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Abstract Ensuring the transient stability of the power sys-
tem networks is one of the prime challenges in the highly
interconnected power systems. Though the low-frequency
oscillations are not very harmful initially, failure to damp-
ing out may lead the system to go out of synchronism. The
employment of flexible AC transmission systems (FACTS)
devices may suppress these oscillations effectively in addi-
tion to the enhancement of power transfer capability. Among
many FACTS devices, unified power flow controller (UPFC)
is one of the most sophisticated ones. Tuning the parameters
of power system stabilizer (PSS) coordinated with UPFC for
a stable system is a multi-objective optimization problem.
This paper aims to optimize the parameters of power sys-
tem stabilizer (PSS) of power network incorporating UPFC
using support vector regression (SVR) in real time to damp
out the small signal oscillations hence to enhance the tran-
sient stability. System eigenvalues obtained from SVR tuned
UPFC coordinated PSS and the fixed gain conventional PSS
are compared to investigate the efficacy of the proposed tech-
nique for different loading conditions. Besides, time domain
simulation comparison proves the superiority of the proposed
technique over the conventional one. Furthermore, the statis-
tical performance measures for training and testing datasets
provide confidence on the developed SVR model.
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List of symbols

δ Rotor angle
ω Rotor speed
ωb Synchronous speed
xd , x ′

d Synchronous and sub-transient armature
reactances

xq Quadrature axis synchronous reactance
vd , vq d–q axes generator terminal voltages
id, iq d–q axes generator armature current
vt Generator terminal voltage
Vdc DC-link capacitor voltage
Cdc Capacitance (capacitive reactance) of DC-

link capacitor
iE , iB Current in the shunt (exciting) and series

(booster) transformer
mE , δE Modulation index and angle of shunt (exci-

tation) converter
mB, δB Modulation index and angle of series

(boosting) converter
xE , xB Reactanceof excitation andboosting trans-

former
xt E Reactance of the transformer on the gen-

erator side
XBV Reactance in the bus side
Pm, Pe Input and output power of generator
M Inertia constant
H, D Inertia constant and damping coefficient of

generator
KA, TA Gain and time constant of exciter and reg-

ulator
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E f d Generator field voltage
E ′
q Internal voltage of generator

Vref Reference bus voltage
Vb Infinite Bus voltage
UPSS Control signal of PSS
σ Eigenvalue’s real part
ζ Damping ratio of mth eigenvalue
T1, T2, T3, T4 Time constants
K Controller gain

1 Introduction

Nowadays most of the power system networks are operating
almost at their stability limit as the expansion of the systems
required to fulfill the increasing demands are not met for
most of the cases due to the constraint of limited resources
and environmental factors. The power systems which are
interconnected through weak tie lines give rise to poorly
damped low-frequency oscillations those ranges from 0.1 to
3Hz [1]. If adequate damping is not provided immediately
after their commencement these low-frequency oscillations
keep increasing, eventually causing the system to reach out of
synchronism. To solve this problem, the control of generator
excitation employing automatic voltage regulator (AVR) is
one of the solutions to damp out these low-frequency oscil-
lations. But it has the drawback of creating low-frequency
oscillations by decreasing rotor damping torque [2]. Con-
sequently, power system stabilizers (PSS) are being used
extensively in order to enhance power systemstability against
low-frequency oscillations [3] but it may fail to suppress the
severe disturbances like three phase fault and may affect the
voltage profile as well [4].

On the contrary, the application of flexible alternating
current (AC) transmission systems (FACTS) has become
prevalent with the advancement of power electronics. The
capability of very fast power electronic-based control action
has made the FACTS devices a strong candidate for improve-
ment in power system damping in addition to improving
power transfer capability [3,5–7]. FACTS devices enhance
the system stability by controlling the dynamic states of
system parameters which include voltage, current, series
and shunt impedance, phase angle, and damping of low-
frequency oscillations [8]. Applications of FACTS devices
have been reported for various control objectives including
optimal powerflow (OPF) [9], voltage stability [10], damping
inter-area low-frequency oscillations [11]. Prominent series
structured controllers include thyristor controlled series
compensator (TCSC), static synchronous series compen-
sator (SSSC), the thyristor controlled series reactor (TCSR)
etc. Among the shunt controllers static VAR compensator
(SVC), static synchronous compensators (STATCOM) and
the thyristor controlled reactor (TCR) are widely used. The

unified power flow controller (UPFC) is the combined unit
which takes advantages of independent series and shunt con-
trollers [12].

UPFC is the most popular and promising second-gener-
ation FACTS device and capable of improving transient
stability, providing voltage support, reducing power loss,
controlling the power transfer among transmission lines
and improving damping of low-frequency oscillations [13].
Using a power flow controller, supplementary damping con-
troller and a DC voltage regulator, UPFC does its works.
In order to guarantee system stability during disturbances, it
is required to maintain proper coordination between UPFC
and PSS. A great number of researches have been reported
for the coordination among PSS and FACTS devices [14–
16]. Different artificial intelligence (AI) techniques were
being employed in power system industries in order to solve
many complex problems as well as optimizing the parame-
ters of PSScoordinatedwithFACTSemploying backtracking
search algorithm (BSA) [16], genetic algorithm(GA) [17],
differential evolution (DE) [18], ant colony optimization
(ACO) [19], particle swarm optimization (PSO) [20] to
improve the power system stability by damping out the small
signal oscillations. However, most of these techniques work
in the offline mode as these required a very long time to get
the optimized parameters for different operating conditions.
To estimate the parameters of PSS coordinated with FACTS
devices different machine learning techniques, for instance,
artificial neural networks, support vector regressions can be
employed effectively.

Support vector machines (SVM) can efficiently and effec-
tively solve the multidimensional, nonlinear and complex
function estimation problems. Vapnik [21] was the first to
introduce it. SVM’s are now widely used for both classifica-
tion and regression problems and the machines dedicated to
regression problems are renamed as support vector regres-
sion (SVR). Power system industry is also employing these
machine to solve many complex problems including sta-
bility forecasting and prediction [22], fault location [23],
assessment of voltage instability [24]. Although artificial
neural network can be used for solving the multidimen-
sional optimization problem, sometimes it suffers from rule
obscureness and local convergence [25].

As mentioned earlier, the PSS parameters coordinated
with UPFC need be optimized in real-time fashion as the
loading conditions of electric networks change continually.
The trained SVR model can optimize PSS settings within
very short period of time (within two cycles of power sys-
tem) for any loading condition. The faster computational
speed and higher accuracymake the proposed SVR approach
suitable for online parameter estimation of PSS coordinated
with UPFC. Therefore, this paper contributes to the develop-
ment of an SVR-based technique for the tuning of optimal
parameter setting of PSS connected with UPFC in a single
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machine infinite bus (SMIB) electric network. In this paper,
the performance of the SVR algorithm is evaluated to esti-
mate the parameters of PSS coordinated with UPFC in real
time depending on varying operating conditions to enhance
the stability of power system.

The rest of the paper is organized as follows: Sect. 2
presents the detail mathematical model of the system as well
as the PSS-UPFC-based control architecture. Optimization
problem formulation and data generation strategy have been
presented in Sect. 3. Section 4 describes details of support
vector regression technique used for problem-solving. Sim-
ulation results have been shown and discussed in Sect. 5 and
finally, the conclusion is drawn in Sect. 6.

2 Power system dynamic model

2.1 Power system model

A single machine infinite bus (SMIB) system equipped
with UPFC has been considered [14] as shown in Fig. 1
where a generator is connected to an infinite bus through
the transmission line. UPFC is connected to the power sys-
tem via excitation transformer (ET) and boosting transformer
(BT).Two voltage source converters (VSCs), namely VSC-B
andVSC-E are connected through aDC-link common capac-
itor.

This arrangement works as an ideal bi-directional AC-
to-AC power converter. VSC-B is connected in series with
the line through boosting transformer and does the work
of injecting voltage of variable magnitude. Thus, the out-
put voltage from VSC-B is seen as synchronous AC voltage
source. On the other hand, the main task of VSC-E is to sup-
ply or absorb the real power which is demanded by VSC-B
at the common dc-link in order to support the real power
exchange resulting from the series voltage injection. It can
also absorbor generate controllable reactive power, if needed,
providing the line an independent shunt reactive compensa-
tion.

Fig. 1 SMIB system equipped with UPFC [20]

There are four input control parameters of theUPFCwhich
are given bymE ,mB, δE and δB . Amplitudemodulation ratio
plays a key role in all power electronics devices which actu-
ally reflects the ratio betweenmodulation amplitude and peak
amplitude of the given signal to FACTS devices.

The nonlinear model of SMIB can be represented by the
following three differential equations (1)–(3) [26]:

δ̇ = ωb(ω − 1) (1)

ω̇ = 1

2H
[Pm − D(ω − 1) − Pe] (2)

Ė ′
q = 1

T ′
do

[
E f d − (xd − x ′

d)id − E ′
q

]
(3)

Terminal voltage (vt ) and output electrical power (Pe) can be
written in terms of the direct axis and quadrature axis voltage
and current as given below:

Pe = vd id + vq iq (4)

vt =
√(

v2d + v2q

)
(5)

vd and vq can be expressed as the following:

vd = xqiq ,

vq = Eq
′ − xd

′id ,
iq = iEq + iBq , id = iEd + iBd

Taking the d–q axis, four current quantities iEd , iEq , iBd , iBq
could be found.

2.2 Exciter and power system stabilizer (PSS)

Institute of Electrical and Electronics Engineers (IEEE) per-
mits some of the standard-type excitation systems. The one
used for the proposed system model is shown in Fig. 2.
An AVR has been used to provide excitation to the sys-
tem. The Power System Stabilizer (PSS) is the widely used

Fig. 2 Block diagram of the excitation system [16]
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lead–lag controller which contains a lead–lag block along
with a limiter. PSS also includes a washout filter to suppress
the steady-state quantity of the input signal. The output of
the PSS is a supplementary stabilizing control signal (UPSS)

which is foundwhen a change in angular speed (�ω) is given
as the input in lead–lag compensator.

This excitation system can be represented by the state
equation:

�Ė f d = KA((Vref − vt +Upss) − E f d)
1

TA
(6)

2.3 The dynamic model of the UPFC

TheUPFCmodel has been obtained after park transformation
and neglecting the resistances as well as the transients of the
Excitation and Boosting transformers [27].

v̇dc = 3mE

4Cdc
(cos δEiEd + sin δEiEq)

+ 3mB

4Cdc
(cos δBiBd + sin δBiBq) (7)

The currents of excitation and boosting transformers
(iEd , iEq , iBd , iBq) in terms of other different parameters
can be represented as follows:

iEd = xBB

xd
∑ Eq

′ − mE sin δEvdcxBd
2xd

∑

+ xdE
xd

∑

(
vb cos δ + mB sin δBvdc

2

)

iEq = mE cos δEvdcxBq
2xq

∑

− xqE
xq

∑

(
vb sin δ + mB sin δBvdc

2

)

iBd = xE
xd

∑ Eq
′ + mE sin δEvdcxdE

2xd
∑

− xdt
xd

∑

(
vb cos δ + mB sin δBvdc

2

)

iBq = −mE cos δEvdcxqE
2xq

∑

+ xqt
xq

∑

(
vb sin δ + mB cos δBvdc

2

)

where

xqt = xq + xt E + xE , xqE = xq + xt E ,

xdt = x ′
d + xt E + xE , xdE

= x ′
d + xt E , xBB = xB + xBV ,

xq
∑ = xqt .xBB + xe.xqE

= (xq + xt E + xE )(xB + xBV ) + xe(xq + xt E ),

xBq = xBB + xqE = xB + xBV + xq + xt E,

xd
∑ = xdt xBB + xE xdE

= (x ′
d + xt E + xE )(xB + xBV ) + xE (x ′

d + xt E ),

xBd = xBB + xdE = xB + xBV + x ′
d + xt E

The constant values of reactance used for the modeling
purpose are provided in appendix section.

2.4 UPFC coordinated PSS (damping controller)

The damping controller produces an electrical torque that
is in phase with speed deviation using phase compensation
technique. The damping torque is controlled by the four con-
trol parameters of UPFC such as δB,mB,mE and δE . The
lead–lag damping controllers equipped with UPFC are of
the structure as presented in Fig. 3 [28], where the output
of the UPFC is the control signal input (u). The value of
control signal(u) can be any one of the signals mE, mB or
δB.

TheDCvoltage is regulated by changing the voltage phase
angle (δE ) of the excitation transformer (ET). The mod-
ulated value of δE is obtained from the controller shown
in Fig. 4 where PI controller acts as a voltage regula-
tor.

Fig. 3 Lead–lag controller-based UPFC [28]
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Fig. 4 Lead–lag controller and DC voltage regulator with UPFC
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2.5 Linearized model

For controller design, the linearmodel of the system has been
considered. The nonlinear dynamic equations presented in
(1)–(7) can be linearized by taking a small variation of the
parameters around a given operating point and the linearized
system can be written in state-space form as [27]:

Ẋ = A�X + B�U (8)

Here, A and B are the constant matrices of the system
which is directly dependent upon the operating state of the
system. The full forms of the matrices of equations 8 are
presented in “Appendix C”.

The following state equations can be derived from the
block diagram of Fig. 4 which will be further added to state
Eq. (8) at the time of finding out the closed loop state matrix
Ac.

�ẏ1 = [K�ω̇Tw − �y1]
1

Tw

(9)

�ẏ2 = [�y1 + �ẏ1T1 − �y2]
1

T2
(10)

�ċ = [−�c + �δ̇ET3 + �y2
] 1

T4
(11)

�L̇2 = Kp�L̇1 + Ki�L1 (12)

�δ̇E = [K3�L3 − �δE ]
1

Ts
(13)

The Eigenvalues of the state matrix Ac will represent the
modes of the system after being subjected to any small distur-
bance. The negative real part will ensure the stable condition
of the system. For the case of an unstable situation with pos-
itive real part of any of the Eigenvalues, the system can be
brought into the stable state again by using the output or the
state feedback controller. In that case, the state equation will
be modified in the following form containing closed loop
state matrix Ac:

Ẋ = AcX (14)

Eventually, the dimension of the matrix Ac will be 9
by 9 which will provide nine eigenvalues and the details
about this matrix can be found in [28,29]. It is worth
mentioning that in this paper the PI controller block of
Fig. 4 is kept deactivated throughout the simulation period
and the considered state variables of equation (14) are
�δ,�ω,�E ′

q ,�E f d ,�Vdc,�C,�y1,�y2, and �δE .
However, theAc matrix generated eigenvalues can be shifted
to the negative part of the complex plane ensuring the desir-
able performance of the system through the proper selection
of UPFC coordinated PSS parameters.

3 Optimization problem formulation

In the optimization problem, two objective functions are used
which are basically based on Eigenvalues of the states. First
one focuses on improving the damping factor of the system
and the other one will ensure the satisfactory value of damp-
ing ratio. The combination of these two objective functions,
J1 and J2 will form the multi-objective function J which can
be represented as follows [30]:

J = J1 + α J2 (15)

J =
∑

σmn≥σ0

(σ0 − σmn)
2 + α

∑
ζm≥ζ0

(ζ0 − ζm)2 (16)

where m represents the Eigenvalue index of the system and
n is the index of system operating conditions. σmn is the
Eigenvalue’s real part upon which relative stability of the
system mostly depends. The damping ratio is represented
by ζ . Two objective functions are combined by a weighting
factor α and the value has been chosen 10 in this work.

The graphical representation of each of the objective func-
tions is presented in Fig. 5. Figure 5a reflects that the closed
loop Eigenvalues will be forced toward the negative half
plane and will be placed in the indicated dashed region if the
objective function J1 has been taken only. In the same way,
Fig. 5b shows that the maximum overshoot of the Eigenval-

Fig. 5 Eigenvalue locations for corresponding objective function
[30]
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ues is controlled by choosing only J2 as the objective function
and will limit it within the particular dashed region. When
the objective function J is optimized, because of the effect
of J1 and J2, the generated Eigenvalues of the system will
be confined inside the D-shaped shaded region as presented
in Fig. 5c.

This will ensure the stability of the system by meeting
the requirements of the required damping factor and ratio
for a stable system. Real parts of the Eigenvalues will be
forced to be placed in the negative half planewithin a specific
overshoot range. So, the optimization problem can be stated
as:

Minimize J

Subject to

Kmin ≤ K ≤ Kmax

Tmin
1 ≤ T1 ≤ Tmax

1

Tmin
2 ≤ T2 ≤ Tmax

2

Tmin
3 ≤ T3 ≤ Tmax

3

Tmin
4 ≤ T4 ≤ Tmax

4

To ensure the stability of the system during transients in
the power system the optimum value of the controller param-
eters must be determined aiming to optimize objective func-
tion J . In this work objective function optimization translates
into maximizing the minimum value of the damping ratio
subject to some inequality constraints. The constraints for
this optimization problem are lower and upper limit of time
constants (T1 − T4) and controller gain (K ).

Subject to the same five constraints stated above to keep
the controller gain and four-time constants of lead–lag com-
pensators within the desired range. The optimum parameters
of the controller are predicted online employing trained and
tested SVR.

4 Proposed methodology

4.1 Data generation

The loading conditions comprising of the per unit values of
three variables of synchronous machine, namely real power
(Pe), reactive power (Qe) and terminal voltage (Vt ), have
been used for data generation and the ranges of these vari-
ables are:

0.40 ≤ Pe ≤ 1.10

− 0.30 ≤ Qe ≤ 0.30

0.90 ≤ Vt ≤ 1.10

With a view to training and testing the SVR, a set of one
thousand optimal parameters (K&T1) for PSS coordinated
with UPFC were generated for different loading conditions
employing backtracking search algorithm (BSA) by setting
some constant values to T2, T3, and T4 as the parameters
T1 − T4 are related to each other. The main operators of
BSA are initialization, selection-I, mutation, crossover, and
selection-II. Though BSA shares the similar name for the
operators with genetic algorithm (GA), but the mutation
and crossover operations of BSA are completely different
from GA. Additionally, the boundary control mechanism
is different from GA or other evolutionary techniques. The
details about BSA can be found in [31–34]. Real power (Pe),
reactive power (Qe) and terminal voltage (Vt ) representing
the loading conditions were taken as the inputs (indepen-
dent variables) whereas BSA tuned optimal PSS parameters
(K&T1) coordinated with UPFC were taken as the targets
(dependent variables) to the SVR. From the prepared dataset
70% of data have been selected randomly for training and
rest of them were selected for testing the SVR model.

4.2 Support vector regression model

Themethodology of SVR follows Structural RiskMinimiza-
tion (SRM)principlewhich tries tominimize the upper bound
on the expected risk. This has been found better than empiri-
cal riskminimizationprocess, impliedby conventional neural
networks to minimize the error of the training data [35]. The
training data of support vector regression (SVR) is mapped
in a high-dimensional feature space which is also known as
Hilbert space and turns the nonlinear regression function into
a linear one by proper mapping. Because of the following of
SVR, it can perform well even with the fewer number of data
samples.

Formation of data set is the first step for trainingmodel fol-
lowed by testing phase. Let us consider {(x1, y1), . . . , (xm,

ym)} as a set of training data where each of the xi represents
m-dimensional input space of the sample and yi is the corre-
sponding outputs (target values) for i = 1, 2, . . . ,m and m
represents the size of the training data. If the fitting function
is denoted by f (x), then the SVR can reach the target y for
the corresponding testing sample x through f (x) after the
training will be done.

With these training data, SVR forms themapping function
(estimation function) like [36]:

f (x) = w · φ(x) + b (17)

Hereω is the weight vector, b represents the bias and φ(x)
is the high-dimensional space mapped from the input space
xi . In order to get the estimated value ofω and b, minimizing
the following regression risk function is required:
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Rreg( f ) = C
m∑
i=0

ψ( f (xi ) − yi ) + 1

2
‖w‖2 (18)

where ψ(.) the cost function and C is a particular constant.
Substituting the value of the weight vector

w =
m∑
i=1

(ai − a∗
i )φ(xi )

in Eq. (17) will give us the modified generic equation:

f (x) =
m∑
i=1

(ai − a∗
i )(φ(xi ) · φ(x)) + b

=
m∑
i=1

(ai − a∗
i )k(xi , x) + b (19)

The dot product of Eq. (19) can is replaced by k(xi , x)
which is known as Kernel function that helps to use the dot
product in low- dimensional space data input without know-
ing φ(x). Besides, ε-insensitive loss function must have to
be satisfied in order to ensure robustness of the regression
result as well as to ensure the sparsity of the solution. The
function is as follows [37]:

ψ( f (x) − y) =
{ | f (x) − y| − ε, for | f (x) − y| ≥ ε

0, otherwise
(20)

The problem of regression risk in Eq. 18 and ε-insensitive
loss function of Eq. 20 can be solved using quadratic opti-
mization problem and can be represented as:

1

2

m∑
i, j=1

(a∗
i − ai )(a

∗
j − a j )k(xi , x j )

−
m∑
i=1

a∗
i (yi − ε) − a(

i yi + ε)

Subject to

m∑
i=1

ai − a∗
i = 0, ai , a

∗
i ∈ [0,C]

Here, in the optimization problem formulation presented
above, ai and a∗

i are the Lagrange multipliers which repre-
sent the solution of the quadratic function. These help the
prediction to reach the targeted values yi . Nonzero values of
these Lagrange are known as support vectors and they are
actually responsible for forecasting the regression line prop-
erly. It happens only when the condition | f (x) − y| ≥ ε is
satisfied. Thus, the value of w can be obtained.

In order to get the value of constant b, well-known KKT
(Karush Kuhn Tucker) condition needs to be applied which
says that the multiplication of constraints and the Lagrange
multipliers will be zero.

ai (ε + ξi − yi + (w, xi ) + b) = 0

a∗
i (ε + ξ∗

i + yi − (w, xi ) − b) = 0

(C − ai )ξi = 0

(C − a∗
i )ξ

∗
i = 0

Here, ξi and ξ∗
i are the slack variables which are used to

calculate the errors ε outside the boundary. Bias constant b
could be found from the above equations as:

ai = a∗
i = ξ∗

i = 0

b = yi − (w, xi ) − ε f orai ∈ (0,C)

b = yi − (w, xi ) + ε f ora∗
i ∈ (0,C)

Thus the SVR will be ready to search for the target for
some provided input dataset without even knowing the trans-
formation. The penalty C, imposed for estimation error needs
to be examined so as the value of ε which will decide the spe-
cific data to be ignored while doing regression.

In this paper, the proposed SVR model optimizes two key
parameters of the PSS coordinated with UPFC, namely gain
(K ) and time constant (T1).It isworthmentioning that the key
issue in designing PSS coordinated with UPFC is to ensure
appropriate phase lead which can be achieved by keeping
T2, T3, and T4 as constants and optimizing K and T1. The
complete flow diagram of the work procedure is shown in
“Appendix D”.

5 Simulation results and discussions

5.1 Performance of support vector regression

In this paper, three variables of synchronousmachine, namely
real power (Pe), reactive power (Qe) and terminal voltage
(Vt ) were taken as the inputs and corresponding optimized
PSS parameters (K&T1) with UPFC were taken as out-
puts. The number of training and testing data, as well as
the required constant parameters for SVR, are presented in
Table 1 which has been used in this work.

With a view to examining the performance of the pro-
posed SVR in estimating PSS parameters with UPFC, mean
squared error (MSE), root mean squared error (RMSE),
mean absolute percentage error (MAPE) and the coefficient
of determination (R2) were determined for each parame-
ter. Mathematical formulas used for the error measures are
presented in “Appendix A”. The smaller values of MSE,
RMSE andMAPE refer the strength of the proposedmethod.
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Table 1 Parameter used for SVR model

C 500

λ 8.938 × 10−3

∈ 5.000 × 10−6

Kernel option 300

Kernel type Gaussian

Training data 934

Testing data 234

Inputs Real power (Pe), reactive power (Qe)

and terminal voltage (Vt )

Outputs PSS parameters (K&T1)

Table 2 Recorded statistical measures of SVR model

Parameter RMSE MAPE R2

K For training 2.4327 0.064716 0.99121

For testing 2.2344 0.064134 0.99250

T1 For training 0.0058134 0.0042699 0.99997

For testing 0.0059786 0.0043896 0.99996

Additionally, the value ‘1’ for R2 indicates a perfect match
between actual and predicted values whereas the value ‘0’
indicates no match at all. The statistical measures for the
proposed technique are tabulated in Table 2, where smaller
values of MSE, RMSE, and MAPE give confidence over
developed technique. Furthermore, the table also shows the
values of R2 are very close to 1.00 for all the parameters
which indicate a very good match of between the BSA opti-
mized generated data and SVR estimated values.

5.2 Required time to estimate UPFC coordinated PSS
parameters

The simulation was carried out in MATLAB environment
and in an Intel Xeon (3.06 GHz -2 Processors, 24 GB RAM)
workstation computer. As the SVR takes different times for
training and testing purposes for each run, the average train-
ing and testing times for one hundred runs were 58.0938
and 0.0169s, respectively. Furthermore, the average time
required for calculation of initial values and determination
of optimal parameters for one hundred loading conditions
were also recorded and times were 0.0025 and 0.0021s,
respectively. So the overall time required for SVR to esti-
mate optimized values of UPFC is 0.0046s which is less
than 2 cycles of a 60 Hz electric system. As the proposed
technique can stabilize a disturbed network in less than two
cycles of time, the technique can be implemented in the real-
time application.

Table 3 Comparison of Eigenvalues for nominal loading

(Pe = 0.98 pu, Qe = 0.16 pu and Vt = 1.00 pu)

Fixed gain PSS with UPFC SVR optimized PSS with UPFC

−994.470 −981.117

−110.704 −126.412

−86.4973 −80.4168

−6.69483 −1.09448

−0.2055099 −0.19785

−0.4187228 ± j4.609576 −4.463426 ± j3.875731

−0.6764214 ± j0.3198909 −1.298876 ± j0.6286555

Table 4 Comparison of Eigenvalues for light loading

Pe = 0.60 pu, Qe = 0.01 pu and Vt = 0.98 pu

Fixed gain PSS with UPFC SVR optimized PSS with UPFC

−993.511 −977.669

−110.031 −127.012

−87.5622 −83.4700

−6.59300 −1.16172

−0.39972 −0.391011

−0.6145031 ± j3.968494 −4.114752 ± j2.871297

−0.7181086 ± j0.2952085 −1.414695 ± j0.2599829

Table 5 Comparison of Eigenvalues for heavy loading

Pe = 1.30 pu, Qe = 0.40 pu and Vt = 1.06 pu
Fixed gain PSS with UPFC SVR optimized PSS with UPFC

−991.096 −969.179

−112.996 −135.357

−87.0478 −82.6872

−7.26873 −2.59196

−0.14723 −0.1434418

−0.4268946 ± j4.800489 −4.346762 ± j2.995125

−0.6766701 ± j0.2739384 −1.055703 ± j0.1860413

5.3 Eigenvalues and minimum damping ratio
comparison

The SMIB with UPFC was simulated for three loading con-
ditions, namely nominal, light and heavy loading conditions.
System stability can be determined through analysis of eigen-
values. Eigenvalues for three different loading conditions,
namely nominal, light and heavy loading conditions for both
SVR optimized PSS with UPFC and fixed gain conventional
PSS with UPFC are tabulated in Tables 3, 4 and 5. The tables
show all the eigenvalues have negative real part means the
systems are stable but the fixed gain PSS with UPFC needs
more time to settle the disturbance down than the optimized
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Table 6 Damping ratio comparison for different loading conditions

Loading conditions Minimum Damping ratio

Pe(pu) Qe(pu) Vt(pu) Fixed gain PSS
with UPFC

BSA optimized
PSS with UPFC

SVR optimized
PSS with UPFC

Nominal 0.98 −0.16 1.00 0.0905 0.7428 0.7551

Light 0.60 0.01 0.98 0.1530 0.8197 0.8201

Heavy 1.30 0.40 1.06 0.0886 0.8322 0.8234

one as its complex eigenvalues are relatively close to the
imaginary (jω) axis.

Obtained minimum damping ratios for fixed gain conven-
tional PSS with UPFC, SVR optimized PSS with UPFC and
BSA optimized PSS with UPFC (offline) are tabulated in
Table 6 for different loading conditions. It is clear from the
table that optimized parameters have better values than con-
ventional fixed gain one which signals that better damping
will be achieved with optimized PSS with UPFC. However,
as BSA-based optimization is carried out is offline, it cannot
be applied in real-time application.

Both minimum damping ratios and eigenvalues compar-
isons clearly signal the better performance of SVR optimized
PSS with UPFC over conventional fixed gain one in settling
down the small frequency oscillations after being subjected
to any disturbances in real-time operation of power system
network.

5.4 Time domain simulation results with disturbance

The performance of SVR optimized PSS with UPFC for
damping small frequency oscillations in case of disturbance
has been compared with conventional one having fixed
gain. To simulate the disturbance a 10% pulse input of
mechanical torque has been applied at 1.0 s for 4 cycles and
corresponding system responses have been observed. Both
conventional and SVR optimized PSS with UPFC stabilize
the power system network after being subjected to mechan-
ical disturbance. However, SVR optimized PSS with UPFC
exhibits faster response compared to the conventional one
as shown in Figs. 6, 7 and 8 for nominal loading condi-
tion.

Figures 6, 7 and 8 reflect the transient behavior of three
of the system states �δ, �ω, and �Vdc, respectively. When
the PSS parameters are selected randomly for fixed gain PSS
with UPFC, the response of the states take very long time
to reach the stable state. In each of the three figures below,
it is reflected that the system couldn’t reach the stable stage
even within the 10s time span provided in the simulation.
Whereas oscillations in �ω states become stable in around
2.7 s (Fig. 7) and �δ in 4 s (Fig. 6) when the control param-
eters are optimized with proposed SVR optimization.�Vdc
requires a bit higher time than others but still makes the sys-
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Fig. 6 Response of �δ for SVR tuned and fixed gain power system
stabilizer coordinated with UPFC
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10-4 Angular Speed Comparison
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Fig. 7 Response of �ω for SVR tuned and fixed gain power system
stabilizer coordinated with UPFC

tem oscillation-free within around 5s (Fig. 8). It signifies the
effect of using SVR algorithm in the field of power system
stability.
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Fig. 8 Response of �Vdc for SVR tuned and fixed gain power system
stabilizer coordinated with UPFC

6 Conclusions

Investigating the real-time performance of UPFC coor-
dinated PSS connected power system subjected to low-
frequency oscillations is the main objective of this paper.
Support vector regression model estimates the parameters of
PSS coordinated with UPFC in real-time fashion. The per-
formance of proposed technique is tested for three different
loading conditions. In addition, the obtained results are com-
pared with the fixed gain PSS coordinated with UPFC. From
the eigenvalue analysis and time domain representation of
system parameters, it is seen that proposed controller outper-
forms the conventional one in all respect. Furthermore, it is
found that the time required for the SVR model to tune the
controller parameters is less than two cycles of a 60Hz power
system. Thus, in terms of computational speed and accu-
racy, the proposedmodel presents its efficiency as a real-time
optimizer and ensures robustness in power system stability
enhancement. Besides, satisfactory values of the statistical
performance measures for training and testing datasets pro-
vide confidence on the proposed SVR model. However, the
idea presented in this paper can be further extended for tuning
the PSS parameters of a multimachine power system net-
work.

Appendix A

System parameters used are given below:
Generator and transmission line:
M = 8MJ/MVA, D = 0, xd = 1.0pu, xq = 0.6pu, T′

d0 =
5.044s, x′

d = 0.3pu, ωb = 377rad/s and XL = 0.1pu
Machine excitation system: KA = 100, TA = 0.01s

Transformer: XT = 0.1pu, XE = 0.1pu, and XB = 0.1pu
DC-link:
vDC = 2pu and CDC = 1.2pu
parameters (Fixed gain):
UPFC: δE = 68.113deg, δB = 41.12deg, mB = 0.96, mE =
0.7667
PSS: K = 15.71, T1 = 0.3 s, T2 = 0.3 s, T3 = 0.39 s, T4 =
0.6623 s
PSS parameters: 1 ≤ K ≤ 50, 0.01 ≤ T1 ≤ 1.0

Eigenvalue : λ = σ + jω (A.1)

DampingRatio : ζ = − σ√
σ 2 + ω2

(A.2)

Appendix B

The performance of the proposed technique was tested
with different well-known error measures including mean
squared error (MSE), rootmean squared error (RMSE),mean
absolute percentage error (MAPE) and the coefficient of
determination (R2).

For total n data samples, actual values ya and predicted
values yp, mathematical formulas for the error measures are
presented below:

MSE =
n∑

i=1

((ya)i−(yp)i )
2 (A.3)

RMSE =
√∑n

i=1 ((ya)i−(yp)i )2

n
(A.4)

MAPE = 1

n

n∑
i=1

∣∣∣∣
(ya)i − (yp)i

(ya)i

∣∣∣∣ × 100 (A.5)

R2 = 1 −
n∑

i=1

((ya)i − (yp)i )2

((ya)i − ȳa)2
(A.6)

where ȳa is the mean of actual value.

Appendix C

The state vector �X = [�δ,�ω,�E ′
q ,�E f d ,�Vdc]T

Control vector �U = [�Upss,�mE ,�δE ,�mB,�δB]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ωb 0 0 0

− K1
M − D

M − K2
M 0 − Kpd

M

− K4
T ′

d0
0 − K3

T ′
d0

1
T ′

d0
− Kqd

T ′
d0

− KAK5
TA

0 − KAK6
TA

− 1
TA

− KAKvd
TA

K7 0 K8 0 −K9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 − Kpe
M − Kpde

M − Kpb
M − Kpdb

M

0 − Kqe
T ′

d0
− Kqde

T ′
d0

Kqb
T ′

d0
− Kqdb

T ′
d0

KA
TA

− KAKve
TA

− KAKvde
TA

− KAKvb
TA

− KAKvdb
TA

0 Kce Kcde Kcb Kcdb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Appendix D

Stability enhancement method:

The remote terminal unit (RTU) at synchronous generator
end measures the real power, reactive power, and terminal
voltage continually and based on these values the proposed
method estimates the initial conditions and then the PSS
parameters with UPFC are optimized through SVR. The fol-
lowing flowchart illustrates the whole online optimization
process (Fig. 9).

Continuous measurement of 
three variables (Pe, Qe & Vt)

Determination of initial values

Trained and tested SVR to updated 
UPFC coordinated PSS parameters

Is the power
 system stable?

Stable system

Yes

No

Fig. 9 Flowchart of proposed SVR-based approach
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