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Abstract The random and uncoordinated charging of plug-
in electric vehicles (PEVs) at the home applications has
negative effects on the technical operation indexes such as
power loss and voltage stability of smart distribution sys-
tems. Hence, this paper provides an optimized approach
which coordinates PEVs charging to reduce power losses and
improve voltage profile of feeders in both cases grid to vehi-
cle and vehicle to grid in real-time domain. In the proposed
approach, there is a load smart management center (LSMC),
which the coordination of EVs is its main duty. Moreover,
this algorithm manages PEV based on time priorities due to
the on-peak and off-peak periods of distribution system. The
proposed algorithm uses maximum sensitivity selection for
the optimized management of the vehicle charging in order
to minimize power losses andminimize variations of average
voltage of feeders. In order to show the performance of the
proposed algorithm and LSMC, the actual distribution net-
work (voltage levels of 20 and 0.4 kV) has been simulated
that belongs to a city of southwest Iran with residential and
commercial loads (for exact simulation of network). Total
power losses and voltage profile have been calculated to show
capability of proposed method.
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1 Introduction

Due to advances in PEVs technology, they act as an effi-
cient alternative instead of fossil fuel vehicles that they have
numerous problems such as limited resources and fossil fuel
prices [1]; hence, there is certain look to the salient presence
of PEVs at the home as a place for connection to distribution
network for injection and getting power [1]. It is estimated
that the number of PEVs would increase in the North Amer-
ican significantly by 2017–2018; thus, there is considerable
increasing in charging load [2,3]. The utilization of PEVs
is serious challenge at the demand side in the distribution
network [4,5]; the amount of power of PEVs is different
due to their battery’s state of charge (SOC) and capacity
[4–6]. Generally, this power amount is close to power con-
sumption of homes [6], so it causes feeder overloading and
distortion of voltage profile during the time of getting power
(G2V). Furthermore, it can reduce losses and improve volt-
age profile during the time of injection power (V2G) [7,8].
Recently, a number of algorithms have been considered to
distribute the PEV-charging load to off-peak periods [9].
However, such algorithms have been designed based on a
centralizedmethod such as [4,10–14]. Some researches dealt
with the problem in real-time and in decentralized method
such as [15,16] and [9], because expectation performance is
not always obtained. Also the coordination of PEVs charg-
ing (G2V) has been investigated in [4]. The main goals of
the proposed literatures are: reducing cost of electricity for
consumers and minimizing system operating costs without
maintaining distribution network in suitable real-time con-
ditions. In some articles such as [13], just charging of EVs
(G2V) has been coordinated under certain conditions and
coordination of PEV in distribution system has not been con-
sidered in G2V and V2G conditions concurrently. Hence,
this paper presents a framework based on a LSMC for PEVs
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charging management (G2V and V2G) in distribution smart
grid with real constraints. The MSS has been used as main
criteria for optimization of reducing losses and improvement
feeder voltage profile real-time domain [4,17]. By utilizing
this method with weight factors for power losses of network
elements and improvement in feeder voltage profile, the opti-
mization problem for coordination of bidirectional charging
of PEV is investigated and it leads to reduce system operat-
ing costs and the cost of electricity for consumers as indirect.
This paper includes six parts. The network constraints, pro-
posed algorithm, MSS optimization and scenarios of PEVs
presence have been introduced in the second part; the third
part is about test network and method of network and its ele-
ments simulation. In the fourth part, the results of simulation
of network have been investigated and compared. The fifth
part is about conclusion, and all of paper references have
been arranged in sixth part.

2 Coordinated EVs charging and proposed
algorithm

This part is relevant to the network constraints, objective
function, proposed algorithm, MSS optimization and sce-
narios of EVs presence.

2.1 Proposed algorithm constraints and objective
function

Due to meet the mentioned purpose (reducing power losses
and improvement in voltage profile), the algorithm has two
constraints that they should be included. First is the voltage
range in every feeder, and the second is the active power
consumption of the network. These constraints have been
considered to maintain the distribution network in a proper
operation condition. The first condition is about voltage lim-
itation in every feeder. Thus, proposed algorithm reduces the
network power losses by controlling of power consumption
(with management the arrival and departure of EVs (G2V) to
the grid). It is clear as well that the presence of PEVs (V2G)
usually can reduce the power losses, especially in peak time
of the grid [7,8]. In the Eqs. (1)–(5), the network power con-
sumption and power losses have been presented after and
before connection of EVs to network in different conditions.
In the formulas (6)–(8), the objective functions have been
shown and the Eqs. (10)–(11) belong to the power consump-
tion and voltage constraints. In the following equations, the
indexes [(1)–(2)] are states before and after connection of
EVs to grid at every time step.

P totaldemand(1)
�t = PB-load

�t + P loss(1)
�t (1)

P loss(1)
�t = PB-loss

�t = P line-loss(1)
�t + P trans-loss(1)

�t (2)

If NEV-G2V ≥ NEV-V2G

P totaldemand(2)
�t = PB-load

�t + PEV-load
�t

+P loss(2)
�t PEV-load

�t � 0 (3)

P loss(2)
�t = PB-loss

�t + PEV-loss
�t

= P line-loss(2)
�t + P trans-loss(2)

�t (4)

If NEV-G2V ≺ NEV-V2G

P totaldemand(2)
�t = PB-load

�t + PEV-load
�t + P loss(2)

�t

PEV-load
�t ≺ 0 (5)
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Subject to:

�Vi ≤ �Vmax i = 1, , , , n (10)

P totaldemand(2)
�t = PB-load

�t + PEV-load
�t + P loss(2)

�t

P totaldemand(2)
�t ≤ D�t,max (11)

where

n and i are the total number of feeders and the feeder
number.
P totaldemand(1)

�t is power consumption at time step within
24 h,
PB-load

�t is power consumption about base load,
PEV-load

�t is power consumption about EVs load,
P loss

�t , PB-loss
�t , PEV-loss

�t , P line-loss
�t , P trans-loss

�t are set to total
network losses and base load losses and PEVs load losses
and lines losses and transformers losses that all of them
at time step within 24 h,
NEV-G2V and NEV-V2G are number of EVs including
(G2V) and number of PEVs including (V2G),
D�t,max is network maximum demand
Vspec and �Vmax(maximum deviations of voltage) are 1
and 0.05p.u.
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Fig. 1 General overview of
PEV and its connection with
network and load smart
management center (LSMC)

2.2 Overview of LSMC and proposed algorithm

In Fig. 1, the general overview of EV (G2V, V2G) and its
connection with distribution network and load smart man-
agement center (LSMC) have been shown. In fact, LSMC is
a place, which has two-way connection with all of network
elements such as loads, PEVs. LSMC can monitor loads and
PEVs in real time by utilizing receiving information from
measurement instruments andEVs charger through grid [18].
Therefore, the proposed algorithm makes decision based on
real-time information that each PEV charger when it con-
nects to the network and it starts to get or inject power (G2V,
V2G), and LSMC send essential commands to PEVs Charg-
ers. Also it is assumed; there is an intelligent communication
infrastructure for transmission signals between LSMC and
home chargers and other elements.

In Fig. 2, the proposed algorithm has been illustrated. In
this method, the time step of 15 min has been preferred for
each calculation period and it is considered as a real-time
optimization for this application. The main idea for PEVs
(G2V) charging is to shift charging time from on-peak time
to off-peak time or when the constraints are not violated.

In this approach, the situation of residential and commer-
cial base loads and number of PEVs (G2V, V2G) (that they
want to connect to network in this time step) are consid-
ered. Then, it computes load flow (by this assumption that
all of EVs and loads have connected to network) in every
15 min. After that, the proposed algorithm checks the con-
straints. If the power consumption constraint is violated, the
algorithm shall plug out (postpone charging time until next
time step) a number of PEVs (G2V) in order to reduce power
consumption; however, the algorithm computes and selects
number of PEVs (G2V) as a list for plugging out until next
time step. This selection must be optimal as those PEVs shall

be plugged out that they have most effect on increasing of
network losses and voltage profile distortion. This optimal
selection has direct effect on decreasing of network power
consumption in (3–5) and costs of customers especially in
peak times. Finally, algorithm can let the more number of
PEVs (G2V) that they connect to network (plug in) for get-
ting power. Also if the voltage constraint is violated by PEVs
(G2V or V2G) in every feeder, PEVs (belong to that feeder)
are plugged out (postpone charging or discharging until next
time step) as one by one until the voltage constraint is not vio-
lated again. Therefore, the constraints are checked again; if
the constraints are not violated again, in the final stage of this
time step, the rest number of PEVs (G2V or V2G) is deter-
mined for connection to network, and the permanent program
of loads andPEVs is finalized for this time step.After that, the
algorithmwill go to next time step. The approximate number
of PEVs (G2V) (for plugging out) is calculated in formulas
(12), (13). The variations of power consumption depend on
the variations of the EVs number and their contribution to
power losses in every time step. The number of PEVs can be
computed with utilizing these formulas:

P total
�t − Dmax

�t = Pex (12)

Nex-1 = Pex
2.079(kW)

Nex-2 = Nex-1 × F (13)

where, Pex is power difference between the network maxi-
mum demand and network power consumption and Nex-1 is
the number of PEVs that they must be plugged out and it is
multiplied by rate F . F is experimental factor from 0.9 to
0.95 according to network power losses that they have been
caused by charging of PEVs. This method has this advan-
tage that it increases the speed of the algorithm operation
with sharp reducing number of power flow computation in
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Fig. 2 Proposed algorithm for
coordination EVs (G2V, V2G)
charging in each time step

each time step (real time) in comparison with [4], especially
when large numbers of PEVs are ready to plug in.

2.3 Operation of MSS optimization in proposed
algorithm

In this paper, the MSS includes power losses sensitivity to
variations of PEVs power and average voltage sensitivity to
variations of PEVs power for every feeder that it has PEVs.
The coordination problem of PEVs in the presence of linear
and nonlinear loads and considering two operational cases,
G2V and V2G, is an optimization problem with discrete
variables (e.g., discrete values of PEV power). The MSS
method enables PEVs to start charging as soon as possible
considering priority-charging time zones while complying
with network operation criteria (such as power losses and
voltage profile).

The presence of PEVs in each feeder has a direct effect on
voltage profile of them. So adding the term of average voltage
sensitivity to earliest term (losses sensitive) has direct effect
on PEVs presence priority in network. After computation

MSS for all feeders [those feeders that they have candidate
PEVs (G2V)] in every time step (with utilization Jacobin
entries [4]), the PEVs are sorted in a vector as descending
(PEVs have presence priority according to this vector). The
vector is sorted such that PEVs (G2V) have more effect on
increasing power losses and distortion of voltage profile; they
have more priority for plugging out. The maximum sensitiv-
ity analysis is computed with utilization of partial derives as
follow:

MSSi =
(

α1 ∗ ∂Ploss
∂Pi

)
+

(
α2 ∗ �|Vave|

�Pi

)

=
(

α1 ∗ ∂Ploss
∂Pi

)

+
(

α2 ∗ 1

n
∗

(
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�Pi
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�Pi
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α1 + α2 = 1, α1 = α2 = 0.5

(14)
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Table 1 EVs charging
scenarios

Scenarios Charging time (scheme)

First (A) Uncoordinated random (G2V) charging over (17:00h–24:00h)

(B) Coordinated random (G2V) charging over (17:00h–24:00h)

(C) Coordinated random (G2V) and (V2G) charging over (17:00h–24:00h)

Second (A) Uncoordinated random (G2V) charging over (17:00h–7:00h)

(B) Coordinated random (G2V) charging over (17:00h–7:00h)

(C) Coordinated random (G2V) and (V2G) charging over (17:00h–7:00h)

Third (A) Uncoordinated random (G2V) charging over (24:00h–7:00h)

(B) Coordinated random (G2V) charging over (24:00h–7:00h)

(C) Coordinated random (G2V) and (V2G) charging over (24:00h–7:00h)

where Ploss network losses and P is power consumption of
PEVs in every feeder. Where MSSi s sensitivity of PEV at
feeder i. The factor α1 and α2 are weight factors which are
used for importance of phrases sensitivity.

2.4 Charging scenarios for EVs

The charging scenarios are proposed to investigate the effect
of PEVs presence in various time priorities with various
presence percent on network parameters such as power con-
sumption, power losses and voltage profile. Time priorities
have been defined upon on-peak and off-peak periods of net-
work loads. Usually the homelike customers come to their
home from work about 17:00h every evening and they leave
home next day about 7:00h [4,19]. So time of PEVs arrival
is at 17:00h and the time of PEVs departure is at 7:00h. The
first time priority is 17:00h to 24:00h, and this priority is
synchronous with peak period of network, so this priority
has highest fee for getting power (G2V) and injection power
(V2G) to network, because these services have been provided
in peak period of network. In Table 1, the charging scenarios
have been illustrated. The second time priority is 24:00h to
7:00h, and this priority is synchronous with off-peak period
of loads, so this priority has lowest fee for getting power
(G2V) and injection power (V2G) to network, because these
services have been provided in off-peak period of network
and it is possible that LSMC does not need these services
in time intervals. The 3 scenarios have been defined based
on time priorities of EVs charging (G2V, V2G). In the first
scenario, PEVs connect to network (plug in) in the first pri-
ority between 17:00h to 24:00h and that is synchronous with
peak period of loads. In the second scenario, PEVs connect
to network (plug in) in the first and second priorities between
17:00h to 7:00h that this scenario is very near to real state
of network. In the third scenario, PEVs connect to network
(plug in) in the second priority between 24:00h to 7:00h and
this scenario is synchronous with off-peak period of loads.

3 Distribution network and characteristics OF EVs

In this part, the smart test network and its topology have been
introduced in the first section and the type of EVs and their
parameters have been introduced in the second section. The
third section is about simulation of 400(V) Network.

3.1 The distribution grid

The Ilam distribution system (63–20 kV) [20] is used for
implementation of the proposed algorithm. This network
consists of balanced loads of residential and commercial
applications, and it is included with 12 residential feeders
(20kV–400V) and 6 commercial feeders. The proposed algo-
rithm has been programmed and simulated with DPL and
Digsilent software [21]. The transformers join 20 kVnetwork
to 400V network. Moreover, the network has several other
residential and commercial loads (RGL1, RGL2, CGL1 and
CGL2). The PEVs (G2V, V2G) connect to 400V network
in 12 residential feeders. In Fig. 3, the topology of network
has been presented. This network connects to super distribu-
tion network (63kV) through super distribution station (super
distribution transformer (63–20kV) in grid feeder in Fig. 3).
The homelike chargers connect to lowest voltage level of net-
work or 400V network that is shown in Fig. 1. Figures 4 and
5 show loading pattern of residential and commercial loads
during 24 h as percentage.

3.2 EVs power and charger locations in network

In this paper, the homelike chargers use power outlets (10
(A) and 230(V) with power factor 0.9); also a model of Mit-
subishi electric vehicles (i-MiEV) has been selected with 16
kwh (battery capacity) for simulation in network [22].The
state of charge (SOC) of this vehicle ascends to 85% battery
capacity in about 7 h with utilization homelike chargers. The
initial SOC of EV(G2V) is about 5%, and it reaches to 90%
which this percent of charging is acceptable amount (gets
85% energy of battery from network) and The initial SOC of

123



1090 Electr Eng (2018) 100:1085–1096

Fig. 3 Smart distribution
network includes 20kV and
400V networks and residential
and commercial loads with
distribution transformers
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Fig. 4 Daily residential load curve

EV (V2G) is about 90%, and it reaches to 5%, (injects 85%
energy of battery to network). The rate of charging in every
charger is always constant. In the Table 2, the network con-
straints have been shown. The reference [4] suggested that
the networkmaximum demand (D�t,max) is 5 or 10% greater
than the maximum power consumption of the network with-
out PEVs [due to transformer capacity (63–20 kV)]. In this
paper, arrival time, number and presence location of PEVs
in the distribution network in two priorities are random and
follow from a uniform statistical distribution and an PEV is
allocated for every homelike customer, so the number of all
PEVs is 771 that this number is according to the number of
homelike customer. However, in each time step, the situa-
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Fig. 5 Daily commercial load curve

tion of network depends on the number of PEVs and loading
of commercial and residential base loads. In fact determin-
ing of the network maximum demand is a challenge, which
maximumpower is got fromnetwork,without causing partic-
ular problems for network and other side, it is necessary that
acceptable number of PEVs(G2V) will be charged in every
time step. LSMC is committed toward offering services to
customers.

3.3 Simulation of 400(V) networks

The homelike chargers connect to lowest voltage level of
network or 400V networks. The configuration of this part of

123



Electr Eng (2018) 100:1085–1096 1091

Table 2 Network constraints in
different scenarios

Scenario D�t,max(MW)

17:00–24:00
D�t,max(MW)

24:00–7:00
D�t,max(MW)

7:00–17:00
Voltage
limitation (pu)

First 5.7 5.2 5.2 0.95 < |V | < 1.05

Second 5.5 2.9 5.2 0.95 < |V | < 1.05

Third 5.2 2.9 5.2 0.95 < |V | < 1.05

Fig. 6 Over view 400V network from transformer (20kV–400V)

distribution network in each feeder (20 kV/400V) is different
according to geographical situation of any feeder.

So for simulation all of 400V networks, the one of the
feeders has been choose as standard, it can be generalized to
other feeders and can be aggregation residential loads at the
end of the 400V feeder. In Fig. 6 is visible the standard form
of the 400V network. Now considering two priorities in this
paper, the 400V network has two parts: the first part is for
presence of PEVs at the first priority and the second part is
for presence of PEVs at the second priority. Every part has
same residential loads that are aggregated at the end of the
400V network, and also distribution lines are aggregated as
series or parallel in each side finally, they are equal to a line
which this line is located between the loads at the end of the
power network and a transformer (20 kV/400V).

4 EVs (G2V, V2G) presence results before and
after utilization proposed algorithm

In this part, the results of network analysis were shown as
follow. In the first section, PEVs (G2V) connect to network
as random according to 3 scenarios (state A-Table 1). After
that, the proposed algorithm coordinates the scheme of PEVs
charging (state B-Table 1). Finally in the second section,
PEVs (G2V, V2G) connect to network and charging scheme
is managed by proposed algorithm (state C-Table 1).

4.1 The presence of PEVs (G2V) according to 3
scenarios in network

The more of homelike customers have tendency when they
arrive home, their PEVs connect to the charger (plug in). So

Table 3 Average amounts of power consumption (MW) during time
of PEVs arrival in 3 scenarios in different penetration

G2V (%) First Second Third

Uncoor* Coor** Uncoor Coor Uncoor Coor

100 6.11925 5.5116 3.9771 3.93461 3.57633 2.8833

79 5.51457 5.37529 3.82547 3.7582 3.13251 2.87782

63 5.36479 5.24052 3.67567 3.66385 2.9682 2.83978

47 5.11124 5.07026 3.55488 3.54826 2.68905 2.66011

*Uncoor uncoordinated, **Coor coordinated

homelike customers determine scheme of PEVs charging,
finally Irregularities occur in network, which it can cause
significant damage to the distribution network [4,5,18]. In
Fig. 7a, the power consumption have been presented (state
A of the first scenario) that with increasing number of PEVs
in each penetration, the graphs of power consumption go up,
next the proposed algorithm coordinate scheme of charging
according to constraints of Table 2.

Figure 7b shows power consumption (state B of the first
scenario). The green line in Fig. 7b ismaximumdemand level
(5.7MW), and the power consumption of different penetra-
tions must be less or equal to the maximum demand level
so the algorithm plugs out a number of PEVs and shift their
charging time to next time steps in order to reduce power
consumption of some penetrations in some hours. In two
columns of the first scenario in Table 3, the average amounts
of the power consumption are shown during the time interval
of the first scenario (17:00–24:00) before and after utilization
proposed algorithm.

The situation of the two columns of the second scenario is
similar to the first scenario (Table 3), only with the difference
that the average amounts of the second scenario are during the
time interval (17:00–7:00) (the first and second scenarios).
Also the situation of the third scenario is similar to the second
scenario only with the difference that the average amounts of
the third scenario are during the time interval (24:00–7:00)
(second scenario). According to results, the amount of power
consumption in Fig. 7b (state b) during off-peak period has
been increased in comparison with Fig. 7a (state A); it is
clear that the algorithm helps the network for peak shaving
in peak period as real time. The power consumption in the
second and the third scenarios is less than the first scenario
in the first priority, because just a number of PEVs connect
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1117 19 21 23 1 3 5 7 9 13 15
1

2

3

4

5

6

7

Time  of  day

M
W

TOTAL    ACTIVE   POWER   CONSUMPTION

100%  PEV
79%    PEV
63%    PEV
47%    PEV
32%    PEV
16%    PEV
NO      PEV

17 19 21 23 1 3 5 7 9 11 13 15
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
TOTAL  ACTIVE  POWER  CONSUMPTION 

Time of day

M
W

100%   PEV
79%     PEV
63%     PEV
47%     PEV
32%     PEV
16%     PEV
NO       PEV
Maximum demand level

(a)

(b)

Fig. 7 First (a, b) scenario-A: impact of uncoordinated and coordi-
nated PEVs charging on power consumption in different penetration.
a Active power consumption (state A)—first scenario, b active power
consumption (state B)—first scenario

to network in the first priority and other PEVs connect to net-
work in the second priority (second scenario) and in the third
scenario all PEVs connect to network in the second priority,
while in the first scenario, all PEVs connect to network in
the first priority. In the 3 scenarios, especially in the PEVs
penetration as 47% and above, the network parameters have
been improved as optimal. Figure 8a, b shows line losses
before and after utilization of algorithm in the first scenario.
The variations pattern of Fig. 8a, b (lines losses) are simi-
lar to Fig. 7a, b everywhere Fig. 7a, b have increasing and
decreasing power, Fig. 8a, b have increasing and decreas-
ing losses. In fact with reducing power consumption in peak
period and increasing power consumption in off-peak period,
the lines losses are decreased in peak period and increased in
off-peak period. So with utilization of algorithm, the losses
are decreased, especially in peak period and high penetra-
tion. Tables 4 and 5 show the average amounts of line losses
and transformers losses in three scenarios. The variations
pattern of transformers losses are similar to Fig. 8a, b (line
losses).With increasing power consumption and lines losses,
the transformers losses are increased.

Figure 9a, b shows voltage deviation atworst feeder before
and after utilization of proposed algorithm in the first sce-
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Fig. 8 First (a, b) scenario-A: impact of uncoordinated and coordi-
nated PEVs charging on line losses in different penetration. a Line
active losses (state A)—first scenario, b line active losses (state B)—
first scenario

Table 4 Average amounts of line losses (kW) during time of arrival of
PEVs in 3 scenarios in different penetration

G2V (%) First Second Third

Uncoor* Coor** Uncoor Coor Uncoor Coor

100 279.748 221.077 117.92 112.111 127.241 71.9822

79 212.193 196.291 106.486 101.179 86.1293 67.9213

63 194.44 180.64 91.4941 90.7416 71.7023 63.3615

47 165.232 160.83 84.7002 83.6182 52.3895 50.5698

*Uncoor uncoordinated, **Coor coordinated

nario. Theworst feeder is not always constant, and sometimes
this feeder is changed and this matter depends on random
presence of PEVs and base loads of system and other param-
eters. The variations pattern of Fig. 9a, b (voltage deviation)
is inverse the variations pattern of Fig. 7a, b (power con-
sumption). In Fig. 9b after utilization proposed algorithm,
the voltage deviation has been improved especially in peak
period. Table 6 shows the average amounts of voltage devi-
ation in three scenarios. This parameter is improved in the
first and second scenarios more than in the third scenario,
which this matter is a capability of this approach that has
most effect on all parameters in peak time.
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Table 5 Average amounts of transformers losses (MW) during time of
arrival of PEVs in 3 scenarios in different penetration

G2V (%) First Second Third

Uncoor* Coor** Uncoor Coor Uncoor Coor

100 0.06754 0.05096 0.03428 0.03318 0.0395 0.02777

79 0.05004 0.0468 0.03184 0.03047 0.0311 0.02726

63 0.04632 0.0434 0.02887 0.02873 0.02809 0.02647

47 0.0403 0.03943 0.02741 0.02722 0.02425 0.0239

* Uncoor uncoordinated, ** Coor coordinated
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Fig. 9 First (a, b) scenario-A: impact of uncoordinated and coordi-
nated PEVs charging on voltage deviation of worst node in different
penetration. a Voltage deviation (state A)—first scenario, b voltage
deviation (state B)—first scenario

Table 6 Average amounts of voltage deviation (pu) during time of
arrival of PEVs in 3 scenarios in different penetration

G2V (%) First Second Third

Uncoor* Coor** Uncoor Coor Uncoor Coor

100 0.96562 0.96999 0.97875 0.97905 0.97945 0.98434

79 0.96999 0.97099 0.9798 0.98028 0.9826 0.98439

63 0.97107 0.97195 0.98087 0.98095 0.98376 0.98466

47 0.9728 0.97317 0.98171 0.98175 0.98571 0.98591

*Uncoor uncoordinated, **Coor coordinated
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Fig. 10 First scenario-C: impact of coordinated PEVs (G2V, V2G)
charging on power consumption in different penetration. a Power con-
sumption (V2G=16%), b power consumption (V2G=32%)

4.2 The presence of PEVs includes (G2V, V2G)

In this section, there is PEV (V2G) for injection power to
network in addition to PEV (G2V) for getting power from
network. Figure 10 show network powers consumption (state
C of the first scenario). In different cases, the penetration of
PEVs (V2G) is increased and the penetration of PEVs (G2V)
is decreased; for example in Fig. 10 in part (a), the penetration
of (V2G) is constant and is equal to 16%, and the penetration
of (G2V) varies from 79 to 16% and in part (b) the penetra-
tion of (V2G) is increased and is equal to 32%. In every case
with increasing of PEVs (V2G) penetration, the amount of
power consumption is decreased. It is clear that with increas-
ing number of PEVs (V2G), the proposed algorithmplugs out
less number of PEVs (G2V) for maintaining network in suit-
able conditions in comparison with when the PEVs (V2G)
do not connect to network (injection power); however, this
matter depends on number of PEVs (V2G). In Fig. 10, by
adding to number of PEVs (V2G) as case to case (16–32%),
the amount of power consumption and line losses are reduced
in comparison with Fig. 7b (power consumption of state B
in the first scenario). Table 7 shows the average amounts of
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Table 7 Average amounts of active power consumption (MW) during
24 h in three scenarios—state C

V2G (%) G2V (%) First Second Third

16 0 3.46989 3.47222 3.47443

16 16 3.54852 3.5477 3.5485

16 32 3.62955 3.62798 3.625054

16 47 3.7074 3.70358 3.700249

16 63 3.7945 3.7829 3.77985

16 79 3.8728 3.8649 3.8608

32 0 3.39098 3.39328 3.39714

32 16 3.46586 3.467 3.4689

32 32 3.54985 3.55375 3.548406

32 47 3.6253 3.62283 3.621385

32 63 3.7353 3.7015 3.69862

47 0 3.31769 3.33724 3.32718

47 16 3.39149 3.3932 3.3993

47 32 3.47298 3.47338 3.476661

47 47 3.5483 3.54778 3.547076

63 0 3.24161 3.24387 3.25374

63 16 3.31442 3.3166 3.3251

63 32 3.39499 3.39527 3.400305

79 0 3.16611 3.16626 3.18011

79 16 3.23836 3.2384 3.2484

powers consumption in three scenarios. The results of the
first column of Table 7 indicate that increasing number of
PEVs (V2G) and decreasing number of PEVs (G2V) cause
to decrease power consumption. The PEVs (V2G) supply
power for all loads [base loads and PEVs (G2V)]. Next with
increasing more number of PEVs (V2G), the power of these
PEVs (V2G) is injected to 20 kV network and these PEVs
(V2G) supply power for other feeders, and this matter causes
to decrease power consumption (entrance of 63 kV network).
The results of the second and third columns (the second and
third scenario) of Table 7 indicate that increasing number of
PEVs (V2G) and decreasing number of PEVs (G2V) cause
to decrease power consumption that this matter is similar
to the first scenario. It is obvious the state C of the second
scenario is not desirable states because a number of PEVs
(V2G) connects to network after 24:00h in off-peak period
and this scenario has less effect on reducing losses and power
consumption in comparison with the first scenario in peak
period. But in the first scenario all PEVs (V2G) connect to
network before 24:00h and these PEVs have most effect on
reducing losses and power consumption in peak period. The
second scenario is more near than other scenarios to real state
in network. Table 8 shows the average amount of line losses
during 24 h in three scenarios—state C. The results of losses
in the first and second scenarios are similar to the results of
power consumption in the first and second scenarios which

Table 8 Average amounts of line losses (kW) during 24 h in three
scenarios—state C

V2G (%) G2V (%) First Second Third

16 0 66.196 67.0956 68.9943

16 16 70.853 70.8155 70.848

16 32 76.3458 75.4634 73.56301

16 47 83.0548 80.256 76.922

16 63 90.258 84.251 81.4999

16 79 97.102 90.75 87.006

32 0 62.561 63.4787 67.704

32 16 66.258 66.7032 68.856

32 32 70.8751 70.7922 70.84706

32 47 76.774 75.165 73.42838

32 63 83.101 78.705 77.1195

47 0 59.692 60.6344 67.5858

47 16 62.468 63.4454 67.959

47 32 66.2601 67.0283 69.3029

47 47 70.8841 70.82 70.74278

63 0 58.054 59.2623 68.163

63 16 59.99 61.7121 69.269

63 32 62.975 65.0307 68.40242

79 0 57.221 56.4136 67.8209

79 16 58.744 58.361 67.233

with increasing number of PEVs (V2G), the line losses and
power consumption are decreased. But the variations pattern
of losses has difference with the variations pattern of power
consumption in the third scenario, in some cases when the
number of PEVs (V2G) are much more than the number of
PEVs (G2V), with decreasing power consumption, the line
losses are increased. In other cases, the results of losses are
similar to last scenarios. Table 9 shows the average amount
of voltage at worst feeder of the network during 24 h in three
scenarios—stateC. The results of tables indicate that increas-
ing number of PEVs (V2G) and decreasing number of PEVs
(G2V) in every case of scenarios cause to improve average
amount of voltage in worst feeder and in final all feeders
during 24 h. With connection of PEVs (V2G) to network in
off-peak time, in some cases that number of PEVs (G2V) is
very low or absent, it is possible that in some nodes, the volt-
age deviation is more than limitations, so the algorithm plugs
out a number of PEVs (V2G) for maintaining voltage devi-
ation in admissible range. In this network, due to network
conditions, this case did not occur. But this is one of the
abilities of LSMC and proposed algorithm, and this ability is
visible in Fig. 2. The presence of PEVs (V2G, G2V) has pos-
itive effects on parameters of network, especially in the first
and second scenarios such that in every step with increasing
16% to number of PEVs(V2G), this matter helps to decrease
power consumption and losses (lines and transformers) and
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Table 9 Average amounts of voltage at worst node (pu) during 24 h in
three scenarios—state C

V2G (%) G2V(%) First Second Third

16 0 0.98297 0.98295 0.98293

16 16 0.9824 0.98243 0.9824

16 32 0.9818 0.98188 0.981907

16 47 0.9813 0.9813 0.981387

16 63 0.9806 0.9808 0.98083

16 79 0.9801 0.9802 0.9802

32 0 0.98351 0.9835 0.98346

32 16 0.983 0.98299 0.9829

32 32 0.9824 0.98237 0.982431

32 47 0.9818 0.9819 0.98193

32 63 0.9813 0.9813 0.98139

47 0 0.98401 0.98388 0.98393

47 16 0.9835 0.98349 0.9834

47 32 0.9829 0.98294 0.98292

47 47 0.98243 0.9824 0.982441

63 0 0.98453 0.98452 0.98442

63 16 0.984 0.98401 0.9839

63 32 0.9834 0.98348 0.983437

79 0 0.98503 0.98505 0.98491

79 16 0.9845 0.98455 0.9844

improve voltage profile. But in the third scenario, the situ-
ations of parameters such as power consumption and losses
are different. The reason of this matter is that with reducing
base loads in the second priority and increasing the num-
ber of PEVs (V2G), the PEVs (V2G) inject power to 20 kV
network and they change direction of power transmission
in 400V network. The V2G operation of PEVs supplies the
base loads power and PEVs (G2V) (that they belong to their
nodes) in addition to inject power to 20 kV network. Finally,
it causes increase in power losses in comparison with last
states. Generally, it is visible that concurrent management of
PEVs (G2V, V2G) (by this method) has considerable effect
on improvement in all network indexes and finally on reduc-
ing operation cost of customers and grids.

5 Conclusion

In this paper, the coordination of bidirectional charging for
plug-in electric vehicles in smart distribution systems has
been introduced. The proposed algorithm uses maximum
sensitivity selection (MSS) for the optimized management
of the vehicle charging in order to minimize the power losses
and minimize variations of the average voltage of feed-
ers. The simulation results indicate acceptable and suitable
performance of proposed coordination algorithm of PEVs

charging and other loads in every scenario thatwas presented.
It was clear that when the penetrations of PEVs are high, the
performance of algorithm is more reasonable and more con-
siderable. However, the existence of these scenarios help to
program a suitable charging schedule for PEVs and also they
provide many choices for customers that they decide about
charging schedule for their PEVs. The speed and perfor-
mance of maximum sensitivity selection (MSS) method are
suitable and acceptable for real-time domain. With utiliza-
tion the proposed algorithm, the power losses (distribution
lines and transformers) and the variations of voltage profile
of feeders decrease especially in the first and third scenarios
compared to the second scenario.
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