fast convergence of the switch-
ing gain is achieved.

The suggested control scheme (ASMC + CSO) is shown
in Fig. 5. The CSO is used to estimate the speed derivative
and the lumped uncertain disturbance. The estimated result is
compensated to the control law which is given by (22). And
the switching gain k is adjusted by the adaptive law (25). The
actual output of the speed loop i∗q (q-axis reference current)

is calculated by g
(
i̇∗q + ki

kp
i∗q

)
� u, where u is provided by

control law (22). i∗d and i∗q are inputted to the currents control
loop to provide ud and uq. After coordinate transformation,
uα and uβ are used in SVPWM to generate the on and off
signals for the three-phase voltage inverter.

In practice, ω̈r in (22) can be set as zero when the speed
reference is step value. And this will not influence the system
stability.

4.2 Stability analysis of closed-loop system

Lemma 1 For the nonlinear function f (x) � −ksx2 − (k−
kd)x+ 1

λ
(k− kd)kmxp, where ks>0, k≤kd , km>0 and 0<p

<1, there exists a positive real number λ such that f (x)≤0
for all x≥0.

The proof of Lemma 1 is presented in Appendix B.

Theorem 2 If Assumption 1 holds for the PMSM system (1),
and the control law (22) and the adaptive law (25) are
applied, it is guaranteed that the speed tracking error con-
verges to a small neighborhood of zero in a finite time.

Proof Rewriting (24) as

σ̇ � −ksσ − ksgn(σ ) + Γ (t) (26)

According to [33], it can be easy known that the switching
gain k has an upper bound that kd > sup|Γ (t)|, i.e., k(t)≤kd ,
∀t > 0.Assuming k̃ � k−kd , consider the followingpositive
definite Lyapunov function

V � σ 2
/
2 + k̃2

/
2λ (27)

where λ>0, and k≤kd . The derivative of V is

V̇ � σ σ̇ +
1

λ
k̃ ˙̃k � −ksσ

2 − k|σ | − σΓ (t) +
1

λ
k̃k̇ (28)

When |σ | > ε1, there is k̇ � km |σ |p > 0 according to (25),
then V̇ can be deduced as

(29)

V̇ � −ks |σ |2 − k |σ | + kd |σ | − kd |σ |
− σΓ (t) +

1

λ
(k − kd )km |σ |p

≤ (−ks |σ |2 − (k − kd ) |σ | + 1

λ
(k − kd )km |σ |p)

− |σ | (kd − Γ (t))

Using Lemma 1, there exists a positive real number λ such
that −ks |σ |2 − (k − kd )|σ | + 1

λ
(k − kd )km |σ |p ≤ 0, so we

have

V̇ ≤ −|σ |(kd − Γ (t)) (30)

considering kd > sup|Γ (t)|, there is V̇ ≤ −|σ |(kd−Γ (t)) <

0 when |σ | > ε1. It is guaranteed that σ converges to a
domain of |σ | ≤ ε1 in a finite time from any initial condition
|σ(0)| > ε1.

When |σ | < ε1, k̇ � −km |σ |p < 0, V̇ is sign indef-
inite and |σ | may increase. As soon as |σ | ≥ ε1, there is
V̇ < 0, and thus |σ | has a stable finite reaching time dynam-
ics. Therefore, |σ | will converge to |σ | ≤ ε1 and stay in a
bounded domain thereafter, and thus the speed tracking error
e will converge to a small neighborhood of zero along the
sliding manifold. Thus, Theorem 2 is proved.

It should be noted that the current PI controller has already
been considered in second-order model (6), so the Theorem 2
can ensure the stability of the whole system.

Remark 1 From above proof, it can be known that the con-
trol accuracy depends on the parameter ε1. If ε1 is selected
too large, the control accuracy decreases according to The-
orem 2. But conversely, if ε1 is too small, the self-sustained
oscillationmaybe induceddue to thefinite samplingperiod in
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implementation. Considering the discrete-time form of (26),
one has

σ (t + T ) � σ (t) − T (ksσ (t) + ksgn(σ (t)) + Γ (t)) (31)

where T is the sampling period. Given that |σ (t)| ≤ ε1
and k ≥ sup|Γ (t)|, if ε1 is too small, |σ (t + T )| could be
greater than ε1, thus leading to the self-sustained oscillation.
To avoid this problem, |σ (t + T )| ≤ ε1 is required when
|σ (t)| ≤ ε1 and k ≥ sup|Γ (t)|. From (31), considering σ (t)
and T (ksσ (t) + ksgn(σ (t)) + Γ (t)) have the same sign when
k ≥ |Γ (t)|, so if the following in equation

T |(ksσ (t) + ksgn(σ (t)) + Γ (t))| ≤ ε1 (32)

is satisfied,|σ (t + T )| ≤ ε1 can be guaranteed. Considering
|σ (t)| ≤ ε1, it yields

T |(ksσ (t) + ksgn(σ (t)) + Γ (t))|
≤ T ksε1 + T |ksgn(σ (t))| + T |Γ (t)| ≤ T ksε1 + 2T k

(33)

To ensure (32), it is necessary to make T ksε1 + 2T k ≤ ε1.
Supposing 1 − T ks > 0, thus ε1 should be chosen as the
following function

ε1(t) ≥ 2T k(t)
/
(1 − T ks) (34)

5 Simulations and experiments

To test the effectiveness of the proposed method, the simu-
lations and experiments are carried out. The following three
control methods are compared.

1. The conventional SMC without disturbance compensa-
tion and adaptive parameter adjusting.

2. The SMC+GESOwithout adaptive parameter adjusting.
3. The proposed method (ASMC + CSO).

Table 1 Parameters of PMSM

Features Values

Rated power PN 200 W

Rated voltage UN 36 V

Stator resistance Rs 1.2 


Stator inductance L (L� Ld� Lq) 0.65 mH

Rotor flux linkage Φ f 0.38 wb

Number of pole pairs np 4

Moment of inertia J 8.12×10−4 kg m2

Friction coefficient B 3.55×10−4 N m s/rad

Fig. 6 Lumped disturbance estimation (simulation). a CSO. b GESO

Fig. 7 Control effects under the step disturbance with the SMC (simu-
lation). a Speed, b control input, c q-axis current

The parameters of PMSMare given in Table 1. To evaluate
the disturbance rejection performance, the step disturbance,
the time-varying disturbance and the parameter uncertainty
are, respectively, considered. For a fair comparison, the
parameters of the speed controller and the currents controller
are well-tuned and same in three methods.
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Fig. 8 Control effects under the step disturbance with the SMC+GESO
(simulation). a Speed, b control input, c q-axis current

5.1 Simulation results

The saturation limit ofq-axis current is±10A.ThePI param-
eters of the currents loop,which are designed according to the
stator resistance and stator inductance, are kp� 48 and ki�
5000. The parameters of the speed controller and the adaptive
law are selected as c� 40, ks� 20 (satisfies 1 − T ks > 0),
km� 10, μ� 0.5, p� 0.25, ε1(t) � 3T k(t)

/
(1 − T ks) and

T� 0.5×10−4 s. The parameters of the CSO are chosen as
n� 4, r1 � r2 � 2, ω0 � 120. And the pole location of the
GESO in method 2 are also chosen as ω0 � 120.

(1) Case 1

The speed reference is 1000 rpm, and a step load dis-
turbance TL� 1.5 N m is added at 6 s. Figure 6 shows the
disturbance estimations by the CSO and the GESO. Compar-
ing Fig. 6a, b, it is obvious that the CSO has better estimation
accuracy and noise insensitivity than the GESO. As shown
in Fig. 7, a very large switching gain (k� 2×104) is required

Fig. 9 Control effects under the step disturbance with the proposed
method (simulation).aSpeed,b control input, c q-axis current,d switch-
ing gain k

for the conventional SMC to reject the disturbance, so that
the chattering of the control input is very severe (see Fig. 7b).
And the speed drop with the conventional SMC is about
50 rpm when the disturbance occurs. From Figs. 8 and 9,
both the SMC + GESO (k� 400) and the ASMC + CSO can
reject the disturbance due to the disturbance compensation.
But when the disturbance occurs, the speed drop is about
27.6 rpm, and the recovery time is about 0.63 s using the
SMC + GESO; comparatively, the speed drop and the recov-
ery time are, respectively, about 16.9 rpm and 0.18 s using
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Table 2 Control effect under the step disturbance (simulation)

Method SMC SMC + GESO Proposed method

Switching gain k 2×104 400 Converges to 0.5

Speed drop (rpm) 50 27.6 16.9

Recovery time (s) 1.05 0.63 0.18

Fig. 10 Lumped disturbance estimation (simulation). a CSO, b GESO

the ASMC + CSO. Besides, since the estimation accuracy of
CSO is higher, the switching gain k converges to 0.5 under
the adaptive law (see Fig. 9d), which is much smaller than
method 1 and 2. So the chattering of control input is greatly
reduced. Detailed comparisons of the control effect are given
in Table 2.

(2) Case 2

In this case, a time-varying disturbance de� (0.3sin(15t)
+1.5) Nm is added at 1.4 s, and the designed controller is ver-
ified at different speeds of 500 rpm, 1200 rpm and 800 rpm.
Figure 10 shows that the CSO has smaller estimation error
for the time-varying disturbance and more effective restrain-
ing action to high-frequency noise than the GESO. As shown
in Fig. 11, since the conventional SMC (k� 2×104) cannot
completely reject the disturbance, the speed fluctuation exists
in steady state and its amplitude is about 8.1 rpm (the speed
fluctuation is calculated byωmax − ωmin). And the chattering
of control input is severe as shown in Fig. 11b. From Fig. 12,
the disturbance rejection is improved by the SMC + GESO
(k� 400). But, owing to larger estimation error of GESO, the
speed fluctuation in steady state still exists and its amplitude
is about 5.2 rpm. And the control input contains larger noise.
Comparatively, in the case of the proposed method, the dis-
turbance influence is greatly suppressed because of the high
estimation accuracy of the CSO, and the speed fluctuation in
steady state is reduced to 1.3 rpm as shown in Fig. 13a. And
the switching gain k converges fast and steadily to a smaller
value (k� 7.3) under the adaptive law, which significantly
reduces the chattering (see Fig. 13b). And the influence of
the measurement noise is effectively attenuated by the CSO.
The detailed comparison is given in Table 3.

Fig. 11 Control effects under the time-varying disturbance with SMC
(simulation). a Speed, b control input, c q-axis current

(3) Case 3

In order to validate the operation at low speed, the speed
reference is set to 100 rpm at 0 s and zero at 6 s. And to
validate the robustness to parameter uncertainty, the nomi-
nal value of J is set to 2 J*, the nominal value of Ls is set
to 1.3 L∗

s , and the stator resistance of PMSM is changed
to R� 3R* at 3 s, where the superscript “ * ” represents
the measured value of parameters given in Table 1. And
the added load torque is 2 N m. From Fig. 14, it can be
observed that the CSO possesses higher disturbance estima-
tion accuracy and better noise insensitivity than the GESO.
Comparing Figs. 15, 16 and 17, it can be seen that with the
proposedmethod, the speed dropwhen resistance is changed,
is 20 rpm, which is smaller than the results with SMC and
SMC + GESO. And since the switching gain k converges to
0.5 under the adaptive law, the chattering of control input is
greatly reduced. The detailed comparison is given in Table 4.
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Fig. 12 Control effects under the time-varying disturbance with the
SMC + GESO (simulation). a Speed, b control input, c q-axis current

5.2 Experiment results

The experimental platform is shown in Fig. 18. A switch-
ing power is used to provide DC power for PMSM control
system. The control algorithm is implemented by the pro-
gram of TMS320F28069 with a clock frequency of 90 MHz.
The PMSM is driven by a three phase voltage source inverter
using MOSFET with a switching frequency of 30 kHz. The
sampling frequency of the current loop and the speed loop is
15 kHz and 1 kHz. The Hall effect device is used to measure
the currents, an incremental encoder of 2500 lines is used
to measure the rotor speed, and a torque sensor is adopted
to measure the electromagnetic torque. A magnetic rema-
nence brake whose maximum output torque is 3 N m with
an adjustable current source is used to provide the load. The
parameters of the controller and the adaptive law are the same
as the simulation. The experimental data are downloaded
from DSP after execution.

It should be noted that the torque sensor is used here
to ensure that the magnetic remanence brake outputs the

Fig. 13 Control effects under the time-varying disturbancewith the pro-
posed control method (simulation). a Speed, b control input, c q-axis
current, d switching gain k

required load torque and its value will not exceed the rated
torque of PMSM.

(1) Case 1

The speed reference is 1000 rpm, and a step load dis-
turbance TL� 1.5 N m is added at 6 s. The control effects
with the three methods are shown in Figs. 19, 20 and 21,
respectively. It can be seen that when the step disturbance
occurs, since there is no disturbance compensation, both the
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Table 3 Control effect under the time-varying disturbance (simulation)

Method SMC SMC + GESO Proposed method

Switching gain k 2×104 400 Converges to 7.3

Speed fluctuation
(rpm)

8.1 5.2 1.3

Response time (s) 1.2, 0.94 0.56, 0.45 0.34, 0.22

Overshoot (rpm) 132, 61 153, 94 34, 16.5

Fig. 14 Lumped disturbance estimation (simulation). a CSO, b GESO

Fig. 15 Control effects under the parameter variation with SMC (sim-
ulation). a Speed, b control input, c q-axis current

speed drop and the recovery timewith the conventional SMC,
which, respectively, are 51.4 rpm and 1.2 s (see Fig. 19a), are
large. Comparing Figs. 20 and 21, since CSO possesses the
better estimation performance for the lumped disturbance,

Fig. 16 Control effects under the parameter variation with the SMC +
GESO (simulation). a Speed, b control input, c q-axis current

the ASMC + CSO significantly reduces the speed drop and
the recovery time. And the switching gain k converges to
0.66 under the adaptive law (see Fig. 21c), which is much
smaller than method 1 and 2, thus the chattering is reduced.
Besides, owing to the preferable noise-restrain effect of CSO,
the influence of the encodermeasurement noise is attenuated.
The detailed comparisons of the control effect are given in
Table 5.

(2) Case 2

The controller is verified at different speeds of 500 rpm,
1200 rpm and 800 rpm, and a time-varying disturbance de�
(0.3sin(15t) + 1.5) N m is added at 1.4 s. Figures 22, 23
and 24 show the control effect using the three methods. It
can be observed that owing to the accurate disturbance esti-
mation by the CSO, the speed fluctuation in steady state is
about 4.8 rpm with the proposed method, which is obviously
smaller than the conventional SMC (14.5 rpm) and SMC +
GESO (9.4 rpm). Furthermore, the switching gain k con-
verges to 13.8 of a smaller value under the adaptive law. The
detailed comparisons are given in Table 6.
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Fig. 17 Control effects under the parameter variation with the proposed
control method (simulation). a Speed, b control input, c q-axis current,
d switching gain k

(3) Case 3

In order to validate the operation at low speed, the speed
reference is set to 100 rpm at 0 s and zero at 6 s. And to
validate the robustness to parameter uncertainty, the nominal
value of J is set to 2 J*, the nominal value of Ls is set to
1.3 L∗

s , and the stator resistance of PMSM is changed to
R� 3R* at 3 s. The added load torque is 2 N m. Comparing
Figs. 25, 26 and 27, it can be seen that when stator resistance
is changed, the speed drop is about 76 rpmwith conventional

Table 4 Control effect under the parameter uncertainty (simulation)

Method SMC SMC + GESO Proposed method

Switching gain k 2×104 400 Converges to 0.5

Speed drop (rpm) 45 33 20

Recovery time (s) 0.58 0.39 0.2

Fig. 18 Experimental platform

Fig. 19 Control effects under the step disturbance with SMC (experi-
ment). a Speed, b q-axis current

SMC, 56 rpmwith SMC +GESO, and 35 rpmwith proposed
method. And, the switching gain converges to about 0.7 in
steady state under the adaptive law, which is much smaller
than the one in SMC and SMC + GESO, so the chattering is
greatly reduced. Besides, at low speed, the influence of the
speed measurement noise is also attenuated by the CSO. The
detailed comparison is given in Table 7.
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Fig. 20 Control effects under the step disturbance with the SMC +
GESO (experiment). a Speed, b q-axis current

Fig. 21 Control effects under the step disturbance with the proposed
method (experiment). a Speed, b q-axis current, c switching gain k

Table 5 Control effect under the step disturbance (experiment)

Method SMC SMC + GESO Proposed method

Switching gain k 2×104 400 Converges to 0.66

Speed drop (rpm) 51.4 31.8 15

Recovery time (s) 1.2 0.53 0.19

Fig. 22 Control effects under the time-varying disturbance with SMC
(experiment). a Speed, b q-axis current

Fig. 23 Control effects under the time-varying disturbance with the
SMC + GESO (experiment). a Speed, b q-axis current
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Fig. 24 Control effects under the time-varying disturbancewith the pro-
posed method (experiment). a Speed, b q-axis current, c switching gain
k

Table 6 Control effect under the time-varying disturbance (experiment)

Method SMC SMC + GESO Proposed method

Switching gain k 2×104 400 Converges to 13.8

Speed fluctuation
(rpm)

14.5 9.4 4.8

Response time (s) 1.0,0.8 0.46, 0.3 0.2, 0.18

Overshoot (rpm) 113, 70 200, 124 33, 16.0

6 Conclusions

This paper proposes a new disturbance estimation tech-
nique called combined state/disturbance observer (CSO), and
designs an adaptive sliding mode control (ASMC) based on
CSO for PMSM speed control. The CSO is developed to
estimate the speed derivative and the lumped disturbance of
PMSM including the parameter perturbations and the exter-
nal disturbances. The theoretical analysis shows that both
the estimation accuracy and the noise-restrain ability can be
simultaneously improved, which is the main advantage of
CSO compared with the generalized extended state observer

Fig. 25 Control effects under the parameter uncertainty with SMC.
a Speed, b q-axis current

Fig. 26 Control effects under the parameter uncertainty with the SMC
+ GESO (experiment). a Speed, b q-axis current

(GESO).Then, a slidingmodecontroller for PMSM, inwhich
a disturbance feed-forward compensation is introduced, is
designed. Furthermore, a simple nonlinear adaptive law is
presented to solve the unknown upper bound of the dis-
turbance estimation error and minimize the chattering. The
global stability of the closed-loop system with the proposed
method is guaranteed.
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Fig. 27 Control effects under the parameter uncertainty with proposed
method (experiment). a Speed, b q-axis current, c switching gain k

Table 7 Control effect under the parameter uncertainty (simulation)

Method SMC SMC + GESO Proposed method

Switching gain k 2×104 400 Converges to 0.7

Speed drop (rpm) 76 56 35

Recovery time (s) 0.72 0.55 0.24

In the simulations and the experiments, three control
methods are compared under the step disturbance, the time-
varying disturbance and the parameter uncertainty, respec-
tively. The results show that the CSO possesses preferable
estimation accuracy and noise insensitivity. And the ASMC
+ CSO has the better speed tracking performance and the
smaller chattering in the presence of different disturbances
and parameter uncertainty.
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Appendix A

Proof Define the following state variables: x0 � ∫ t
0 x1(t)dt ,

x−1 � ∫ t
0 x0(t)dt , …, and x1−r1 � ∫ t

0 x1−(r1−1)(t)dt , the
system (6) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1−r1 � x1−(r1−1)
...
ẋ1 � x2
ẋ2 � u + x3
ẋ3 � Ḋ
...
ẋn+2−r1 � D(n−r1)

(A1)

For system (A1), a GESO is designed as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̇1−r1 � η1−(r1−1) − ω0k1ξ1
...
η̇1 � η2 − ω

r1+1
0 kr1+1ξ1

η̇2 � u + η3 − ω
r1+2
0 kr1+2ξ1

η̇3 � η4 − ω
r1+3
0 kr1+3ξ1

...
η̇n+2−r1 � −ωn+2

0 kn+2ξ1

(A2)

where ξ1 � η1−r1 − x1−r1 , ki � (n + 2)! /i!×(n + 2 − i)!,
and−ω0 is the desired pole. Supposing ξ � [ξ1, . . . , ξn+2] �
[η1−r1−x1−r1 , η1−(r1−1)−x1−(r1−1), . . . , ηn+2−r1−xn+2−r1 ],
and subtracting (A1) from (A2) we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̇1 � ξ2 − ω0k1ξ1
ξ̇2 � ξ3 − ω2

0k2ξ1
...
ξ̇n+2 � −ωn+2

0 kn+2ξ1 − D(n−r1)

(A3)

By using Laplace transform of (A2) and (A3), the following
equation can be obtained

η2(s) � lr1+2s
n−r1 + lr1+3s

n−r1−1 + · · · + ln+2
sn+2 + l1sn+1 + l2sn + · · · + ln+2

x2(s)

+
sn+1 + l1sn + · · · + lr1+1s

n−r1

sn+2 + l1sn+1 + l2sn + · · · + ln+2
u(s) (A4)

Comparing (A4) with (17), it can be seen that x̂2(s) � η2(s),
so x̂2(t) � η2(t). Then using the theorem in [27], for GESO
(A2), there is limt→∞|η2 − x2| ≤ O(εn+1−r1 ), where ε�
1/ω0. Thus limt→∞

∣∣x̂2 − x2
∣∣ ≤ O(εn+1−r1 ) is satisfied. Sim-

ilarly, limt→∞
∣∣∣D̂ − D

∣∣∣ ≤ O(εn−r2 ) can be proved. Thus,

Theorem 1 is proved.
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Here, the existing results of GESO are used in the proof of
Theorem 1. And it can be seen that the GESO (A2) achieves
the same estimation as the CSO. However, (A2) cannot be
implemented because the “integral saturation” problem will
appear when calculating x0, x−1, …, x1−r1 . The CSO uses
the linear combination of the extended high-order states to
generate the unknown state and disturbance estimations, so
this problem is eliminated.

Appendix B

Proof When x�0, it can be easy known f (0)�0.When x>0,
if k<kd , defining g(x) � f

′
(x) � −2ks x − (k− kd ) + 1

λ
(k−

kd )km px p−1, then g
′
(x) � −2ks+ 1

λ
(k−kd )km p(p−1)x p−2

can be obtained. Supposing g
′
(x0) � 0, we have

x0 �
(

2ksλ

(k − kd )km p(p − 1)

) 1
p−2

(B1)

It can be known that x0 >0. Noting g
′′
(x0) � (k −

kd )km p(p − 1)(p − 2)x p−3
0

/
λ, and considering k<kd ,

0<p <1 and x0 >0, there is g
′′
(x0) < 0. Thus the max-

imum value of g(x) is g(x0), i.e., g(x)≤g(x0). Selecting

λ � (k − kd )km p(p − 1)
/
2ks ·

[
− 1

2ks
(k − kd )

]p−2
> 0,

and substituting it into (B1), we have x0 � − 1
2ks

(k − kd ).
Substituting x0 into g(x), it yields

g(x0) � (k − kd )km px p−1
0

/
λ (B2)

Because x0 >0, there is g(x0)<0, and thus f
′
(x) � g(x) ≤

g(x0) < 0 for all x>0.
If k� kd , there is f (x) � −ks x2, it is obvious that f

′
(x) �

−2ks x < 0 for all x > 0. Therefore, there exists a positive
real number λ such that f

′
(x) < 0 for all x>0. And noting

that f (0) � 0 and f (x) is continuous, it can be known that
f (x) ≤ 0 for all x ≥ 0. Lemma 2 is proved.
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