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Abstract
In this paper, a new fault detection approach for nonlinear Lipschitz systems based on observer method is proposed wherein
the gain of the observer is obtained by optimalmaximized Lipschitz constant andminimized disturbance attenuation level. The
FD system is defined as a weighted LMI optimization problem in which the Lipschitz constant and disturbance attenuation
level are assumed as decision variables. The projection lemma is used to reduce the conservatism of the proposed FD
system. Maximization of the Lipschitz constant will result in robustness of the FD system against parametric and nonlinear
uncertainties, while maintaining the fault sensitivity of the FD system and may further eliminate the problem of getting
the exact value of the Lipschitz constant in practical applications. A single-link manipulator is provided to demonstrate the
effectiveness of the proposed method.

Keywords Lipschitz constant · Fault detection · Lipschitz nonlinear system · Disturbance attenuation

1 Introduction

Model-based fault diagnosis has become an important and
critical topic in industrial applications. Fault diagnosis pro-
cedure consists of three stages including detection, isolation
and identification [1,2]. The fault detection stage is the first
step, and the two other stages are dependent on this step and
will initiate after fault occurrence declaration in the first step.

On the other hand, fault detection for nonlinear systems
has drawn much attention in recent years due to this fact
that industrial applications are nonlinear systems. Different
methods for fault detection of nonlinear systems are given
in the literature such as nonlinear observer method, neural
networks, fuzzy systems, bond graph method, etc.

Observer method may be considered as the main class of
the model-based fault detection methods. Different classes
for nonlinear systems are investigated in the literature and
different observer methods are proposed for state and out-
put estimation of the nonlinear systems. The Luenberger
observer for the Lipschitz nonlinear systems are proposed
in [3–5]. In [6], sensor fault estimation observer design for
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the Lipschitz nonlinear system with finite-frequency specifi-
cations is considered inwhich the disturbances are attenuated
in the finite-frequency domain. The fault detection problem
for discrete-time Lipschitz nonlinear systems with additive
whiteGaussian noise channels subject to signal-to-noise ratio
constraints is addressed based on the mixed H−/H∞ perfor-
mance index in [7]. In [8], a new observer design approach
for the Lipschitz nonlinear systems is proposed in the form
of LMI optimization problem, which is robust against some
nonlinear uncertainty. Application of robust fault detection
for heat recovery steam generator as a Lipschitz nonlinear
system is studied in [9].

A robust nonlinear observer for systems with Lipschitz
nonlinearity is addressed in [10], which is robust in the sense
that its state estimation error decays to almost zero even in the
face of large external disturbances. An alternative to solve the
speed sensorless control of a surface-mounted synchronous
motor based on localization of compact invariant sets and the
Thau observer is presented in [11]. The state estimation prob-
lem for a class of globally Lipschitz nonlinear systems with
time-varying delayed output based on sliding mode observer
is considered in [12]. The unscented Kalman filter (UKF) for
state estimation of nonlinear system is addressed in [13].

Unknown input observers (UIO) are used for disturbance
decoupling in nonlinear systems. Two approaches including
a novel UIO and an H∞ observer for robust state estimation
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of a class of Lipschitz nonlinear systems are presented in
[14] wherein the minimum value of the disturbance attenua-
tion levels is obtained through solving optimization problem.
Simultaneous state and fault estimation and disturbances
influences minimization are considered in the UIO-based
robust fault estimation approach for the Lipschitz nonlin-
ear systems which are subjected to both process and sensor
disturbances in [15]. The problem of UIO design for the
Lipschitz nonlinear systems is considered in [16], in which
additional degrees of freedom offered that used to deal with
the Lipschitz nonlinearity. A new nonlinear approach for
robust sensor fault detection is proposed in [17] in which
a nonlinear UIO method is used.

Adaptive observers for nonlinear systems are also consid-
ered in several studies. In [18], an adaptive H∞ observer is
developed for estimating the states, unknown input and mea-
surement noise simultaneously in a class of the Lipschitz
nonlinear systems. An adaptive H∞-based observer for Lip-
schitz and dissipative nonlinear systems in the presence of
disturbances and sensor noise is proposed in [19]. An adap-
tive observer synthesis for the Lipschitz nonlinear systems is
noticed in [20].

In another approach, the reduced-order observers for
the Lipschitz nonlinear systems are studied. The design of
reduced-order observers for the Lipschitz nonlinear systems,
which is dependent on the solution of the Riccati equation,
is considered in [21].

In this study, the robust observer-based FD for the Lips-
chitz nonlinear systems is studied. The main reasons for this
study may be given as twofold.

– Nonlinear systems are studied in different classes with
different approaches. The Lipschitz nonlinear systems
may be considered as the most common form of these
classes wherein a combination of the linear and non-
linear terms determines the governing equations of the
system. Exact determination of the values of these non-
linear models (linear and nonlinear parts) is a difficult
task, which leads to robust study of these systems. This
issue may highlight the importance of the robustness in
model-based FD system design as well. In the previous
studies on the FD system design for the Lipschitz nonlin-
ear systems, theLipschitz constant is assumed as a known
fixed value, which may lead to the sensitivity of the FD
system against the variation of the Lipschitz constant.
Hence, any uncertainties in this parameter may deterio-
rate the performance of the FD system and will result in
false or missed alarms due to the problem of exact value
determination of the Lipschitz constant.

– The second issue that must be pointed out in the FD
scheme for theLipschitz nonlinear systems is considering
the parametric uncertainties in the linear parts of the gov-
erning equations, which may lead to more conservatism

about minimum achievable disturbance attenuation and
maximum achievable fault sensitivity of the FD sys-
tem. This aspect is noticed in two manners in this study.
Firstly, the parametric uncertainties in linear parts of the
state equation, i.e., the uncertainties in A and B matri-
ces, are included in the nonlinear term of the system,
which further reduce the conservatism of the observer
design. Secondly, using the projection lemma may also
lead to less conservatism in the observer design, which
is noticed in some of the previous studies for linear sys-
tems. The projection lemma can reduce the conservatism
in the observer design by introducing new variables by
which some freedom degrees are gained.

Finally, to the best of our knowledge, the problemof robust
fault detection for nonlinear systems with optimal selection
of the disturbance attenuation level and theLipschitz constant
using the projection lemma is not studied in the literature.

In this paper, new robust fault detection for the Lips-
chitz nonlinear systems using projection lemma is proposed
wherein the disturbance attenuation level and the newdefined
Lipschitz constant are obtained in an optimal manner by defi-
nition of the observer design as a weighted LMI optimization
problem. Projection lemma will lead to less conservatism in
the observer design as mentioned in [22–24]. The distur-
bance attenuation level is also achieved in trade-off with the
Lipschitz constant which leads tomaintaining the fault sensi-
tivity and robustness of the FD system against the parametric
uncertainties and nonlinear uncertainty as well. In general,
maximization of the Lipschitz constant will lead to the fol-
lowing benefits in the FD system.

– By considering the parametric uncertainties in A and B as
a part of nonlinear term, the robustness against parametric
uncertainties are also achieved.

– Due to the fact that the obtaining the exact value of the
Lipschitz constant is hard to be find in practical nonlinear
systems, the FD system is robust against this value which
further reduce the sensitivity of the FD system against the
Lipschitz constant.

– The observer design by considering the disturbance atten-
uation level will not lead to an optimal FD system, since
the disturbance attenuation-level minimization will lead
to reduce the fault sensitivity in the system as well. In
this paper, the optimal value of the disturbance attenu-
ation level is determined in trade-off with the Lipschitz
constant, which maintains the fault sensitivity in addition
to the robustness of the FD system against parametric and
nonlinear uncertainties.

The remainder of current paper is as follows. In Sect. 2,
problem formulation and some preliminaries and lemmas
are given. The proposed robust fault detection is presented
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in Sect. 3. The simulation results of the proposed method for
a single-link manipulator with revolute joints actuated by a
DCmotor as a Lipschitz nonlinear system is given in Sect. 4,
followed by conclusion in Sect. 5.

2 Problem formulation and preliminaries

Consider the following Lipschitz nonlinear system:

ẋ(t) = (A + �A)x(t) + (B + �B)u(t)

+ψ(x, u) + D1d(t) + Q1 f (t) (1)

y(t) = Cx(t) + D2d(t) + Q2 f (t). (2)

where x ∈ Rn , u ∈ Rm , y ∈ Rl , d ∈ Rk1 and f ∈ Rk2,
which are considered for states, inputs, outputs, unknown
exogenous disturbances and different actuator and sensor
faults in the system, respectively. A, B,C , D1,Q1, D2 andQ2

are matrices of appropriate dimensions. D1, Q1, D2 and Q2

are disturbance and fault distribution matrices on the states
and on the outputs of the system. The nonlinear term of the
state space model is assumed as ψ(x, u), which is locally
Lipschitz with respect to x in a region D containing the
origin, uniformly in u, i.e.,

∥
∥ψ

(

x, u∗) − ψ
(

x̂, u∗)∥∥ ≤ γ1
∥
∥x − x̂

∥
∥ (3)

where γ1 is the Lipschitz constant and u∗ is any admissible
control signal [25]. The region D may be the operational
region of the system or the interest region. The parametric
uncertainties in A and B are defined in the following form.

�A = M1FN1 (4)

�B = M2FN2 (5)

where M1, M2, N1 and N2 are constant matrices and F is a
time-varying matrix that has 2-bounded norm as ‖FTF‖ ≤
I . It is also assumed that the considered uncertainties cannot
lead to instability in the system.

The considered term ψ(x, u) is the nonlinear term which
is assumed to satisfy the Lipschitz equation as (3). In (3), the
Lipschitz constant γ1 is given as a fixed value, which is hard
to be finding in industrial applications [26]. If we integrate
the uncertainties parts into the nonlinear term of (1), we may
obtain:

ẋ(t) = Ax(t) + Bu(t) + Ψ (x, u) + D1d(t) + Q1 f (t) (6)

y(t) = Cx(t) + D2d(t) + Q2 f (t). (7)

in which

Ψ (x, u) = ψ(x, u) + �Ax(t) + �Bu(t) (8)

The new nonlinear term also satisfies the Lipschitz condi-
tion but with a new Lipschitz constant, which is called γ .
The proof is given in “Appendix” section of the paper. The
greater values of the newLipschitz constant indicate themore
robustness of the proposed observer and therefore the FD
system. If we can maximize the new Lipschitz constant in
the observer design approach, the abovementioned desired
specifications are achieved in the FD system. The simulation
results also justify the abovementioned specifications of the
proposed method. Thus, we have:

‖Ψ (x, u) − Ψ
(

x̂, u
) ‖ ≤ γ ‖x − x̂‖ (9)

The nonlinear Luenberger observer according to [3–5]
may be given as (10):

˙̂x(t) = Ax̂(t) + Bu(t) + Ψ
(

x̂(t), u(t)
) + L(y(t) − ŷ(t)).

(10)

in which

ŷ(t) = Cx̂(t) (11)

The state and output estimation errors are defined as (12) and
(13), respectively.

e(t) = x(t) − x̂(t) (12)

ey(t) = y(t) − ŷ(t) = Ce(t) + D2d(t) + Q2 f (t) (13)

Therefore, the state estimation error dynamic in the pres-
ence of disturbances and faults may be achieved as (14).

ė(t) = (A − LC)e(t) + Ψ (x, u) − Ψ
(

x̂, u
)

+ (D1 − LD2)d(t) + (Q1 − LQ2) f (t). (14)

The residual is defined as the output estimation error of
the observer in (15).

r(t) = ey(t) (15)

The effect of disturbances in the state estimation error
dynamic of the observer must be attenuated while the sensi-
tivity of the concerned faults is maintained. The disturbance
attenuation level criterion is defined as an H∞ problem as
follows:

‖r(t)‖2 ≤ μ‖d(t)‖2 (16)

which can be written as (17).

r(t)Tr(t) − μ2d(t)Td(t) ≤ 0 (17)
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The new Lipschitz constant is considered as unknown
variable which must be maximized in the observer design.

The following lemmas are used in this paper.

Lemma 1 [27] Let D, S and F as real matrices with appro-
priate dimensions, which F satisfies FTF ≤ I . Then, for any
scalar ε > 0 and vectors x, y ∈ Rn, the following inequality
can be deduced:

2xTDFSy ≤ 1

ε
xTDDTx + εyTSTSy (18)

Lemma 2 [28] Given a symmetric matrix Z ∈ Sm (m × m)
and two matrices U and V of column dimension m. There
exists matrix X that is unstructured and satisfies (19)

UTXV + V TXTU + Z < 0 (19)

if and only if the inequalities (20) and (21) with respect to X
are satisfied.

NT
U ZNU < 0 (20)

NT
V ZNV < 0 (21)

in which NU and NV are arbitrary matrices and their
columns are a basis for null spaces of U and V , respectively.

This lemma is called the projection lemma, which leads
to less conservatism in the observer design.

3 Main results

In this section, the proposed FD system is presented which
will attenuate the disturbances level while maintaining the
fault sensitivity and is robust against parametric and non-
linear uncertainties as well. The proposed approach is
given as an LMI optimization problem in the following
theorem.

Theorem Given the Lipschitz nonlinear system (6)–(7) with
the unknown but lower limit-bounded Lipschitz constant
and Luenberger observer as (10), the state estimation error
dynamic is asymptotically stable with the H∞ performance
criterion as (16) for any disturbance signal ‖d(t)‖2 < ∞
and with a maximized Lipschitz constant, if for given λ > 0,
there exists the scalars values ε > 0, γ > 0 and the matri-
ces P > 0, X and N such that the following weighted LMI
optimization problem has solution

minP,X ,N ,μ,γ wε − (1 − w)γ

s.t.

⎡

⎢
⎢
⎢
⎢
⎣

Π11 γ I P Π14 Π15

∗ −I 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ Π44 Π45

∗ ∗ ∗ ∗ Π55

⎤

⎥
⎥
⎥
⎥
⎦

< 0 (22)

γ1 − γ < 0 (23)

where

Π11 = CTC + ATX + XTA − NC − CTNT (24)

Π14 = λATX − λCTNT + P − XT (25)

Π15 = CTD2 + XTD1 − ND2 (26)

Π44 = −λX − λXT (27)

Π45 = λXTD1 − λND2 (28)

Π55 = −ε I + DT
2 D2 (29)

The weighting factor 0 ≤ w ≤ 1 is chosen according to fol-
lowing cost function, which considers the ratio and difference
between the criteria

minw

(
ε

γ
+ 1

|ε − γ |
)

. (30)

The maximized Lipschitz constant lower bound is also
defined as γ1, which is the obtained Lipschitz constant of the
Lipschitz nonlinear system.

The observer gain and disturbance attenuation level of the
observer are also obtained as:

L = X−T N , μ = √
ε (31)

Proof The Lyapunov function is assumed as (32), and its
derivative may be obtained as (33) given as follows.

V (t) = e(t)TPe(t) (32)

V̇ (t) = ė(t)TPe(t) + e(t)TPė(t) (33)

Using the state estimation error dynamic in (14), we have:

V̇ (t) = e(t)T(A − LC)TPe(t) + e(t)TP(A − LC)e(t)

+ 2e(t)TP
(

Ψ − Ψ̂
)

+ 2e(t)TP(D1 − LD2)d(t)

+ 2e(t)TP(Q1 − LQ2) f (t) (34)

For convenience, it is assumed that Ψ̂ = Ψ
(

x̂, u
)

.
In fault-free case, the disturbance attenuation-level cri-

terion must be satisfied by assumption that the Lipschitz
constant is an unknown variable, which must be maximized.

Therefore, the Lyapunov derivative function may be
obtained as:

V̇ (t) = e(t)T
(

AT
cl P + PAcl

)

e(t)

+ 2e(t)TP1
(

Ψ − Ψ̂
)

+ 2e(t)TPDcld(t) (35)

in which

Acl = A − LC (36)
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Dcl = D1 − LD2 (37)

By using Lemma 1 and the given results in [29], it can be
concluded that:

2eTP
(

Ψ − Ψ̂
)

≤ e(t)TPPe(t) + γ 2e(t)Te(t) (38)

By substituting (38) in (35), one may obtain that:

V̇ (t) ≤ e(t)T(AT
cl P + PAcl

+ γ 2 I + PP)e(t) + 2e(t)TPDcld(t) (39)

According to [30], it can be concluded that:

r(t)Tr(t) − μ2d(t)Td(t) + V̇ ≤ 0 (40)

By calculating r(t)Tr(t) as (41), (40) can be written as
(42).

r(t)Tr(t) = e(t)TCTCe(t) + 2e(t)TCTD2d(t)

+ d(t)TDT
2 D2d(t) (41)

e(t)T
(

AT
cl P + PAcl + γ 2 I + PP + CTC

)

e(t)

+ 2e(t)T(PDcl + CTD2)d(t)

+ d(t)T
(

DT
2 D2 − μ2 I

)

d(t) ≤ 0 (42)

By writing (42) in matrix inequality form, one can obtain
(43).

[

AT
cl P + PAcl + PP + γ 2 I PDcl

∗ 0

]

+
[

CTC CTD2

∗ DT
2 D2 − μ2 I

]

< 0 (43)

Equation (44) may be achieved by some simplifications in
(43).

[

I AT
cl

0 DT
cl

] [

γ 2 I + PP P
P 0

] [

I 0
Acl Dcl

]

+
[

0 CT

I DT
2

] [−μ2 I 0
0 I

] [

0 I
C D2

]

< 0 (44)

By assuming (44) as NT
U ZNU , it can be written as:

[

I AT
cl 0

0 DT
cl I

]
⎡

⎣

γ 2 I + PP + CTC P CTD2

∗ 0 0
∗ ∗ −μ2 I + DT

2 D2

⎤

⎦

·
⎡

⎣

I 0
Acl Dcl

0 I

⎤

⎦ < 0 (45)

Thus, Z is obtained as (46).

Z =
⎡

⎣

γ 2 I + PP + CTC P CTD2

∗ 0 0
∗ ∗ −μ2 I + DT

2 D2

⎤

⎦ (46)

U is obtained as follows given that NU columns are basis
for its null space.

U = [Acl − I Dcl ]

The other variables NV and V are assumed as follows accord-
ing to [30]:

NV =
⎡

⎣

λI 0
0 0
0 I

⎤

⎦ V = [0 λI 0]

According to the projection lemma, (19) may be given as
(47) considering the abovementioned obtained variables.

⎡

⎣

AT
cl−I

DT
cl

⎤

⎦ X [0 λI 0] +
⎡

⎣

0
λI
0

⎤

⎦ XT[Acl − I Dcl ]

+
⎡

⎣

γ 2 I + PP + CTC P CTD2

∗ 0 0
∗ ∗ −μ2 I + DT

2 D2

⎤

⎦ < 0

(47)

By simplifying (47) and substituting (36) and (37), a nonlin-
ear matrix inequality is obtained as (48).

⎡

⎣

	 P − XT + λATX − λCTNT CTD2 + XTD1 − ND2

∗ −λX − λXT λXTD1 − λND2

∗ ∗ −ε I + DT
2 D2

⎤

⎦ < 0

(48)

where

N = XTL (49)
ε = γ 2 (50)
	 = γ 2 I + PP + CTC + ATX + XTA

− NC − CTNT (51)

Finally, by applying the Schur complement, (22) may be
achieved, and the proof is completed. �	

The residual evaluation function is assumed in the form
of (52).

JL(t) =
√

∫ t0+LW

t0
r(t)Tr(t)dt (52)
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Fig. 1 Lipschitz constant and disturbance attenuation level of the optimization problem versus weighting factor

in which t0 is the initial sample and LW is the window length
of the residual. The threshold for fault declaration on the
residual evaluation function is given as (53).

Jth = sup
d(t),u(t)∈l2, f (t)=0

JL(t) (53)

4 Simulation results

In this section, a single-link manipulator with revolute joints
actuated by a DC motor is considered to show the effective-
ness of the proposed method. The considered case study is a
common example in the Lipschitz nonlinear systems study,
which is noticed in several papers such as [15,31–34].

The state space representation of the system is given by
[15]:

q̇m = ωm (54)

ω̇m = k

Jm
(ql − qm) − B

Jm
ωm + kτ

Jm
u (55)

q̇l = ωl (56)

ω̇l = − k

Jl
(ql − qm) − mgh

Jl
sin ql (57)

where ωl is the angular velocity of the link,ωm is the angular
velocity of the motor, ql is the angular position of the link,
qm is the angular position of the motor, k is torsional spring
constant, B is the viscous friction, kτ is the amplifier gain, g
is the gravity constant and h is the distance from rotor to the
center of the gravity to the link. The inertia of the motor and
link are given as Jm and Jl , respectively. u is the input of the
system, which is the torque of the motor.

The matrices of the Lipschitz nonlinear system are con-
sidered as follows [34]:

A =

⎡

⎢
⎢
⎣

0 1 0 0
− 48.6 − 1.25 48.6 0

0 0 0 1
19.5 0 − 19.5 0

⎤

⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎣

0
21.6
0
0

⎤

⎥
⎥
⎦

C =
[

1 0 0 0
0 1 0 0

]

, ψ =

⎡

⎢
⎢
⎣

0
0
0

− 3.33 sin x3

⎤

⎥
⎥
⎦

in which x = [qm ωm ql ωl ].
Different sensor and actuator faults can be detected by the

proposedmethod. In this paper, an actuator fault is considered
to show the efficiency of the proposed method. The vector f
and distribution matrices may be modified to consider sensor
faults aswell. The fault and disturbancematrices are assumed
as follows as in [15].

D1 =

⎡

⎢
⎢
⎣

− 0.2 0.01 − 0.02
− 0.1 0.02 − 0.04
0.1 − 0.02 0.04
0.2 0.02 − 0.04

⎤

⎥
⎥
⎦

, Q1 =

⎡

⎢
⎢
⎣

0
21.6
0
0

⎤

⎥
⎥
⎦

The distribution matrices of fault and disturbance on the out-
put are assumed as zero.

The obtained results by the given theorem for theLipschitz
constant and the disturbance attenuation level of the observer
against weighting factor for λ = 0.2 are given as Fig. 1.

The optimal trade-off curve between the Lipschitz con-
stant and disturbance attenuation level is depicted as Fig. 2.

Regarding the defined cost function of the theorem, the
optimal value of the weighting factor is obtained as w =
0.89, which leads to the following results:

123



Electrical Engineering (2018) 100:1997–2009 2003

3.2 3.4 3.6 3.8 4 4.2 4.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

γ *: Lipschitz Constant

μ  
*:

 D
is

tu
rb

an
ce

 A
tte

nu
at

io
n 

Le
ve

l

Fig. 2 Optimal trade-off curve

μ = 0.2324, γ = 3.9471

The gain of the observer is also achieved as:

L =

⎡

⎢
⎢
⎣

13.2085 − 6.0834
− 61.7967 43.9014
− 5.9194 38.1352
18.9590 6.1787

⎤

⎥
⎥
⎦

The obtained Lipschitz constant is 3.9471 by the pro-
posed method, which is improved by a factor of 1.18. In
other words, the proposed FD system is robust against any
parametric uncertainties and nonlinearity that satisfies the
obtained maximized Lipschitz constant.

The single-link manipulator system is simulated in Mat-
lab/Simulink platform in normal and faulty situations taking

Table 1 Threshold on the residual evaluation function

Residual 1 Residual 2

Threshold 0.5190 0.2407

into account the abovementioned results. According to [15],
the disturbances on the system are assumed as follows, which
have large values.

d(t) = [d1(t) d2(t) d3(t)]
T

= [5 sin 10t 2 sin 10t sin 20t] (58)

Simulation results are given for u = 2 sin π t with the
initial state as x(0) = [0.01 − 5 0.01 5]T [15].

The residuals (output estimation errors) of the observer in
normal case and in the presence of disturbances are given in
Fig. 3.

As can be seen from the figures, the residuals have small
values regarding the large values of the disturbances in the
system.

The residual evaluation function in (52) is calculated by
trapezoidal rule for a moving fixed length window of the
residuals as LW = 10 and the initial sample as t0 = 50,
which leads to the following threshold as Table 1 using (53).

In faulty case simulation, an actuator fault is injected in
the system as a step signal with unit amplitude at t = 4s.
In other words, an abrupt actuator fault is considered in the
system. The residuals are depicted in Fig. 4.
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Fig. 3 Output estimation error of the observer in normal case and in the presence of disturbances
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Fig. 4 Residuals of the FD system in abrupt actuator fault
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Fig. 5 Residual evaluation function of the FD system in abrupt actuator fault

It is obvious from the figure that the fault can be discrim-
inated efficiently from the disturbances in the considered
residuals of the FD system. In model-based fault detec-
tion methods, the decision of whether a fault is occurred is
made based upon the residual evaluation function, which is
compared with a fixed or adaptive threshold. The obtained
residual evaluation functions in comparison to the defined
fixed thresholds are given as Fig. 5.

Table 2 Threshold on the residual evaluation function in the case with-
out Lipschitz maximization

Residual 1 Residual 2

Threshold 0.0063 0.0145

As can be seen from the figure, the residuals are exceeded
from their thresholds and the fault occurrence is declared.
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In order to compare the results between the proposed
method and the method without the Lipschitz constant max-
imization, an observer is designed based on disturbance
attenuation level minimization. The gain of the observer,
which is called Lc is achieved as:

Lc = 1e3

⎡

⎢
⎢
⎣

2.4361 1.1047
1.1804 0.8242

− 1.2739 − 0.3585
− 2.3115 − 0.7341

⎤

⎥
⎥
⎦

The disturbance attenuation level is also obtained as
2.83e−5.
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Fig. 6 Residual evaluation function of the proposed method in normal case
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Fig. 7 Residual evaluation function of the method without Lipschitz maximization in normal case
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Fig. 8 Residual evaluation function of the proposed method in normal case
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Fig. 9 Residual evaluation function of the method without Lipschitz maximization in normal case

It should be noted that the observer is defined with no
constraint on the observer gain, which leads to large values
for the gains of the observer. The larger values of the observer
may lead to better performance of the observer, although
its implementation may have some limitations. In fact, to
show the great performance of the proposed method, an ideal
situation is considered to compare the results.

Same as the proposed method, the thresholds on the resid-
ual evaluation function for the method without the Lipschitz
constant maximization may be obtained as Table 2.

As it is clear fromTable 2, the thresholds have smaller val-
ues in comparison with the proposed method (Table 1), since
the effects of disturbances are attenuated more efficiently in
this method.
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Fig. 10 Residual evaluation function of the proposed method in normal case
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Fig. 11 Residual evaluation function of the method without Lipschitz maximization in normal case

Robustness analysis of the proposed method in com-
parison with the method without Lipschitz constant max-
imization is studied with considering uncertainties in the
parameters of the system and the Lipschitz constant as well.
Three scenarios including parametric uncertainties in A and
B and uncertainty in the Lipschitz constant are considered
for robustness analysis of the proposed method.

In the first scenario, the parametric uncertainties are
assumed as 5% increase in A as �A in the normal case,
which leads to the following residual evaluation functions
for the proposed method and the method without Lipschitz
maximization as Figs. 6 and 7, respectively.

It can be concluded from the figures that the proposed
method maintains its performance in the presence of para-
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metric uncertainty, while in the method without Lipschitz
maximization, the uncertainty is declared as a fault occur-
rence. In other words, the parametric uncertainties may lead
to false alarm in themethodwithout Lipschitz maximization.

In the second scenario, the parametric uncertainty is con-
sidered as 5% increase in B as �B. The residuals evaluation
functions are given in Figs. 8 and 9.

As can be observed from the figures, the second residual
of the proposed method is exceeded in a limit time from the
threshold, while there are several false alarms for the method
without Lipschitz constant maximization.

In the third scenario, a nonlinear uncertainty as 5%
increase in nominal value of the Lipschitz constant is consid-
ered in the system,which leads to a newvalue of theLipschitz
constant as 3.4965. The simulation results are shown in
Figs. 10 and 11.

As can be observed from the figures, the proposed method
has great performance in this case as well. The performance
of the method without Lipschitz constant maximization has
great sensitivity against nonlinear uncertainty, which is pre-
sented as the uncertainty in the Lipschitz constant.

In overall, a fault detection method is proposed in which
the disturbance attenuation level is minimized in trade-off
with the Lipschitz constant maximization. The conservatism
of the observer is reduced using the new defined nonlinear
Lipschitz termandusing theprojection lemmaby introducing
some new variables in the observer design, which is defined
as an LMI optimization problem. This optimal disturbance
attenuation level leads to greater thresholds on the residuals
as Table 1, while maintaining the fault sensitivity of the FD
system, which is shown in Figs. 4 and 5. On the other hand,
the proposedmethod by the Lipschitz constant maximization
is made robust against parametric uncertainties in A and B
matrices and against nonlinear uncertainties as well, which
are shown in Figs. 6, 8 and 10, respectively. The fault sensi-
tivity of the proposed method maintain at a noticeable value
in comparison with the method without Lipchitz constant
maximization.

5 Conclusion

A new robust fault detection approach based on the observer
method has been proposed in this study. The proposed
method has shown great performance in disturbance attenua-
tion level, fault sensitivity and robustness against parametric
and nonlinear uncertainties. The observer has been designed
by considering the optimal values of the Lipschitz constant
and disturbance attenuation level, which has been defined as
a weighted LMI optimization problem. The conservatism of
the proposed FD system has been reduced by using the pro-
jection lemma. The parametric and nonlinear uncertainties
have been included in the nonlinear Lipschitz term of the

system with unknown but fixed lower bounded value of the
Lipschitz constant. This approach has resolved the problem
of finding the exact value of the Lipschitz constant in indus-
trial applications, which leads to robustness of the FD system
as well. The simulation results for a single-link manipulator
with revolute joints actuated by a DC motor have shown the
effectiveness of the proposed method in fault detection of the
Lipschitz nonlinear system.

In order to develop the proposed method, the problem of
robust fault detection for Lipschitz nonlinear systems by opti-
mal maximized Lipschitz constant, disturbance attenuation
level and other FD criteria such as fault sensitivity using H−
index and false alarm rate (FAR) may be considered in the
future works.

Appendix

In this section, it is shown that the summation of the uncertain
parts and the nonlinear Lipschitz term as below is also a Lip-
schitz function with respect to x for any admissible control
signal.

Ψ (x, u) = ψ(x, u) + �Ax(t) + �Bu(t) (59)

Proof The defined uncertainty parts in the state equation usu-
ally are defined as follows in the literature [29,35]:

�A = M1FN1 (60)

�B = M2FN2 (61)

In which M and N are constant matrices. The F matrix is
also has the bounded 2-norm as follows:

‖F‖2 ≤ I , t ∈ [0,∞) (62)

By writting the Lipschitz inequality for (57), we have:

‖Ψ (x, u) − Ψ
(

x̂, u
) ‖ = ‖ψ(x, u) + �Ax(t) + �Bu(t)

−ψ
(

x̂, u
) − �Ax̂(t) − �Bu(t)‖ (63)

which may be given as follows for limited uncertainty in
�Bu(t)

‖Ψ (x, u) − Ψ
(

x̂, u
) ‖ = ‖ψ(x, u) + �Ax(t)

−ψ
(

x̂, u
) − �Ax̂(t)‖

≤ ‖ψ(x, u) − ψ
(

x̂, u
) ‖ + ‖M1FN1x(t)

− M1FN1 x̂(t)‖
≤ γ1‖x − x̂‖ + ‖M1FN1(x − x̂)‖
≤ γ1‖x − x̂‖ + ‖M1‖‖F‖‖N1‖‖(x − x̂)‖
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≤ γ1‖x − x̂‖ + ‖M1‖‖N1‖‖
(

x − x̂
) ‖

= (γ1 + ‖M1‖‖N1‖) ‖ (

x − x̂
) ‖ (64)

which indicate the new term is Lipschitz with respect to x
and the proof is completed. �	

The nonlinear function is considered Lipschitz with
respect to x . Thus, the effect of uncertainty in B is removed in
the new Lipschitz constant. The Lipschitz constant is region-
based, and the results are locally (not globally) valid in the
region for which the initial conditions and the control input u
keep the states within that region. Such control u is called an
admissible u. In another approach, the inputs of the system
may be given as a function of states for feedback control,
which may further define the new Lipschitz constant.
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