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Abstract An efficient meta-heuristic algorithm-based multi-
objective optimization (MOO) technique for solving the
multi-objective optimal power flow (MO-OPF) problem
using incremental power flow model based on sensitivities
and some heuristics is proposed in this paper. This paper
is aimed to overcome the drawback of traditional MOO
approach, i.e., the computational burden. By using the pro-
posed efficient approach, the number of power flows to be
performed is reduced substantially, resulting the solution
speed up. In this paper, the generation cost minimization and
transmission loss minimization are considered as the objec-
tive functions. The effectiveness of the proposed approach
is examined on IEEE 30 and 300 bus test systems. All
the simulation studies indicate that the proposed efficient
MOO approach is approximately 10 times faster than the
evolutionary-based MOO algorithms. In this paper, some of
the case studies are also performed considering the practi-
cal voltage-dependent load modeling. The simulation results
obtained using the proposed efficient approach are also com-
pared with the evolutionary-based Non-dominated Sorting
Genetic Algorithm-2 (NSGA-II) and the classical weighted
summation approach.
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1 Introduction

The role of optimal power flow (OPF) is more significant
in modern power system operation and control. Engineers
continue to find new uses for OPF programs. Thus, OPF
may become more popular and easy to use as conventional
power flows. The OPF problem can be solved for minimum
generation cost which satisfies the power balance equations
and system operating constraints. Normally, the classical
optimization methods uses sensitivity analysis and gradient-
based techniques. But, the OPF is a highly nonlinear, discrete
and multi-modal optimization problem. Therefore, these con-
ventional techniques are not suitable for solving this problem.
The real-world problems naturally involve multiple and con-
flicting objectives to be optimized simultaneously. Defining
multiple objectives often gives better idea of the problem.
Majority of the classical multi-objective optimization
(MOO) algorithms convert the true multi-objective prob-
lem into a single-objective optimization problem by using
some user defined functions. The challenges of multi-
objective optimal power flow (MO-OPF) are generation of
best solutions, generation of uniformly distributed Pareto
set, maximizing the diversity of the developed Pareto set,
computational efficiency, etc. In this paper, an attempt has
been made to improve the computational efficiency of MO-
OPE. Several MOO approaches have been developed in
the literature. For example, classical weighted summation
approach [1], penalty function approach [2], non-dominated
sorting genetic algorithm (NSGA)-based approach [3], e-
constrained approach [4], etc. The main challenge in a
multi-objective environment is to minimize the distance of
the generated solutions to the Pareto set and maximize diver-
sity of the developed Pareto set. A good Pareto set may be
obtained by appropriate guiding of search process through
careful design of reproduction operators and fitness assign-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00202-017-0518-2&domain=pdf

402

Electr Eng (2018) 100:401-413

ment strategies. To obtain diversification in the Pareto set,
special care has to be taken in the selection process.

Reference [5] proposes a multi-objective differential evo-
lution (DE)-based technique to solve the OPF problem
considering different objective functions and operational
constraints with a clustering algorithm to manage the size
of the Pareto set. The performance of population-based
algorithms, i.e., particle swarm optimization (PSO), evo-
lutionary programming (EP) and genetic algorithm (GA)
for solving the MO-OPF problem, is proposed in [6]. A
multi-objective Modified Imperialist Competitive algorithm
for solving the MO-OPF problem considering the genera-
tion cost, voltage deviation, emission and transmission losses
impacts are proposed in [7]. Reference [8] proposes a multi-
objective-based DE algorithm based on forced initialization
to solve the OPF problem which is formulated as a nonlin-
ear MOO problem. An adaptive group search optimization
algorithm for solving the OPF problem considering the accu-
rate multi-objective model is proposed in [9]. In Reference
[10], a non-dominated sorting multi-objective opposition-
based gravitational search algorithm has been proposed to
solve different single and MO-OPF problems. In Reference
[11], an Artificial Intelligence techniques are used to solve the
MO-OPF problem incorporating FACTS devices with valve
point loading (VPL) effect considering transmission loss and
voltage deviation minimizations objectives.

A MO-OPF technique using PSO considering two con-
flicting objectives, i.e., generation cost and environmental
pollution, is proposed in [12]. An improved artificial bee
colony algorithm to solve the OPF problem involving var-
ious objectives, i.e., minimization of the total generation
cost, minimization of atmospheric pollutant emissions, mini-
mization of active power losses and minimization of voltage
deviations is proposed in [13]. A mathematical model for
solving the MO-OPF problem considering uncertainties
modeled by fuzzy numbers considering generation cost, total
gas emission and voltage profile as the objective functions
is proposed in [14]. The gray wolf optimizer and DE algo-
rithms to solve the OPF problem considering the indicator
of static line stability index are proposed in [15]. Reference
[16] proposes a DE-based integrated approach in a flexible
package-based GUI using MATLAB program and adapted
to enhance the solution of MO-OPF under contingency sit-
uation considering multi shunt FACTS devices. An OPF
formulation to enhance the overall transient stability of the
power system in addition to the traditional fuel cost mini-
mization is proposed in [17]. Reference [7] proposes various
multi-objective variants based on a decomposition approach,
where the MOO problem is decomposed into a number of
scalar optimization sub-problems which are simultaneously
optimized. A biogeography-based optimization algorithm to
solve the constrained OPF problems in power systems, con-
sidering valve point nonlinearities of generators, is proposed
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in [18]. A multi-objective differential evolution algorithm
(DEA) which is formulated as a nonlinear MOO problem
based on forced initialization for solving the OPF problem
is proposed in [19].

Reference [20] proposes a stochastic weight trade-off
chaotic non-dominated sorting PSO algorithm for solving
MO-OPF considering generator fuel cost and transmission
loss objectives. Reference [21] presents the applications of
Wolf algorithm for determining the optimal settings on OPF
control variables. Reference [22] presents the defects of
existing models and algorithms for solving the transient sta-
bility constrained OPF. In reference [23], a non-dominated
sorting MO gravitational search algorithm is proposed for
optimal adjustments of the power system control variables
which involve both continuous and discrete variables of OPF
problem. A nonlinear optimal control problem as a multi-
objective mathematical optimization problem is formulated
in reference [24], and it is solved using the harmony search
algorithm. Reference [25] proposes a multi-objective math-
ematical model and an adaptation of the Strength Pareto
Evolutionary Algorithm II (SPEA2) for the mixed-model
assembly line balancing and equipment selection prob-
lem. Reference [26] proposes an efficient MOO approach
based on micro genetic algorithm (MGA) for solving the
MOO problems. An efficient multi-objective ant colony
optimization-Iis proposed in [27] to exploits the good perfor-
mance of ant colony optimization which is enhanced using
the ideas borrowed from evolutionary optimization. A MOO
of a boot-shaped rib in a cooling channel was conducted
to assess the trade-off between two conflicting objectives,
i.e., heat transfer performance and pressure drop has been
proposed in [28]. A multi-objective energy-efficient task
scheduling problem on a green data center partially powered
by the renewable energy is proposed in [29].

From the above literature review, it can be observed
that the main drawback of all the MOO approaches is the
excessive execution time. Therefore, this paper is aimed
to overcome this drawback. In this work, the differential
evolution algorithm (DEA) is selected to implement the
proposed efficient multi-objective optimal power low (MO-
OPF) approach. The proposed MOO is used to find the
optimum values of both continuous and discrete control vari-
ables. Two standard IEEE test systems (i.e., IEEE 30 bus and
300 bus) are adopted, and the MO-OPF problem is solved
considering the generation cost minimization and transmis-
sion loss minimization as the objective functions.

The rest of the paper is organized as follows. The mathe-
matical problem formulation is described in Sect. 2. Section 3
presents the proposed efficient approach for the single- and
multi-objective optimization problems. Simulation studies
on IEEE 30 and 300 bus test systems are given in Sect. 4. The
contributions with concluding remarks are drawn in Sect. 5.
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2 Problem formulation

In this paper, the generator active power outputs, genera-
tor bus voltage magnitudes, transformer tap settings and bus
shunt susceptances are considered as the control variables.
The objective functions considered in this paper are described
next:

2.1 Generation cost

For the active power optimization problem, the total gener-
ation cost minimization (F7) is considered as the objective
function while satisfying all the generating units and sys-
tem’s operating constraints. The minimization function can
be obtained as sum of the fuel costs of all the generating units
[30].

minimize,

Ng

Fr=Y"(a +biPei +ciPg) $/h (M
i=1

where Ng is the number of generating units, Pg; is the active
power generation of unit-i. a;, b; and ¢; are the fuel cost
coefficients of unit-i.

2.2 Transmission loss

For the reactive power optimization problem, the total system
transmission losses minimization is selected as the objec-
tive function. The converged load flow solution gives the bus
voltage magnitudes and phase angles. Using these, the active
power flow through the lines can be evaluated. Net system
power loss is the sum of power loss in each transmission line
[31].

minimize,

Niine
F=)" & (V,-2 — V} =2V, Vjcos (eij)) MW )
k=1

where Nijipe is the number of transmission lines. g is the
conductance of kth line. 6;; is the voltage angle difference
between bus i and bus ;.

2.3 Practical voltage-dependent load modeling

Generally, the load demands are modeled as the constant
power loads. But, the practical aggregated load demands seen
from Extra high voltage (EHV) buses are voltage-dependent.
This is because of the effects of sub-transmission and distri-
bution system reflected in the equivalent load representation.
Some of the case studies presented in this paper considers
this practical and realistic load model [32,33]. For the steady

state studies, ZIP (polynomial) or exponential load models
are used. The exponential load model used in this work is
expressed as,

P P ( Vi )np (3)
“\V

nq
Vi
Opi = 0%, (W) )

where Pp; is the active power load at bus i, Q p; is the reactive
power load at bus i. Pgi, QODl. and Vl.o are the nominal values
of the active, reactive power loads and the voltage magni-
tude, respectively. np and ng are voltage exponents which
depends on the type and composition of the load. Subscript
‘0’ indicates nominal values of respective variables.

2.4 Equality and inequality constraints
2.4.1 Equality constraints

These constraints are typical power flow equations.

n
0= P = Pgi — Ppi — V; y_ V; (Gijcossi; + Bijsind;;)
j=1
®)
n
0= Qi =Qci— Qpi — Vi y_ V; (Gijsind;; — Bijcoss;;)
j=1

(6)

In the above equations, i =1, 2,..., n. Where n is the num-
ber of buses in the system. Pg; and Qg; are the active and
reactive power generations at bus-i. Pp; and Q p; are the cor-
responding active and reactive load demands, respectively. In
this paper, fast decoupled load flow (FDLF) is used for the
solution of equality constraints.

2.4.2 Inequality constraints
A. Generator constraints: Generator voltage magnitudes,

active and reactive power outputs are restricted by their lower
and upper limits, and they are represented as,

VG < Vai < VE™ 7
PG < Pgi < PG ®)
08" < Qai = QF ©)

B. Transformer constraints: Transformer taps have lower
and upper setting limits.

Timin < Tz < T max (10)

1
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C. Switchable VAR sources: The switchable VAR sources
have restrictions as follows,

OB < Q¢ < QPN (11)

D. Security constraints: These include the limits on the line
flow limits and load bus voltage magnitudes.

A

Sri < S?iax (12)
yuin <y, < ymax (13)

2.5 Multi-objective optimization (MOOQO) problem

A MOO problem has many objectives which are to be
optimized simultaneously. The optimization problem is sub-
jected to a number of equality and inequality constraints
which the solution should satisfy. The MOO problem is
defined by [34],

minimize/maximize F; (x) i =1,2,..., Nobj (14)
subjectedto G (x) =0 j=1,2,..., M (15)
Hpy(x) <0 k=1,2,..., Nineq (16)

Eq. (14) represents the objective function vector. Egs. (15)
and (16) represents the set of equality and inequality con-
straints. ‘x’ is a vector of decision control variables. The
principle of an ideal MOO procedure is to find multiple
trade-off optimal solutions with a wide range of values for
objectives. The constraints on reactive power generations,
branch flows, slack bus active power generation and load bus
voltage magnitudes are treated as the penalty terms in the
fitness function.

3 Proposed efficient approach for solving the
MO-OPF problem

The general MOO problem solves two or more conflict-
ing objective functions simultaneously subjected to various
equality and inequality constraints. In this paper, the gen-
eration cost and transmission loss minimization objectives
are optimized simultaneously. The general MO-OPF prob-
lem optimizes two or more objective functions are optimized
simultaneously, and it is expressed as,

minimize [J; (x), J2 (x)] a7
subjectedto g(x) =0 (18)
hmin <h(x) < J,max (19)

where F] is the generation cost minimization objective func-
tion and F; is the transmission loss minimization objective
function. From the literature review, it can be observed that
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the best way to solve this problem is by using the any
meta-heuristic-based MOO algorithm with Pareto optimal
front. However, this approach is computationally expensive.
Hence, this paper proposes an efficient approach to obtain
the Pareto optimal front.

In the proposed efficient approach, the first half of the
specified number of Pareto optimal solutions are obtained by
optimizing the generation cost minimization (1) function
considering the other objective function [i.e., transmission
loss (F»)] as constraint, while the second half is obtained in
a vice versa manner. Therefore, in the first variant, the gen-
eration cost minimization function (F7) is considered as the
objective function and transmission loss (F?>) is considered
as the constraint. It can be expressed as,

minimize Fj (x) (20)
subjected to  F (x) < Fyreciied 21)
gx)=0 (22)
hmin < h (x) < Jymax (23)
where F’ ]Spedﬁed is some specified value of generation cost. In

the second variant, transmission loss minimization function
(F») is considered as the objective function and generation
cost function (F7) as a constraint. It can be expressed,

minimize F, (x) 24)
subjected to F (x) < FiPeiied (25)
gx) =0 (26)
hmin < h (x) < Jymax (27)
where F;pedﬁed is some specified value of transmission loss.

Let us consider that the externally maintaining popula-
tion (i.e., an external population to retain the non-dominated
solutions) size is 2N. At every generation, newly found,
non-dominated solutions are compared with existing external
population and resulting solutions are preserved. However, in
the proposed efficient multi-objective optimization approach
these 2N non-dominated Pareto optimal solutions are gener-
ated by executing the proposed efficient differential evolution
(DE) algorithm for 2N times. The first and 2Nth solutions
are the two extreme points on the Pareto optimal front.
These extreme solutions can be obtained by solving the
Egs. (20) and (24) by relaxing the constraints (21) and (25),
respectively. Hence, for the first point on the Pareto optimal
front, generation cost objective function (F7) attains opti-
mum value (F lmi“ ), whereas the transmission loss (F>) attains
maximum value (F;"**). It can be expressed as,

First point on the Pareto optimal front : [F min_ Fzm"‘x]
(28)
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For the 2Nth point on the Pareto optimal front, the system
losses (F3) attain optimum value (Fzmin), whereas the gen-
eration cost (F7) attains maximum value (F"**). It can be
expressed as,

2Nth point on the Pareto optimal front: [F e, Fzmi“] (29)

The rest (2N — 2) points on the Pareto optimal front can be
obtained by solving the Egs. (20) and (24), N — 1 times with

. ified ified . .
different F2Sp ceee and F 1S pecihe values, respectively, in each

run. For the N — 1 runs of Eq. (20), the FzspeCiﬁed varies as,

FZSpeciﬁed — [Fp] - 1 [( Fzmax)N_ (Fpin)]

tr=1,2,3,...,N—-1 (30)

Similarly, for the N — 1 runs of Eq. (24), the F’ fp ccified varies
as,

[ = o]

N
t=1,2,3,...,N—1 31)

specified _ ~max
F, = Fmax _

After obtaining these 2N points/solutions, sort in the ascend-
ing order of F; value obtained for each solution leads to the
Pareto optimal front.

3.1 Implementation of proposed efficient
multi-objective optimization approach

The efficient MOO approach uses the incremental variables
model based on the sensitivities. The quadratic generation
cost function with incremental variables is expressed as [35],

Ng
P = Z [ai + bi(Pgl. + APgi) + c,»(pgl. + APG,-)Z] $/h
i=1
(32)

The generator fuel cost objective function considering valve
point loading (VPL) effect in terms of incremental variables
is given by [35],

NG
F=Y [ai + bi(PY, + APGi) + ¢ (PY; + APg;)?
i=1

+

d;sin (e,- ( min _ (Pg,- + APGi)))H $/h
(33)

Generator with prohibited operating zones (POZs) has dis-
continuous input-output characteristics, as it is difficult to
find actual POZ by the performance testing. Generally, the
best economy is achieved by avoiding the operation in areas

that are in actual operation. The feasible operating zones of
ih generating unit is described as [35],
min X 1
PGi fPGl SPGi’lz
u ,
PGix—1 = Pci = Pg;

u . max
PG, = Pei = Pg;

Pg;i € (k=2,3,...,2)

(34)

The system transmission loss minimization objective func-
tion in terms of incremental variables is represented as [36],

0 2
Fr, = Gy (Vk + AVk)

n
+ 30 (V0 + ave) (v +av;)
ik

Vioos [0k + (89 + 28, ) — (8 + a8)|  39)

The above Egs. (33) and (35) are nonlinear, non-convex, and
they can be solved simultaneously using the proposed effi-
cient MOO algorithm.

3.2 Constraints
3.2.1 Constraints on control variables

The incremental changes of active power generation (A Pg;),
generator bus voltage magnitudes (AVg;), transformer tap
settings (AT;), and bus shunt susceptances (A By, ;) are con-
strained by their minimum and maximum limits, and they are
represented using [37],

(Pa" - &) < aPa < (PG — PG:) (36)
(vair - ve:) = aver = (var - v:) (37

(Tl_min _ Tio) < AT, < (Timax _ Tio) (38)
(B3 - B%.:) = ABu = (BRY - BY.)) (39)

3.2.2 Constraint on reactive power generation

The constraints on changes in reactive power generation
(A Qgi) is represented using,

(0@ - 0%) = A0G = (08" - 0%) (40)
3.2.3 Line flow constraints

The power flow through each transmission line connected
between bus i and bus j (P;;) is restricted by,

(-P;;lax - P,F]’.) < AP < (P;;lax - Pg) 41)
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3.2.4 Power balance constraint inside the DE optimization

The power balance constraint inside the DE in terms of incre-
mental variables is represented using,

Ng

Y APGi — APiogs =0
i=1

(42)

The detailed description of incremental function evaluation
is represented in [35].

3.2.5 Updating the control variables

PG = P + APGi (43)
VE = Ve + AV (44)
T/ =T/ + ATy (45)
Byt = Bl .+ ABg, (46)

By using the above updated control variables, the generation
cost, system losses, reactive power generation and power flow
through lines can be determined.

3.3 Constraints handling

The handling of all the equality and inequality constraints
are described next:

e The generator active power outputs (Pg;), the genera-
tor bus voltage magnitudes (Vg;), the transformer tap
settings (7;) and the switchable VAR sources (Q¢;) are
self-restricted between their lower and upper limits, and
they are handled by the algorithm.

e The equality constraints are satisfied by the power flow
solution.

e The constraints on slack generator power output (PG, Slack ),

load bus voltage magnitudes (Vp;), reactive power gen-
eration output (Q¢;) and branch flow (Sy) are restricted
by adding a penalty to the objective function.

2
Fayg = F + pp (PG, Stack — PG, Slack)

Ng
+,0Q Z (QGZ Q]1m1t>
+pv Z (VDz thlt)

Niine

+oL Z (SLk Shm“)

(47)
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The limit values of above variables can be calculated using,

min i (48)

limit _ xmax x> xmax
X x < xmmn

where x can be Pg;, Qgi, Vpi and Sg;.

4 Results and discussion

The effectiveness of the proposed efficient multi-objective
optimization algorithm is tested on standard IEEE 30 and 300
bus test systems [38]. The selected control parameters of DE
are: mutation constant is 0.9, crossover constant is 0.5, pop-
ulation size is 50 and the maximum number of generations
is 500. The number of non-dominated solutions, i.e., desired
number of points on the Pareto optimal front selected, is 50
(i.e., for the proposed efficient MOO approach, N=25). The
brief description of differential evolution algorithm (DEA)
and the non-dominated sorting genetic algorithm-2 (NSGA-
IT) has been presented in Appendices 1 and 2, respectively.

4.1 Simulation results on IEEE 30 bus system

The IEEE 30 bus system data, minimum and maximum lim-
its for the control variables and the initial operating points
are taken from [35,36,39]. In this paper, the Pareto optimal
front obtained with the proposed efficient MOO approach is
compared with the classical weighted summation approach
and the evolutionary-based Non-dominated Sorting Genetic
Algorithm-2 (NSGA-II) algorithm. In the classical weighted
summation approach, all the objective functions are linearly
combined into a single objective using the appropriate weight
factors [40].

F=WF+WF (49)
where W and W) are the weight factors such that Wi+ W, =
1. By varying these weight factors, different portions of the
Pareto optimal front can be generated. The resulting single-
objective optimization problem is solved using the proposed
efficient approach applied to the DE algorithm.

4.1.1 Case 1: Solving the multi-objective optimal power
flow (MO-OPF) problem with quadratic cost function

Figure 1 depicts the distribution of Pareto optimal solutions in
the Pareto optimal front obtained using the proposed efficient
MOO approach and the evolutionary-based NSGA-II algo-
rithm. In the proposed efficient MOO approach, the proposed
efficient single-objective optimization considering cost mini-
mization objective with transmission loss constraint is run for
25 times and the loss minimization objective function with
cost constraint is run for 25 times. These 50 runs of proposed
efficient approach gives the entire Pareto optimal front. From
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Fig. 1 Pareto optimal fronts for case 1 using proposed efficient MOO
approach and NSGA-II algorithm
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Fig. 2 Pareto optimal front for case 1 using the classical weighted
summation approach

Fig. 1, it can be observed that the Pareto optimal solutions
obtained with proposed efficient MOO approach are diverse
and well distributed over the entire Pareto optimal front.

Whereas the evolutionary algorithms are population based,
the reproduction operation causes new generations by recom-
bination of old solutions. This enables finding several
members of Pareto optimal set in a single run, instead of
performing a series of separate runs. Figure 1 also shows
the best Pareto optimal front obtained using the NSGA-II
algorithm in a single run. However, as explained earlier the
difficulty of this evolutionary-based NSGA-II algorithm is
the excessive computational time.

Figure 2 depicts the Pareto optimal solutions obtained with
the linear combination/weighted coefficients of generation
cost and transmission loss minimization objective functions.
To generate the trade-off surface by the linear combination
of weighted summation approach, the DE algorithm is run

From the Pareto optimal front obtained with this weighted
summation approach, it is clear that by varying the weight
factors in equal increments do not guarantee the uniformly
distributed solutions in the Pareto optimal front. Further, all
the non-dominated solutions cannot be obtained, and some
of the solutions obtained are inferior.

The Pareto optimal front obtained with proposed efficient
MOO approach has been compared with the best Pareto front
obtained from the NSGA-II algorithm with respect to 3 per-
formance metrics (i.e., set convergence, extent and spacing),
and their values are given in Table 1. The more details about
these performance metrics can be found in the Reference
[41].

The second row in Table 1 presents the set cover-
age metrics (C) of proposed efficient MOO approach and
evolutionary-based NSGA-II algorithm. The obtained C
using the proposed efficient MOO is 0.4632, which shows
that about 23 non-dominated Pareto optimal points obtained
by the NSGA-II algorithm are dominated by the points on
the Pareto optimal front obtained by the proposed efficient
MOO approach. Whereas the C obtained using the NSGA-
IT is 0.0516, i.e., only two Pareto optimal points obtained
by the proposed efficient MOO approach are dominated by
the solutions on the Pareto optimal front obtained by the
NSGA-II algorithm. This shows the convergence superior-
ity of the proposed efficient approach over the NSGA-II
approach. The obtained values of « and s using the proposed
efficient MOO approach shows the better spread and spac-
ing of Pareto optimal solutions as compared to the NSGA-II
algorithm. This shows the diversity superiority of the pro-
posed efficient approach over the NSGA-II algorithm.

After obtaining the Pareto optimal front, the best com-
promise solution can be found using the fuzzy min-max
approach [32]. Table 2 presents the optimum control vari-
able settings and the best compromise solution obtained by
using the proposed efficient approach, evolutionary-based
NSGA-II approach and the classical weighted summation
approach. From this table, it can be observed that the min-
imum generation cost and transmission loss obtained by
using the proposed efficient MOO approach are better than
the other two approaches. The computational/execution time
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Table 2 Control variables and the objective function values for case 1 using the proposed efficient MOO approach, evolutionary-based NSGA-II

approach and the classical weighted summation approach

Control variables and objec- Case 1 using proposed effi-

Case 1 using evolutionary- Case 1 using classical weighted

tive function values cient MOO approach based NSGA-II approach summation approach
Pg1 (MW) 130.24 128.87 115.51
Pga (MW) 51.12 49.74 48.73
Pgs (MW) 29.85 28.80 37.69
Pgg (MW) 34.85 34.99 33.71
Pg11 (MW) 23.64 28.39 29.48
Pciz (MW) 19.38 18.29 23.45
Vi (p.u.) 1.1 1.0965 1.0917
V2 (p.u.) 1.0912 1.0835 1.0794
Vs (p.u.) 1.0671 1.0523 1.0576
Vg (p.u.) 1.0718 1.0594 1.0729
Vi (p-u) 1.0765 1.0870 1.0294
Viz (p.u.) 1.0959 1.0729 1.0929
Ts,9 (p.u.) 0.9625 0.95 0.95
T6.10 (p.u.) 1.05 1.0375 1.05
Ty,12 (p.u.) 0.975 0.9625 1.0125
Trg,27 (p.u.) 1.0125 1.00 1.0125
bsh, 10 (p-u.) 0.05 0.05 0.05
bsh,12 (p-u.) 0.04 0.02 0.01
bsh,15 (p.u.) 0.02 0.04 0.02
bsh,17 (p-u.) 0.05 0.02 0.05
bsh,20 (p.u.) 0.04 0.02 0.01
bsh,21 (p.u.) 0.05 0.03 0.02
bsh,23 (p.u.) 0.02 0.05 0.00
bsh,24 (p.u.) 0.01 0.05 0.02
bsh,29 (p.u.) 0.05 0.05 0.02
Generation cost ($/h) 822.43 824.72 833.53
System loss (MW) 5.687 5.684 5.169
Computational time (s) 17.0209 183.2058 69.8614

required for solving Case 1 using the proposed efficient MOO
approach, NSGA-II approach and the classical weighted
summation approach using the proposed efficient approach is
17.0209, 183.2058 and 69.8614 s, respectively; i.e., the pro-
posed efficient MOO approach is 10.76 times faster than the
NSGA-II approach. Overall, it can be concluded that the pro-
posed efficient MOO approach provides good quality Pareto
optimal fronts as compared to evolutionary-based NSGA-II
approach and the classical weighted summation approach in
an extremely efficient manner.

4.1.2 Case 2: Solving the MO-OPF problem considering
the cost minimization function with VPL and POZs
effects

In this case also, the system operating cost minimization

and loss minimization are considered as the two conflict-
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ing objectives to be optimized. Figure 3 shows the Pareto
optimal fronts obtained using the proposed efficient MOO
approach and the NSGA-II algorithm for Case 2. From this
figure, it can be observed that the Pareto optimal solutions
obtained using the proposed efficient MOO approach are
diverse and well distributed over the entire Pareto optimal
front.

Figure 4 depicts the Pareto optimal front obtained using
the classical weighted summation approach for Case 2. From
this figure, it can be observed that by varying the weight
factors in equal intervals do not guarantee the uniformly dis-
tributed solutions in the Pareto optimal front. As mentioned
earlier, after obtaining the Pareto optimal fronts, the best
compromise solution can be obtained using the fuzzy min-
max approach. Table 3 shows the optimum control variables
settings and the best compromise solution obtained by using
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Fig. 4 Pareto optimal front for case 2 using the classical weighted
summation approach

the proposed efficient MOO approach, NSGA-II algorithm
and the classical weighted summation approach.

From Table 3, it can be observed that the best compro-
mise solutions (i.e., system operating cost and transmission
loss) obtained using the proposed efficient MOO approach,
NSGA-II and classical weighted summation approach are
(863.31 $/h and 10.29 MW), (863.20 $/h and 10.49 MW) and
(880 $/h and 10 MW), respectively. This shows that the best
compromise solution obtained with the proposed efficient
MOQO approach is better than the other two approaches. The
time required for the execution for solving Case 2 using the
proposed efficient MOO approach, NSGA-II and weighted
summation approach is 19.0856, 189.915 and 78.468s,
respectively; i.e., the proposed efficient MOO approach is
approximately 10 times faster than the NSGA-II approach.

4.1.3 Case 3: Solving the MO-OPF problem with quadratic
cost function considering the voltage-dependent load
modeling

In this case study, the MO-OPF problem is solved consider-
ing the practical voltage-dependent load modeling. Figure 5
presents the Pareto optimal front obtained using the proposed
efficient MOO algorithm and the NSGA-II algorithm. As
mentioned earlier, the generation cost minimization objec-
tive considering the voltage-dependent load modeling and
transmission loss constraint is executed for 25 times, and
the transmission loss minimization objective considering the
voltage-dependent load modeling and total cost as constraint
is executed for 25 times. These 50 optimal points gives the
complete Pareto optimal front. From Fig. 5, it can be observed
that the Pareto optimal solution obtained with the proposed
efficient MOO approach is diverse and well distributed over
the entire Pareto optimal front.

The Pareto optimal front obtained using the proposed effi-
cient MOQ approach is also compared with the evolutionary-
based NSGA-II algorithm. Figure 5 also depicts the Pareto
optimal front of NSGA-II algorithm. However, the compu-
tational time required for the proposed efficient MOO is
much lesser than the time required for the evolutionary-based
NSGA-II algorithm.

After obtaining the Pareto optimal fronts, the best com-
promised solutions can be obtained using the fuzzy min-max
approach. Table 4 presents the optimum control variables
settings and objective function values for Case 3. The best
compromise solution obtained with the proposed efficient
MOO approach has the total generation cost of 801.2480 $/h
and the total transmission losses of 6.174 MW, whereas, by
using, the evolutionary-based NSGA-II algorithm has the
total generation cost of 812.6738 $/h and the total transmis-
sion losses of 5.9362 MW.

From the above, it can be observed that the optimal Pareto
front and the best compromise solution obtained using the
proposed efficient MOO approach are almost same as NSGA-
IT approach with lesser computational time. From Table 4, it
can be observed that the computational tome required for
the proposed efficient MOO approach is 17.5633 s and for
NSGA-II approach is 184.1936s, i.e., the proposed efficient
MOO approach is 10.49 times faster than the evolutionary-
based NSGA-II approach.

4.2 Simulation results on IEEE 300 bus system

IEEE 300 bus system [38] consists of 69 generators and 411
branches of which 62 branches are tap setting transformer
branches and 12 buses have been selected as shunt compen-
sation buses. The total load in the system is 23,246.86 MW.
The case studies for IEEE 300 bus system are presented next:
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Table 3 Control variables and the objective function values for case 2 using the proposed efficient MOO approach, evolutionary-based NSGA-II
approach and the classical weighted summation approach

Control variables and objective
function values

Case 2 using proposed effi-
cient MOO approach

Case 2 using evolutionary-
based NSGA-II approach

Case 2 using classical weighted
summation approach

Pgi (MW) 123.35 126.19 121.11
Pgr (MW) 56.97 57.00 57.06
Pgs (MW) 37.54 38.25 38.89
Pgg (MW) 22.95 20.67 24.85
P11 (MW) 29.57 29.62 29.47
P13 (MW) 23.31 22.16 22.02
Vi (p.u.) 1.0988 1.0965 1.0982
V2 (p.u.) 1.0876 1.09 1.0871
Vs (p.u.) 1.0588 1.0688 1.0658
Vg (p.u.) 1.0812 1.0794 1.0753
Vii (p-u) 1.0888 1.0553 1.0488
Viz (p.u.) 1.0929 1.0947 1.0982
Ts.o (p.u.) 1.0125 1.1 1.025
Ts.10 (p-u.) 0.9875 0.975 0.9
Ty,12 (p.u.) 0.9875 1.0125 0.9875
Tg27 (pou.) 0.975 1.0 0.9875
bn.10 (p-u.) 0.05 0.05 0.05
beh,12 (p-u.) 0.02 0.05 0.02
bgn.15 (p-u.) 0.02 0.03 0.05
beh.17 (p.u.) 0.02 0.05 0.02
bgh.20 (p.u.) 0.04 0.04 0.05
beha1 (pu.) 0.01 0.01 0.05
b2z (pu.) 0.03 0.00 0.03
beh.2a (pu.) 0.00 0.00 0.02
bgh.20 (p.u.) 0.05 0.02 0.01
Generation cost ($/h) 863.31 863.20 880
System loss (MW) 10.29 10.49 10
Computational time (s) 19.0856 189.9152 78.4680
4.2.1 Case 1: Solving the MO-OPF problem with quadratic 830 o v m—
fuel cost function _ 825r o . +  Evolutionary based NSGA-II Approach
& goof °© 1
Table 5 presents the optimum objective function values :E’ 8151 ° O i
of MO-OPF problem considering the total generation cost 8 g0l OOO '* |
and transmission losses as the objective functions to be 2 CXN
solved simultaneously considering the constant load mod- § 8051 O*. i
eling (i.e., Case 1). The best compromise solution obtained & 800r xams Br 1
for this case using the proposed efficient MOO approach has § 795f e o 1
the generation cost of 857,442.6782$/h and the transmis- 2 790l o b, i
sion losses of 678.2998 MW, whereas the solution obtained @ 7851 %Q%E%*Www
using the NSGA-II approach has the total generation cost of 780 ‘ ‘ ‘ ‘ ‘ %ng‘ﬁﬁ
857,623.0121 $/h and the transmission losses of 681.4907 MW. 5 55 6 65 7 75 8 85 9 95

From this table, it can be observed that both the techniques
have almost same objective function values. But, the pro-
posed efficient MOO approach is approximately 10.79 times
faster than the evolutionary-based NSGA-II algorithm.
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Fig. 5 Pareto optimal front for case 3 using the proposed efficient
MOO approach and the evolutionary-based NSGA-II approach
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Table 4 Control variables and the objective function values for Case
3 using the proposed efficient MOO approach and evolutionary-based
NSGA-II approach

Table 6 Optimum objective function values for Case 2 using the pro-
posed efficient MOO and evolutionary-based NSGA-II approaches for
IEEE 300 bus system

Control variables
and objective

Case 3 using pro-
posed efficient

Case 3 using
evolutionary-based

function values MOO approach NSGA-II approach
P (MW) 148.4247 120.5049
Pgr (MW) 72.1520 53.5678
Pgs (MW) 20.9145 42.1325
Pgg (MW) 13.5165 30.2686
Pg11 (MW) 16.5836 19.0794
Pg13 (MW) 12.9983 12.7589
Vi (p.u.) 1.0400 1.0529
Vo (p.u.) 1.0400 1.0158
Vs (p.u.) 1.0141 0.9665
Vg (p.u.) 1.0100 0.9865
Vi (p-uw.) 1.0082 0.9871
Viz (p.u.) 0.9529 0.9629
Ts.9 (p.u.) 1.0875 0.95
Ts,10 (p-u.) 1.0625 1.0750
T412 (pu.) 1.05 0.9625
Trg,27 (p.u.) 0.925 0.9875
bsh, 10 (p-u.) 0.02 0.02
bsh,12 (p.u.) 0.03 0.00
bsh,15 (p.u.) 0.04 0.04
bsh.17 (p.u.) 0.01 0.02
bsh,20 (p-u.) 0.04 0.05
bsh,21 (p.u.) 0.05 0.04
bgh,23 (p.u.) 0.02 0.02
bsh,24 (p.u.) 0.04 0.01
bsh,29 (p.u.) 0.02 0.03
Generation cost ($/h) 801. 2480 812. 6738
System loss (MW) 6.174 5.9362
Total load demand (MW)  278.3546 272.3847
Computational time (s) 17.5633 184.936

Table 5 Optimum objective function values for Case 1 using the pro-
posed efficient MOO and evolutionary-based NSGA-II approaches for
IEEE 300 bus system

Objective function Case 1 using pro-  Case 1 using

values posed efficient evolutionary-based
MOO approach NSGA-II approach

Generation cost ($/h) 857,42.6782 857,23. 0121

System loss (MW) 678.2998 681.4907

Total load demand (MW)  23,46.86 23,46.86

Computational time (min)  4.7504 51.2568

Bold values represent the optimum objective function values and cor-
responding computational time

Objective function Case 2 using pro- Case 2 using

values posed efficient evolutionary-
MOO approach based NSGA-II
approach
Generation cost ($/h) 809,27.9451 801,63.0894
System loss (MW) 628.3249 630.8413
Total load demand (MW) 22,98.31 22,67.09
Computational time (min) 4.8076 52.0691

Bold values represent the optimum objective function values and cor-
responding computational time

4.2.2 Case 2: Solving the MO-OPF problem with quadratic
cost function considering the voltage-dependent load
modeling

Table 6 presents the optimum objective function values
of MO-OPF problem considering the total generation cost
and transmission losses as the objective functions to be
solved simultaneously considering the practical voltage load
modeling (i.e., Case 2). The best compromise solution
obtained for this case using the proposed efficient MOO
approach has the generation cost of 809,027.9451$/h and
the transmission losses of 628.3249 MW, whereas the solu-
tion obtained using the NSGA-II approach has the total
generation cost of 801,163.0894$/h and the transmission
losses of 630.8413 MW. From this table, it can be observed
that both the techniques have almost same objective func-
tion values. But, the proposed efficient MOO approach is
approximately 10.83 times faster than the evolutionary-based
NSGA-II algorithm.

From the above simulation studies, it can be observed that
the proposed efficient MOO approach overcomes the main
drawback, i.e., excessive execution time of the evolutionary-
based MOO algorithms. The proposed efficient MOO
approach is approximately 10 times faster than the
evolutionary-based MOO approaches.

5 Conclusions

This paper proposes a new efficient multi-objective opti-
mization algorithm to solve the MO-OPF problem. It uses
the incremental power flow model and sensitivities; and the
lower and upper bounds of the objective function values.
In this paper, the MOO problem is solved considering the
system operating cost, transmission losses and L-index as
the objective functions while satisfying all the equality and
inequality constraints. In this paper, the proposed efficient
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MOQO approach is implemented using the DE algorithm. The
simulation studies are performed on IEEE 30 and IEEE 300
bus test systems to demonstrate the effectiveness of the pro-
posed efficient MOO approach. The simulation results shows
that the Pareto optimal solutions obtained with proposed
efficient MOO approach are diverse and well distributed
over the entire Pareto optimal front. All the simulation stud-
ies indicate that the proposed efficient MOO approach is
approximately 10 times faster than the evolutionary-based
MOQO algorithms. Extending the proposed efficient MO-OPF
approach to power system with renewable energy sources
considering the security is a scope for future research.
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Appendix 1: Differential evolution algorithm (DEA)

DEA is an evolutionary computation technique developed
by Storn and Price in 1995. The developed DEA is reliable
and versatile function optimizer that is readily applica-
ble to a wide range of optimization problems. DE is a
simple population-based, stochastic search meta-heuristic
optimization algorithm which is capable of handling nonlin-
ear, non-differentiable and multi-model objective functions.
DEA improves a population of candidate solution over
several iterations using mutation, crossover and selection
operators in order to reach an optimal solution. DE uses a
population of floating point encoded individuals and muta-
tion, crossover and selection operators to explore the solution
space in search of global optima. DE is a novel evolution
algorithm as it employs real-coded variables, instead of a
binary or a gray representation. DE typically relies on muta-
tion as the search operator and uses selection to direct the
search toward the prospective regions in the feasible region
[42]. For more details of DEA, the reader can refer Reference
[39].

Appendix 2: Non-dominated sorting genetic algorithm-

2 (NSGA-II)

In the MOO, the Pareto optimal solution (i.e., the non-
dominated solution) improves at least one objective function
without degrading the other objective functions. Using the
MOO algorithm, Pareto optimal set/front, i.e., a set of
non-dominated solutions, can be determined. In this paper,
NSGA-II algorithm is used to find the Pareto optimal front.
More details of NSGA-II can be found in the References
[43,44]. After determining the Pareto optimal front, the fuzzy
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min-max method is used to determine the best compromise
solution.
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