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Abstract This paper proposes the development of transmis-
sion and distribution protection schemes to classify faults
along transmission and distribution systems. The systems
under consideration are composed of a 500-kV radial (two-
bus single circuit), loop (three-bus double circuit) structure
transmission systems, and a 115-kV radial structure under-
ground distribution system. This complex system shows the
advantage of the proposed method. A decision algorithm
based on a discrete wavelet transform (DWT) and prob-
abilistic neural network is investigated for inclusion in a
transmission and distribution protection system. Fault sig-
nals in each case are extracted to several scales on the DWT
to decompose high-frequency components from fault signals
using the mother wavelet daubechies4. The maximum coef-
ficients of a DWT at 1/4 cycle that can detect faults are used
as input patterns for the training process in a decision algo-
rithm. In addition, coefficients from a DWT technique and
a back-propagation neural network algorithm are also com-
pared with the proposed algorithm in this paper. Moreover,
the real signal from an experimental set-up was investigated.
Based on the accurate results for the simulation signal and
real signal, it can be concluded that the proposed algorithm
is adequate for other power systems with different line mod-
els and that it can be applied to actual systems even if the
accuracy is slightly reduced by the effect of noise in an actual
system. Thus, the overall results show that the proposed algo-
rithm can detect a faulty bus and classify types of fault with
satisfactory results.
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1 Introduction

Power systems normally contain a large number of transmis-
sion lines, busbars, generations, transformers, and protective
devices. The occurrence of a fault on a major transmission
line may endanger the operation of many power systems and
potentially lead to charge outages. If fault diagnosis results
are not available to system operators shortly after a fault
occurs, it may not be possible to reach an optimal decision to
restore the power system. Fault diagnosis normally depends
on the knowledge of the power system. The power system
status must be clarified before restorative actions can occur.
Fault diagnosis systems identify the location and type quickly
and accurately. Generally, fault detection and classification
can be described by this knowledge.

A fault inception instant is detected by looking for an
abrupt change in signal waveforms. A decrease in a volt-
age waveform indicates the possible faulted phases. The
current experiencing the highest increase in amplitude indi-
cates a probable faulted circuit. The overall change in voltage
and current waveforms indicates the type of fault, such as a
single line-to-ground fault or a three-phase fault. Fault diag-
nosis involves the identification of the fault location and fault
type (sometimes called “fault classification”).When the fault
event is complex, it may not be possible for a fault diag-
nosis system to identify the exact fault location and fault
type.This canoccurwhen theprotective devicesmalfunction,
including the wrong tripping zone, failure to trip, misoper-
ation, improper operating time, and wrong direction of the
fault. Conventional methods such as overcurrent, distance,
and directional relays are still utilized for the fault diagnosis
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of transmission systems used by the Electricity Generating
Authority of Thailand (EGAT).

Fault classification for conventional protection was pro-
posed with Fourier transforms based on variations in the
voltage and current of the three phases. Fault classification is
designed to analyse or identify the types of fault that occur,
such as single line-to-ground, double line-to-ground, line-to-
line, and three-phase faults. The variation in the voltage and
current of the three phases using Fourier transforms is very
effective in identifying the type of fault. However, the tradi-
tional method of signal analysis, which is based on Fourier
transforms, is not very efficient for this type of study because
the generated fault signals are nonstationary transient. Thus,
the Fourier transform algorithm uses data of the current with
a time of one cycle for the analysis. Moreover, there are cer-
tain factors that can cause needless operation of distance
protection, including current transformer (CT) saturation,
the resistances of fault arcs, impedance data, and calcula-
tion errors. To avoid the malfunction of the distance relay in
these cases, several algorithms [1–41] have been developed
for the protective relays.

In the literature for fault detection algorithms [1–16], there
are several decision algorithms that were developed for use
in protective relays to prevent unnecessary operation of the
protective equipment under different nonfault conditions.
The fast Fourier transform (FFT) [1], discrete wavelet trans-
form (DWT) [2–6], artificial neural networks (ANNs) [7],
transient-based protection [8,9], and hybrid systems [10]
have been used in fault diagnosis. In [1], the researchers
presented fault detection in rotating machines using an FFT-
based discrete harmonic wavelet. In [2], the researchers
discussed voltage disturbance detection in distribution sys-
tems using a wavelet transform with a negative selection
artificial immune algorithm. A finite impulse response (FIR)
filter is applied to extract pure fault characteristics. The sim-
ulation showed that the proposed approach is effective in
detecting and identifying various types of faults. In [11], the
researchers presented fault detection for a grid consisting
of an offshore wind farm. A retrieve signal was applied by
empirical mode decomposition (EMD) to extract the mag-
nitude and phase angle. This approach was applied for fault
detection in an AC/DC network section with a demonstration
using a real-time digital simulator to verify the performance
of the algorithm.

Research by Yao et al. [3] presented a detection algorithm
for DC arc faults using a wavelet transform. An experimental
set-upwas built to evaluate DC arc characteristics and factors
that affect the DC voltage source, arc length, and arc level.
The proposed algorithm used a current change in the time
domain and normalized RMS value from a wavelet trans-
form. In [4], the researchers proposed fault detection using
a wavelet-based algorithm and applied the proposed system
to a 282-bus radial distribution system.

Alshareef et al. [7] applied a wavelet to islanding detec-
tion of distributed generation. This new approach uses a
newly designed wavelet and support vector machine clas-
sifier to filter coefficients. Real-time detection of an induced
transient is presented in [8]. The proposed methodology con-
sists of a new decomposition process using the time domain
instead of one wavelet coefficient. Simulations of a fault,
high-impedance fault, and PQ disturbance are conducted to
evaluate the performance of the proposed algorithm and to
reveal a satisfactory result. For a microgrid system, research
by Li et al. [12] discussed a protection algorithm using math-
ematical morphology (MM) technology. It can operate with
fast response and can be applied to various topologies and
operation modes. A fault location method for a low-voltage
distribution system using time-based methodology was pro-
posed in [13]. An impedance-based algorithm combinedwith
a time-based three-phase load flowwas used to increase accu-
racy and reduce time for detection. The algorithm uses the
border effects of sliding windows; thus, the choice of mother
wavelet and fault parameters does not affect performance.

The application of a DWT and support vector machine for
fault diagnosis and monitoring using an induction machine
was presented in [10]. In [5], the research proposed a
DWT-based method to detect outer cage faults in double
squirrel-cage induction motors (DCIMs) that can operate
under transient conditions. The proposed technique is an
effective tool for estimating fault severity, and it can provide
solutions to difficulties in detecting faults in the outer case
of a DCIM using steady-state spectrum analysis. In [14], the
researchers discuss various techniques using wavelet based
for fault detection in a high-voltage transmission line. The
application of a stationary wavelet transform (SWT) and
DWT in fault detection and fault phase identification in a
three-phase induction motor is presented in [6]. In [15], the
researchers introduce an ultra-high-speed protection scheme
based on comparing the amplitudes of the initial travelling
waves detected in the currents of the parallel circuits. This
discriminates the internal faults and classifies the faulted
phases. A time-shift invariant property of a sinusoidal wave-
form is used in [16] for an ultrafast classification of fault
types in a power transmission line. The performance of the
proposed scheme is compared in terms of group delays and
data windows with other feature extractions such as fuzzy
logic, HS transform, DWT, and discrete Fourier transform.

Because of transient-based techniques [17–33], the advan-
tage of a wavelet transform is that the band of analysis can be
adjusted to allow high-frequency and low-frequency compo-
nents to be precisely detected. The idea of applying a wavelet
transform to fault diagnosis is not new, and there are a number
of research papers exploring the concept [18–28]. Fault loca-
tion methodology using a single-ended travelling wave was
presented in [27]. The methodology using DWT and support
vector machine to identify fault sections has the advantages
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of small inputs and being independent of fault types. The
application of a hybrid transmission line consists of over-
head and underground cables. The application of a wavelet
transform in fault classification was initially proposed in the
literature by Youssef [18]. For a generator, wavelet analy-
sis can be applied in order to detect, identify, and classify
faults as discussed in [29]. Two common types of fault in an
induction generatorwere investigated, including the interturn
short-circuit fault (ITSCF) and winding resistive asymmet-
rical fault (WRAF).

A new fault diagnostic index (FDI) using wavelet-based
analysis exhibited efficiency and accuracy in fault discrim-
ination. In [30], the researchers discussed the application
of wavelet-based signal processing in a high-impedance
grounded distribution network, and the difficulty in identify-
ing a single line-to-ground faultwithweak characteristics and
noise signals. Guillen et al. [31] discussed an algorithmbased
on a DWT and singular value decomposition. The proposed
methodology showed promise in reducing the computational
burden and detection time. An application of multisolution
wavelet analysis to transmission line fault classification is
discussed in [32]. A regression tree algorithm was used to
classify islanding conditions. The proposed algorithm was
compared with various techniques in the past to verify per-
formance.

The application of a wavelet-based algorithm for fault
detection and identification in transmission lineswith demon-
strated hardwarewas presented byUsama et al. [25]. Another
research study byDasgupta et al. [26] presented fault location
and classification using a wavelet transform and an ANN. A
comparison between various wavelet-based algorithms was
conducted in terms of time and accuracy, and the proposed
method was successful in classifying and locating faults.
In [27], researchers proposed using a DWT and support vec-
tor machine to locate faults in a transmission line consisting
of overhead lines and underground cables. The performance
of the algorithm was tested on various fault scenarios with
satisfactory results.

Based on a comparison of the coefficients detail of DWT,
considering the pattern of the spectra, which was developed
by Markming et al. [19], a comparison of the coefficients
from the first scale that can detect a fault is considered.
A division algorithm between the maximum coefficients of
DWT at a 1/4 cycle of phases A, B, and C is performed in a
single-circuit radial structure transmission system. To iden-
tify the phase with faults, comparisons of the maximum ratio
obtained fromadivision algorithmwere conducted so that the
types of faults could be analysed. In several research papers,
fault current signals are decomposed into various scales of
wavelet transforms. By considering the pattern of the spectra,
fault classification can be conducted by employing a trial-
and-error method [18,19,32]. A transmission line protection
scheme combining two protection functions (a directional-

zone function and fault classification function based on an
adaptive wavelet and Bayesian rules) was investigated by
Perez et al. [22]. The results demonstrated that a directional-
zone function can determine whether the fault is backward,
inside, or forward the primary protected line. On the other
hand, the fault classification function can distinguish faults
of different types regardless of fault resistance values.

In addition, in the literature for fault classification [19,34–
40], most researchers have only considered fault classifica-
tion for single-bus and two-bus systems. ANN techniques
have been proposed in some approaches in the literature
to improve transmission and distribution protection [34–37]
because these algorithms can give precise results. In [38],
researchers proposed an alternative approach for fault loca-
tion using a fault locator based on feedforward ANNs. The
algorithm was applied to an overhead power distribution
feeder using a CAD simulation. The results showed satisfac-
tory performance compared with the conventional method.
In [39], researchers applied a Chebyshev neural network for
fault classification in a series compensate transmission line.
The proposed algorithm has a single-layer structure; thus, it
is easy to implement and has proven to be immune to mea-
surement errors and noise. A multiwavelet packet and radial
basis function (RBF) neural network also showed promis-
ing results, with the ability to recognize and classify various
types of fault in transmission lines satisfactorily and effi-
ciently [40].

Research by Liu et al. [40] proposed multiwavelets and
radial basis function neural networks to classify faults in
a transmission line. The advantage is that a multiwavelet
can process orthogonality, and there is more low- and high-
frequency information for classification, as experimental
results from the paper showed. Another application is an
induction machine using a complex wavelet-based proba-
bilistic neural network to diagnose interturn faults [41]. The
BPNN is a type of neural network that is widely applied
today owing to its effectiveness in solving almost all types
of problems.

In [35,37], in order to classify fault types in electrical
transmission systems, the variations inmaximumcoefficients
from the first scale of a DWT extracted from high-frequency
components at a duration of 1/4 cycle of phases A, B, C, and
zero sequence of post-fault current signals, can be used as
an input for the training process of an BPNN in a decision
algorithm. Although the BPNN is very effective in classi-
fying fault types, it cannot provide acceptable precision in
classifying fault types in the loop structure of a transmission
network. In fact, transmission lines are connected to each
other and become a large grid-connected system owing to
the increasing demand for electric power. During faults, it
is necessary for the protection system to deal with a com-
plicated transmission network. In practice, BPNN is partly
limited by its slow training performance. In order to over-
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come this problem, other neural network algorithms have
been developed.

Therefore, this paper presents the development of a new
decision algorithm used in the protective relays in order to
classify faults in transmission systems. A transmission and
distribution system in Thailand has been rapidly expanded
and developed in a more complex manner along with eco-
nomic and population growth. A newly developed algorithm
and methodology to detect, identify, and classify faults in
a system with fast response and accuracy are increasingly
essential. A decision algorithm based on DWT and a prob-
abilistic neural network (PNN) is investigated for inclusion
in a transmission and distribution protection system.

The PNN was compared with the BPNN and the radial
basis function (RBF) in a previous paper [37]. The obtained
result from the PNN was more satisfactory and has less
training time compared with the BPNN and RBF. The PNN
was selected because it uses less training data and time
compared with the BPNN and RBF. The fault conditions
will be simulated using the Alternative Transients Pro-
gram/Electromagnetic Transients Program (ATP/EMTP).
ATP/EMTP is a universal programming system for the digital
simulation of transient phenomena of an electromagnetic as
well as electromechanical nature. Thus, ATP/EMTP is prob-
ably the most widely used power system transient program

in the world today. The analysis and diagnosis were per-
formed usingMATLAB on a PC Pentium IV at 2.4GHz with
512MB. The systems under consideration have a radial and
loop overhead structure that includes a radial underground
structure in order to show the advantage of the proposed
method. Fault signals in each case are extracted to several
scales on the DWT and are used as an input for a training
process on the PNN. The validity of the proposed algorithm
is tested with various fault inception angles, fault locations,
and faulty phases. In addition, the construction of the deci-
sion algorithm is detailed and implemented with various case
studies based on electricity transmission and distribution sys-
tems in Thailand. This includes the experimental set-up that
was investigated in this paper.

2 Power system simulation using EMTP

ATP/EMTP is employed to simulate the fault signal tran-
sients at a sampling rate of 200kHz (corresponding to the
chosen sampling time used in ATP/EMTP, which is equal
to 5µs). The fault types are chosen based on Thailand’s
transmission and distribution system [36,41,42], as shown
in Figs. 1, 2 and 3. In addition, a cross-sectional view
of a cable is shown in Fig. 4. A transmission line with

Fig. 1 System used in
simulation studies for radial
structure (System 1) [36,42]

Fig. 2 System used in
simulation studies for loop
structure (System 2) [36,42]
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Fig. 3 System used in
simulation studies for
underground structure [41]

Fig. 4 Configuration of cable
in simulation studies [41]

R1R2

R3

R4 R5

R1 = 0 mm

R3 = 38.5 mm
R2 = 17 mm

R4 = 41 mm
R5 = 44.5 mm

Ground surface

1 m

0.28 m 0.28 m

Table 1 Number of various set and parameters for each set

Parameter of fault Detail Radial structure
(System 1)

Loop structure (System 2) Underground struc-
ture (System 3)

MM3-TTK WN-CBG WN-SNO SNO-CBG VIBHAVADI-
SAMYAN

Circuit of
transmission
system

Single circuit or double circuit 1 2 2 2 1

Angles of fault
inception

0◦–330◦ (each step is 30◦), and
phase A voltage is reference

12 12 12 12 12

Type of fault Single line to ground, double lines
to ground, line to line, and three
phase

10 10 10 10 10

Fault location for
overhead
transmission line

Distances of 10, 20, 30, 40, 50, 60,
70, 80, and 90%, measured from
the sending end

9 9 9 9 –

Fault location for
underground
distribution cable

The distance of 1–5km (each
step=1km) of the underground
cable length measured from the
sending end

– – – – 5

Fault resistance 10� 1 1 1 1 1

Total 1080 2160 2160 2160 600

frequency-dependent parameters can be calculated by sup-
porting routing line cable constants (LCC) in ATP/EMTP.
The LCC model is based on the geometrical and material
data for an overhead line and underground cable, including
the corresponding electrical data. Simulations were per-

formed with various changes in system parameters, as shown
in Table 1. The fault signals generated using ATP/EMTP
were interfaced to MATLAB in order to analyse the tran-
sient high-frequency components by using a wavelet tool-
box.
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Fig. 5 Five-level wavelet decomposition tree

Fig. 6 Example of DWT from
scale of 1–5 for positive
sequence of phase A to ground
fault in transmission system
(section MM3-TTK)

3 Fault detection decision algorithm

After simulating the fault signals, a fault detection deci-
sion algorithm [19,35–37] is processed using the positive
sequence current signals. A Clarke transformation matrix
[19] was used to calculate the positive sequence and the zero
sequence of the current. The fault signals generated using
ATP/EMTP are extracted to several scales using the mother
wavelet daubechies4 (db4) [19,37,43–45] of the DWT in
order to decompose high-frequency components, as shown
in Fig. 5. The daubechies (db) was chosen as the mother
wavelet in this paper because according to the literature
[37,44,45], the daubechies mother wavelets are widely used
for analysing signals in power systems. Moreover, after test-
ing many mother wavelets, the daubechies4 (db4) seemed

to be satisfactory in acquiring reasonable accuracy in fault
classification.

By considering Fig. 5, the original input signal is split
into five scales by analysing the high frequencies called
details (high-pass portion). For each stage (scale 1, …, scale
5), the filters have different cut-off frequencies and band-
widths, while the processed signal remains unchanged. The
frequency bandwidth of the level’s band decreases as the
level scale increases. This implies that the frequency reso-
lution increases as the level scale increases. In addition, the
coefficients of signals obtained usingDWT, then, are squared
so that abrupt changes in the spectra can be clearly found.
This is illustrated in Figs. 6 and 7.

An example of a DWT for a radial structure is illustrated
in Fig. 6. This is phase A to ground fault (AG) at 35% of
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Fig. 7 Example of DWT from scale 1 for the positive sequence of
phase A to ground fault in the transmission system (section WN-CBG)
[45], where, WN1T andWN2T are WN bus section WN-CBG circuit 1
and circuit 2, respectively.WN1O andWN2O areWN bus sectionWN-
SNO circuit 1 and circuit 2, respectively. CBG1T and CBG2T are CBG

bus section WN-CBG circuit 1 and circuit 2, respectively. CBG1N and
CBG2N are CBG bus section SNO-CBG circuit 1 and circuit 2, respec-
tively. SNO1O and SNO2O are SNO bus section WN-SNO circuit 1
and circuit 2, respectively. SNO1N and SNO2N are SNO bus section
SNO-CBG circuit 1 and circuit 2, respectively.

the length of section MM3-TTK in the transmission net-
work shown in Fig. 1. By considering Fig. 6, the input signal
implementation is amultisignal trace from each high-pass fil-
ter corresponding to a particular scale parameter. The traces
labelled scale 1, scale 2, …, scale 5 in this figure corre-
spond to the filter output of Fig. 5. In addition, by observing
Fig. 6, during the prefault condition, the coefficient detail at
each scale of the DWT obtained from the positive sequence
current is treated as zero. After a fault occurrence at 0.04 s,
during the post-fault condition, the coefficient detail at each
scale of theDWTobtained from the positive sequence current
has a sudden change compared with those before the occur-
rence of the fault, and this change plays an important role in
the fault detection decision algorithm. This indicates that the
fault detection decision algorithm can be beneficial. There-
fore, the result obtained from the fault detection algorithm
presumes that these signals are in their fault conditions.

Similarly, by observing Fig. 7, this is a phase A to ground
fault (AG) at 20% of the length of section WN-CBG in the

transmission network shown in Fig. 2. Owing to the loop
structure of the transmission network, there are changes in
phase–phase current waveshapes at all buses of the network
(WN,CBG, and SNO).According to the behaviour presented
in Figs. 6 and 7, the similarity between the behaviours of the
coefficient details of the DWT can be clearly seen. This indi-
cates that the fault detection decision algorithm can benefit
from variations in the coefficient. Based on a further analy-
sis of Fig. 7, the coefficient detail from scale 1 of the DWT
does change. Therefore, the result obtained from the fault
detection algorithm presumes that these signals are in their
fault conditions. However, when carefully considering Fig. 7,
it is found that all coefficients obtained from the positive
sequence currents at every bus have a change of more than
five times the normal value during the faults owing to the
effect of the loop structure of the transmission network. As a
result, the fault detection algorithm fails with a comparison
of coefficients when dealing with a loop (double-circuit or
multiterminal) transmission line, but the algorithm gives sat-
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isfactory results for a radial (single-circuit or two-terminal)
transmission line. In order to overcome this problem, a new
fault detection algorithmhas been developed so that the effect
of the loop structure can be included.

After applying the DWT to positive sequence current, a
comparison of the coefficient details from each scale is con-
sidered. A comparison between the maximum coefficients in
the first scale of each bus, which can detect faults, is made in
order to detect the faulty bus. From Fig. 7, it can be seen that
maximum coefficients of positive currents from the faulty
buses involving a fault location (in this case, WN1T and
CBG1T, with the fault location between them) have the high-
est values when compared with those of other healthy buses.
For the improvement fault detection algorithm, in the case
of a double-circuit or multiterminal system, the maximum
coefficients obtained from the same buses are also compared
in order to detect the faulty circuit as follows:

If WN1TL
(post) > max

(
WN2TL

(post),WN1OL
(post),WN2OL

(post)

)

then RELAYWN1TTRIP

elseif WN2TL
(post) > max

(
WN1TL

(post),WN1OL
(post),WN2OL

(post)

)

then RELAYWN2TTRIP

elseif WN1OL
(post) > max

(
WN1TL

(post),WN2TL
(post),WN2OL

(post)

)

then RELAYWN1OTRIP

elseif WN2OL
(post) > max

(
WN1TL

(post),WN2TL
(post),WN1OL

(post)

)

then RELAYWN2OTRIP

end

where L = the scale of DWT.
After the fault detection process, themaximum coefficient

of the phase A, B, C, and zero sequence currents obtained
from the faulty bus is used as an input for the training process
of the PNN.

4 Neural network decision algorithm and
simulation results

After the fault detection process, the coefficient details of
scale 1, which are obtained using theDWT, are used for train-
ing and test processes of the PNN [46,47]. By considering the
data in Table 2, the input data sets are 720, 4320, and 300 for

training the radial structure, loop structure, and underground
structure, respectively. There are 360, 2160, and 150 sets
for the validation radial structure, loop structure, and under-
ground structure, respectively. Before the training process,
the PNN structure consists of four neurons (input) and one
neuron (output), whereas the number of neurons in the radial
basis layer is always equal to the number of training sets.
The input patterns are maximum coefficients of the DWT at
1/4 cycle of phase A, B, C, and zero sequence for post-fault
current waveforms, as shown in Fig. 8. The output variables
of the PNN are designated in a range of 1–10, corresponding
to various types of fault, as shown in Table 3.

Figure 9 shows an algorithm used in the training process
for the PNN. The maximum coefficient details of the DWT
(input variables, as shown in Fig. 8; and the output variable,
as shown in Table 2) are used to prepare the data by nor-
malization because the obtained data will clearly analyse the
pattern. The obtained data are propagated to each neuron
in the radial basis layer. During the training process, PNN
begins with a random initial weight and increasing spread
in the radial basis layer, which corresponds to the bias value
(b = 0.8326

Spread ) from 0.0001 until 0.1. For each iteration, the
radial basis layer computes distances from the input vector to
the weight vector and produces an output in the radial basis
layer based on Eq. 1 [36,47]:

ϕ(p) = exp

(
−

∥∥p − IW1,1
∥∥2

σ 2
j

)
(1)

where p= input pattern vector, IW1,1 =centre vector of
radial basis layer, σ = spread constant for radial basis layer
(smoothing parameter), ϕ(p)=output of radial basis layer.

After the output of the radial basis layer is determined,
each neuron in the competitive layer receives all the radial
basis layer outputs that are associated with a given class and
produces a net output that consists of a vector of probabili-
ties. Finally, a competitive activation function applied to the
output of the competitive layer determines the maximum of
these probabilities and produces a value of 1 for that class
and 0 for the other classes, as in Eq. 2 [46]:

o/pANN = f 2
(
LW2,1 × ϕ(p)

)
(2)

Table 2 Number of data for decision algorithm

Number of set Radial structure (System 1) Loop structure (System 2) Underground structure (System 3)

MM3-TTK WN-CBG WN-SNO SNO-CBG VIBHAVADI-SAMYAN

Training 720 1440 1440 1440 300

Validation 360 720 720 720 150

Case studies 360 720 720 720 150
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signal in loop structure (section WN1T-CBG1T), c post-fault current signal in underground structure (section VIBHAVADI-SAMYAN)
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Table 3 Output patterns from neural networks

Output of PNN Classification of fault type Types of fault

1 Phase A to ground fault AG

2 Phase B to ground fault BG

3 Phase C to ground fault CG

4 Phase A, B to ground fault ABG

5 Phase B, C to ground fault CAG

6 Phase C, A to ground fault BCG

7 Three-phase fault ABC

8 Phase A to phase B fault AB

9 Phase C to phase A fault CA

10 Phase B to phase C fault BC

where f 2 =competitive activation function, LW2,1 =weight
vector between radial basis layer and competitive layer.

After computing the output of the PNN for each iteration,
the number of errors in the test sets can be calculated to be
used as an index for efficiency determination of the PNN. If
the number of errors is zero, then the weight and bias will be
collected and verified with case study sets after the training
process. If the number of errors is more than zero, then the
weight and bias will be improved, and its output will try to
match the target output in the next iteration.

For the next iteration, a step spread increase of 0.0001 is
used to compute the number of minimum errors again. This
procedure is repeated until the maximum number of spreads
is reached, or the number of minimum errors of the test set is
zero. Then, training will be stopped. The training process is
summarized in a flowchart in Fig. 9. Results from the training
process are listed in Table 4.

The BPNN is compared with the proposed decision algo-
rithm in order to show the benefits of the proposed decision
algorithm. Before the BPNN training process [35], a struc-
ture of the BPNN consists of four neuron inputs in the input
layer, two hidden layers, and one neuron output in the output
layer. The initial and final number of neurons for the first
hidden layer are two and 11 neurons, respectively. During
the training process [35], the weight and biases are adjusted
to compute themean absolute percentage error (MAPE). The
MAPE is an index to determine the efficiency of the BPNN.
The training procedure was stopped when the final number
of neurons for the first hidden layer was reached, or when
the MAPE of the validation sets was less than 0.5%. Results
from the training process are listed in Table 4. Based on the
training times in Table 4, the PNN has less training time than
the BPNN.

After the training process, the algorithm was employed to
classify fault types in the transmission systems. Case studies
were varied to verify the algorithm’s capabilities. The sys-
tem under consideration is shown in Figs. 1, 2 and 3. Various

Adjusting Weight   

bias = 0.8326 / i

Compare the number 
of minimum error in 

test sets 
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calculate the number of 

minimum error

i > 0.1 or                   
the number of 
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from DWT (Phase A, B, C and zero sequence 
for post-fault current) in first scale at ¼ cycle

Start

Normalization of input and 
output pattern

Random initial Weight

1 output (value range 1-10) which 
corresponding to the types of faults

Fig. 9 Flowchart for training process

case studies were performed with various types of faults at
each location on the transmission and distribution network,
including variations in fault inception angles and locations on
each transmission and distribution line. The total number of
case studies for the radial structure, loop structure, and under-
ground structure was 360, 2160, and 300 sets, respectively.
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Table 4 Comparison of results of training process

Information for com-
parison

Radial structure Loop structure Underground structure

BPNN PNN BPNN PNN BPNN PNN

Number of neurons input 4 4 4 4 4 4

Number of neurons in hidden 1 for BPNN
(or radial basis layer for PNN)

11 611 11 3456 11 300

Number of neurons in hidden 2 10 – 10 – 10 –

Spread – 0.0022 – 0.002 – 0.001

Number of neurons output 1 1 1 1 1 1

Iterations 20,000 611 20,000 3456 20,000 300

Total time of training process (min) 20 1 160 9.708 35 1
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Fig. 10 Comparison of average accuracy of fault classification for various lengths of transmission line system 1 where fault occurs. a Case of
single line-to-ground fault (SLG), b case of double line-to-ground fault (DLG), c case of line-to-line fault (L–L), d case of three-phase fault (3-P)

Figures 10, 11 and 12 and Table 5 show a comparison of
the average accuracy between the decision algorithm using
PNN, decision algorithm using BPNN, and decision algo-
rithm using a comparison of the coefficients of the DWT or
trial and error that was developed by Markming et al. [19].

Based on a further analysis of Figs. 10, 11 and 12, it
can be observed that the obtained average accuracy from

the decision algorithm also gives better results than the
other techniques [19] at various lengths of the transmission
lines in which faults occur. The proposed decision algorithm
gives better results than the other algorithms [19,35]. The
trial-and-error technique gives satisfactory results with both
structures but not in the case of a double line-to-ground fault.
In Figs. 10b and 11b, when the double line-to-ground fault
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Fig. 11 Comparison of average accuracy of fault classification for various lengths of transmission lines (System 2) where fault occurs. a Case of
single line-to-ground fault (SLG), b case of double line-to-ground fault (DLG), c case of line-to-line fault (L–L), d case of three-phase fault (3-P)

occurring between 30 and 70% of the length measured from
the sending end is considered, it can be observed that the
obtained average accuracy from the trial-and-error technique
has an unacceptable precision in classifying the fault types,
as shown in Fig. 10b. On the other hand, the proposed algo-
rithm is unaffected for the fault classification for a double
line-to-ground fault between 30 and 70% of the length mea-
sured from the sending end. This indicates that the proposed
decision algorithm can classify the various types of fault for
radial and loop structures.

Table 5 shows the average accuracy for fault classification
for each structure as obtained from the proposed decision
algorithm, BPNN algorithm, and trial-and-error technique.
This shows the advantage of the PNN algorithm when deal-
ing with a loop-structure transmission network. As a result,
the obtained results for both structures have little impact on
the average accuracy. It can be concluded that the proposed
algorithm can classify the types of fault in the transmission
and distribution systemwith an accuracy of higher than 99%.

5 Experiment results for fault detection and
classification

The section of MM3-TTK transmission system is modelled
and developed on an experimental bench in a laboratory envi-
ronment in order to verify the model used in the simulation.
Then, the proposed algorithm detection and classification
of fault signals is applied to an actual system. The overall
experimental set-up in the laboratory is shown in Fig. 13. By
considering Fig. 13a, the variable voltage transformer was
employed to adjust the voltage level of the experimental set-
up at 400 VLL from the laboratory’s supply at point No. 1, as
shown in Fig. 13a. The circuit breakers and fuses at point No.
2 were employed as protective devices to prevent damage to
the supply. Then, the electric parameters at the source side
(sending end) and load side (receiving end)—such as volt-
age, current, and real power including the power factor—can
be achieved with the power meter at points Nos. 3 and 4 in
Fig. 13a, respectively.
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Fig. 12 Comparison of average accuracy of fault classification for various lengths of underground distribution lines (System 3) where fault occurs.
a Case of single line-to-ground fault (SLG), b case of double line-to-ground fault (DLG), c case of line-to-line fault (L–L), d case of three-phase
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The transmission linemodelwas designedwith aπ model.
By considering Fig. 13b, the inductor and capacitor were
used in the transmission line model. Fifteen inductors of
120mH and the six inductors of 60mH were connected in
series to obtain the desired value. In addition, the 0.1-µF
capacitors at a rated voltage of 400 VAC were also con-
nected in parallel or in series to obtain the desired values.
An incandescent lamp (resistance load) was used as a lin-
ear load, whereas the magnetic ballast (inductance load)
including the incandescent lamp were used as a nonlinear
load.

A comparison between results from the ATP/EMTP sim-
ulation program and the experimental set-up was conducted
in order to evaluate the correctness of the simulation model
and parameter data. Figure 14a, b shows current signals
obtained from the experimental set-up and ATP/EMTP pro-
gram, respectively. The case study in the figure is a single
line-to-ground fault at a distance of 30% along the transmis-
sion line from the substation bus, and the fault angle is 180◦

of the phase A waveform. Figures 15, 16 and 17 also show
a comparison between the simulation and the experimental
set-up using the same parameter settings as the case study
in Fig. 14, but using various fault types. Figure 15 shows
an example case study of a double line-to-ground fault. Fig-
ure 16 shows an example case study for a line-to-line fault.
Figure 17 shows an example case study of a double line-to-
ground fault. This indicates that the results of the simulation
model of the fault in a transmission line align with the results
from the experimental set-up in all case studies. Thus, it
can be concluded that the simulation model and data can
be applied to an actual system.

The fault signals generated using the experimental set-up
are extracted to several scaleswith the daubechies4, as shown
in Figs. 18 and 19. By considering the coefficients obtained
using a DWT, it is seen that when a fault occurs, the coeffi-
cients of high-frequency components have a sudden change
compared with those before a fault occurs. Therefore, the
result obtained from the fault detection algorithm presumes
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Table 5 Comparison of average accuracy for fault classification for various types of faults at each location on the transmission network

Section Types of faults Number of case
studies

Fault detection
(%)

Average accuracy (%)

Trial-and-error method [19] DWT and BPNN [35] DWT and PNN

MM3-TTK SLG 108 100 100.00 100.00 100.00

DLG 108 100 42.59 97.22 100.00

L–L 108 100 100.00 98.15 100.00

ABC 36 100 97.22 94.44 100.00

WN-CBG SLG 216 100 100.00 100.00 100.00

DLG 216 100 72.22 92.59 100.00

L–L 216 100 100.00 98.14 100.00

ABC 72 100 100.00 98.61 100.00

WN-SNO SLG 216 100 100.00 100.00 100.00

DLG 216 100 72.22 91.67 100.00

L–L 216 100 100.00 97.68 100.00

ABC 72 100 100.00 97.22 100.00

SNO-CBG SLG 216 100 100.00 100.00 100.00

DLG 216 100 70.83 88.89 98.61

L–L 216 100 96.29 97.22 100.00

ABC 72 100 100.00 97.22 100.00

Underground SLG 45 100 80.00 100.00 100.00

DLG 45 100 80.00 100.00 100.00

L–L 45 100 100.00 100.00 100.00

ABC 15 100 100.00 93.33 93.33

Average 2670 100 90.71 96.78 99.85

that these signals are in their fault condition. However, sig-
nals obtained from the actual experimental set-up consist of
noise, especially after entering the steady state of a fault sig-
nal. The reason is that an actual experimental set-up has some
factors that can affect the signal measurement process. Thus,
the amplitude of the fault current can amplify a noise signal
when applied to signal processing. A noise signal from an
experimental set-up does not affect fault detection or a clas-
sification algorithm because the wavelet coefficient when a
fault occurs is higher than that of other states. For the next
step, the maximum coefficient details from the variations
in the first-scale high-frequency components that can detect
faults of phase A, B, C, and zero sequence of post-fault cur-
rent signals obtained by the DWT are also verified for their
decision algorithm capability. This is done with a decision
algorithmusingPNN, a decision algorithmusingBPNN[35],
and a decision algorithmusing trial and error [19]. The results
show that the proposed algorithm can classify types of fault
with an average accuracy of higher than 90%, as shown in
Table 6.

Table 6 lists the fault classification accuracies of various
algorithms, and a comparisonbetweenproposedmethods and
previous methods in past research studies. From the table, it
can be seen that the proposedmethod can achieve satisfactory

results when classifying faults with an average accuracy of
higher than 90%, when compared with algorithms proposed
in previous research studies.

6 Conclusions

This paper proposed an algorithm based on a combination of
DWT and PNN algorithms to classify types of faults in trans-
mission and distribution systems. The radial structure and
loop structure of transmission systems, and the radial under-
ground structure of distribution systems, are investigated
to verify their algorithm capability. Daubechies4 (db4) was
selected as a mother wavelet to decompose high-frequency
components from fault signals. Positive sequence current sig-
nals were used in fault detection. The maximum coefficient
details from the variations in first-scale high-frequency com-
ponents that can detect faults at 1/4 cycle of phase A, B, C,
and zero sequence of post-fault current signals obtained by
the DWT were used as inputs for the training process of a
PNN in a decision algorithm. The results show that the pro-
posed algorithm is able to detect a faulty buswith an accuracy
of 100%, and classify types of fault with an average accuracy
of higher than 99%.
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Fig. 14 Example of current signal for single line-to-ground fault. a Experimental set-up, b ATP/EMTP program
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Fig. 15 Example of current signal for double line-to-ground fault. a Experimental set-up, b ATP/EMTP program
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Fig. 16 Example of current signal for line-to-line fault. a Experimental set-up, b ATP/EMTP program
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Fig. 17 Example of current signal for three-phase fault. a Experiment set-up, b ATP/EMTP program
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Fig. 18 Example of DWT from
scale of 1–5 for positive
sequence of three-phase fault in
the experimental set-up
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Table 6 Summary of overall accuracy obtained from experimental set-up

Classification of the fault types Number of case studies Fault classification (%)

Trial-and-error method [19] DWT and BPNN
[35]

DWT and PNN

Single line-to-ground fault 30 70.00 90.00 96.67

Double line-to-ground fault 30 63.33 76.67 90.00

Line-to-line fault 30 83.33 90.00 93.33

Three-phase fault 10 60.00 70.00 80.00

Average 71.00 84.00 92.00

In addition, real data from a real-power system are not
available for us to test the proposed scheme, but an experi-
mental set-upwas investigated. This experimental set-upwas
modelled after an actual transmission system in Thailand.
Based on its accurate results for a simulation signal and real
signal, it can be concluded that the proposed algorithm is
adequate for other power systems with different line models
and that it can be applied to actual systems even when the
accuracy is slightly reduced by the effect of noise in the actual
system. Thus, this verification shows the effectiveness of the
proposed technique,which can perform accurately under var-
ious systems and fault conditions.
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