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Abstract This work presents a fault diagnosis strategy for
induction motors based on multi-class classification through
support vector machines (SVM), and the so-called one-
against-one method. The proposed approach classifies four
different motor conditions (healthy, misalignment, unbal-
anced rotor and bearing damage) at variable operating
conditions (supply frequency and load torque). The proposed
SVMs use signatures from the frequency domain character-
istics related to each studied fault. These signatures combine
information just from the stator condition: radial vibration
and stator currents. To acquire training and validation data
in steady state, different experiments were performed using
a three-phase induction motor. Thirty-five data sets were
obtained at different operating regimes of the inductionmotor
for each specific fault (140 conditions including a no-fault
scenario) to validate our study. The SVMs with a Gaussian
radial basis function (RBF) were proposed as a kernel for
the nonlinear classification process. To select the parameter
value of the RBF, a bootstrap technique was used. The result-
ing accuracy for the fault classification process was on the
range 84.8–100%.
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1 Introduction

Induction motors (IM) are widely used in modern industry
due to their reliability, low cost and high performance; how-
ever,mechanical and electrical faults could occur in induction
motors [1,2]. Several studies have shown that almost 40–50%
of all motor failures are bearing related, caused by corrosion,
inadequate lubrication or installation [3]. On the other hand,
a large percentage of machinery malfunctions are because
of rotor unbalance and misalignment alone [2]. These faults
produce excessive vibration, causing the system to eventually
follow a shutdown condition, resulting in economic losses
and even life-threatening conditions. Therefore, a fault con-
dition must be detected at its early stage to avoid undesirable
motor failures.

Due to the importance of fault diagnosis in IMs, a
great amount of research has focused on providing reliable
and robust fault detection and isolation (FDI) algorithms.
According to the required information by the FDI stage,
there are two main trends: motor current signature analysis
(MCSA) [4–11], and vibration-based studies [12–16], where
a frequency domain analysis is required for these signals to
identify characteristic frequencies related to a given fault. In
fact, there has been efforts looking to understand the relations
between the frequency information of both signals, vibration
and currents, in a fault condition [17,18]. However, there
are certain faults that have a more distinctive signature in the
vibration information than in the stator current traces. In fact,
recent works have focused on using the voltage and current
information in electrical machines for diagnosis purposes.
Hence, different types of eccentricity and short-circuit faults
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in a synchronous machine were detected by field current and
shaft voltage in [19]. Meanwhile, in [20], the active and reac-
tive power in the electrical generator of a wind turbine are
employed to detect faults in the gearbox using symmetrical
components information and frequency domain data. Resis-
tive unbalance andwinding inter-turn short circuits were also
studied in permanent magnet synchronous motors by zero-
sequence voltage components and stator currents harmonics
analysis in [21].

An important research line in IM health-monitoring has
relied on artificial intelligence techniques such as artificial
neural networks, fuzzy logic, genetic algorithms and support
vector machines [22–36], for designingmonitoring and diag-
nosis schemes. In [8], the applicationof a radial basis function
(RBF) neural network is presented as a classifier to detect
only bearing faults with an accuracy of 93.75%, where the
inputs of the neural network are the Concordia components
of the stator currents. In [12], a neural network is trained with
vibration spectra obtained from an FFT-based algorithm for
fault detection of half, one, two and four broken bars. On the
other hand, in [17], the FFT technique was employed to con-
vert time domain signals of the motor’s vibration and stator
current measurements into frequency domain information,
which it is a well-recognized standard due to its simplic-
ity and small amount of processing power, and since it can
provide salient features for the diagnosis of the bearing con-
dition under different load configurations and motor speeds.
In [29], a scheme for multiple-fault diagnosis based on sup-
port vector machines (SVM) is used to detect bearing faults
using electrical signals and vibrations. In [30], it is presented
the application of wavelet and SVMs for detecting only bear-
ing faults. Meanwhile, in [32], several SVM classifiers (45)
are applied to perform fault diagnosis of ten conditions of
rotor bars regardless of other failures in the IM. The input
data are extracted from the spectral information of the motor
currents, voltages and magnetic field. Recently, in [33], it
has been developed a scheme using SVMs for diagnosing
bearing conditions, particularly, outer race, inner race, and
rolling element faults, where a 97.42% accuracy is achieved.
Similarly, in [35], a fault diagnosis scheme for locomotive
roller bearings have been proposed using an SVM classifier,
where the parameters of the SVM are tuned by an ant colony
optimization method. In addition, a learning classification
method based on SVM has been successfully suggested for
motor pumps of oil rigs using vibration information in [36].

Similarly, in [37], the authors propose a diagnosis scheme
based on wavelet support vector machine (WSVM) and
immune genetic algorithm (IGA) to determine the optimal
parameters for the WSVM. With this approach, four kinds
of gearbox faults are detected using vibration signals with a
classification average accuracy of 97.98%. In [38], a parti-
cle swarm optimization (PSO) method is used to determine
the tuning parameters of the WSVM. In this study, only

vibration signals are employed to identify different fault pat-
terns of the rolling elements in bearings, achieving a fault
classification accuracy of 96.35 and 97.5% for Mexican hat
and Morlet wavelet kernels, respectively. In [39], artificial
neural networks (ANNs) and SVMs are used for bearing fault
detection in electrical machines, using also just time domain
vibration signals. For the SVMs, the kernel parameters are
selected from PSO algorithm. This approach achieved a clas-
sification success accuracy in the range 98.6–100%. In [40],
the authors use the harmonics of bearing fault-related fre-
quencies from vibration signals to detect outer race bearing
faults in a three-phase squirrel-cage induction motor using
SVM’s. Finally, wavelet-based feature extraction of axial,
radial and tangential vibration signals is employed in [41] to
detect stator interturn fault and bearing damage, where SVM
and k-nearest neighbor were used as classification meth-
ods.

Although there is a vast and thorough literature in FDI
methods applied to IM, there are still open problems and
unsolved issues, as multiple-fault diagnosis, beyond bearing
failures and variable operating conditions during evaluations.
This last scenario comprises variable supply frequencies and
load torques. In addition by considering inverters, the robust-
ness of the diagnosis algorithms to high-frequency switching
has to be verified. Under this perspective, this paper extends
and complements our early study in [29], where the novelty
of this work relies on studying simultaneous fault diagnosis
in IM by considering three mechanical rotor malfunctions:
bearing damage, misalignment and unbalanced rotor, and
assuming variable operating conditions of the system with
respect to supply frequency and load torque. The unbalance
rotor scenario in the IM is assumed from a mechanical ori-
gin. Other common fault conditions in IM, like eccentricity
or stator shorts are outside the scope of this study, and will
be the focus of future works. The studied faults produce dis-
tinctive cyclic patterns in the mechanical vibration and stator
currents of the IM, as has been documented in the litera-
ture [2]. Therefore, the FFT algorithm is employed to extract
frequency characteristics of the radial vibration and stator
currents. Consequently, our approach combines electrical
and mechanical information of the IM to construct a dis-
tinctive feature vector for multiple-fault diagnosis at variable
working conditions. Themulti-fault classification is achieved
using SVMs with the so-called one-against-one method,
which constructs classifiers where each one is trained on
data from two classes. The selected SVM parameters are
based on the lowest classification error obtained using boot-
strapped samples in the training phase. To validate the final
FDI scheme, the methodology is implemented in a LabView
platform. The classification accuracy is obtained in the range
of 84.8 to 100% under variable supply frequency and load
torque conditions (140 operating regimes). To achieve this
classification performance, this approach requires the fusion
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of different information sources, as radial vibration and stator
currents.

The rest of this paper is organized as follows. Section 2
presents the mathematical formulation of the SVM classi-
fiers and the selection of their parameters. Section 3 presents
the frequency components related to the studied faults in
the vibration and stator currents information. The features
extraction used for classification is detailed in Sect. 4 based
on frequency domain data. In Sect. 5, the quantification of the
proposed features is detailed, and Sect. 6 describes the imple-
mentation of the proposed multi-fault classification scheme
and the experimental results. Finally, conclusions are given
in Sect. 7.

2 Support vector machine

SVM is a type of learning algorithm introduced by Vapnik
and co-workers [42]. In a classification process, the SVM
separates a set of binary-labeled training data with a hyper-
plane that maximizes its distance to the data, this is called
maximal margin hyperplane, so the SVMcanwork in combi-
nationwith kernel functions, to compute a nonlinearmapping
to the features space. The hyperplane obtained by the SVM in
the features space corresponds to a nonlinear decision bound-
ary in the input space.

In a two-class classification problem with linearly sepa-
rable data and l training samples, the design algorithm for
an SVM is reduced to the next primal convex optimization
problem

min
w

1

2
‖w‖2,

s.t. yi (w�xi + b) ≥ 1, ∀i = 1, ... , l (1)

where xi ∈ R
n is the i th features sample, yi ∈ {−1,+1} is

the class label value (binary problem), w ∈ R
m is a weight

vector, b is a bias term, and w�xi + b = 0 is the decision
function (hyperplane). The previous optimization problem
can be represented by the next dual problem as

max
αi

l∑

i=1

αi − 1

2

l∑

i=1

l∑

j=1

αiα j yi y j 〈xi , x j 〉,

s.t.
l∑

i=1

αi yi = 0, 0 ≤ αi ∀i = 1, ... , l (2)

where αi are the Lagrange multipliers, and 〈xi , x j 〉 is the
inner product of the input features vectors xi and x j . The
dual optimization problem can be solved numerically using
MATLAB or SCILAB (commands quadprog and quapro,
respectively). Next, the weight vector w can be computed
by

w =
l∑

i=1

αi yixi (3)

which is a linear combination of the input features vectors
(x1, ... , xl). Then, considering the primal optimization prob-
lem in (1), the bias term b is obtained as

b = max
1≤i≤l

s.t. yi=−1

w�xi + min
1≤i≤l
s.t. yi=1

w�xi . (4)

In (2), the only term that depends on the features vectors is the
inner product 〈xi , x j 〉. Hence, for a nonlinear classification,
the inner product is defined in a higher dimensional space
through the nonlinear mapping φ : Rn 
→ R

m with m > n.
Therefore, this term can be expressed as a kernel function in
the optimization procedure by

K (xi , x j ) � 〈φ(xi ), φ(x j )〉. (5)

For the design of the SVMs, the Gaussian RBF kernel is
considered:

K (xi , x j ) = exp

(
−‖xi − x j‖2

2σ 2 ,

)
(6)

where ‖ · ‖ denotes the Euclidean norm, and σ is a free
parameter related to the dispersion of the support vectors. In
fact, the selection of the type of kernel function depends on
the classification problem. Nonetheless, RBF functions have
been documented extensively in the literature, making them
a benchmark for classification applications based on SVMs.
Summarizing, the synthesis of the SVM can be described in
two steps:

– Solve thedual optimizationproblem (2) replacing 〈xi , x j 〉
with the proposed kernel K (xi , x j ) in (6) to compute the
terms αi .

– Obtain w and b from (3)–(4).
– Compute the optimal separation hyperplane by w�x +
b = ∑l

i=1 αi yi K (xi , x) + b.

2.1 Multi-classification problem

To separate more than two fault classes in an IM, a
multi-classification method is necessary. In this study, the
one-against-one method is adopted, in which SVMs are con-
structed for all possible pairs of classes, that is, N (N − 1)/2
decision functions, where N is the number of classes. Since
there are 4 classes (healthy, misalignment, unbalance and
bearing damage), 6 SVMs are employed to separate the
following class pairs: (i) healthy-misalignment (SVM1),
(ii) healthy-unbalance (SVM2), (iii) healthy-bearing dam-
age (SVM3), (iv) misalignment-unbalance (SVM4), (v)
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misalignment-bearing damage (SVM5), and (vi) unbalance-
bearing damage (SVM6). For this purpose, the decision
function that separates the i th from the j th class for the fea-
tures vector x ∈ R

n is defined as

di j (x) � wT
i jx + bi j , ∀i, j = 1, ... , N ,

where wi j ∈ R
n is a weight vector and bi j ∈ R a bias term.

If a new pattern x belongs to the set

Ωi = {z ∈ R
n| sign(di j (z)) = +1, ∀ j = 1, ... , N ; j �= i},

where sign(·) denotes the sign function, then x belongs to
class i . If x does not belong to any set Ωi for i = 1, ... , N ,
the classification cannot be achieved by a voting scheme. For
this purpose, the number of times that the features vector x
is assigned to the i th class is computed by

di (x) =
N∑

j=1,
j �=i

sign(di j (x)). (7)

Then, the following decision function is considered

d(x) = arg max
i=1,...,N

di (x). (8)

That is, if d(x) is maximum for a given value of i , then
x belongs to i th class. The highest number of votes that a
features vector x may have is N − 1, then if x ∈ Ωi , di (x) =
N − 1 and dk(x) < N − 1 for k �= i .

2.2 SVM parameter selection

To select the parameter σ of the RBF kernel function in (6), a
bootstrap technique, introduced by [43] is used for assessing
accuracy of the SVM classifiers. Let Z = (z1, z2, ... , zM )

the training data set with M samples, where zi = (xi , yi ) is a
pair of features vector and class label. Next, subsets Zb ⊂ Z
are randomly extracted from the training setZ, this procedure
is done B times, i.e., b = 1, ... , B. Then, the classification
error is calculated for each one of the bootstrapped samples
and the behavior of the B replications is examined. If d(xi ) is
the classification result from the SVM fitted to the bth boot-
strapped sample, the estimation of the SVM classification
error can be given by

Eboot = 1

B · M
B∑

b=1

∑

(xi ,yi )∈Zb

(yi − d(xi))2. (9)

This parameter characterizes the SVMs accuracy and can be
used to choose the best classifiers.

3 Fault conditions

In this work, the classification process will be carried out
based on the steady-state frequency domain characteristics
of the stator currents and radial vibration measurements after
a fault is present in the IM [2]. Thus, in this section, the
characteristic fault frequency components for both measure-
ments will be reviewed. Three common rotor fault conditions
in induction motors will be studied: misalignment, unbal-
anced rotor, and bearings degradation. In the literature, there
is evidence that the correct diagnosis of these three fault con-
ditions is a challenging task, especially for variable frequency
and load torque conditions [3]. One important remark is that
the resulting frequency components produced by the studied
faults are dependent on the supply frequency of the IM, but
independent of its power rating [2,3], as will be described
next.

3.1 Misalignment fault

Misalignment is produced by an inaccurate coupling between
the IM shaft and its load. This condition can induce oscilla-
tions in the air-gap length that cause variations in the air-gap
flux density. In fact, misalignment affects the equivalent
inductances of themachine producing stator current harmon-
ics at the following frequencies [2]:

fm = fs

[
1 ± k

(
1 − s

p

)]
, (10)

= fs ± k fr, k = 1, 2, ... (11)

where fs denotes the electrical supply frequency, s is the slip,
p the number of pole pairs and fr themechanical rotor speed.
At the same time, misalignment produces components in the
spectrum of the radial vibration signal at frequencies fr and
2 fr. However, the dominant component is located at 2 fr. In
addition, when the misalignment is severe, it is possible to
find other harmonics from 3 fr to 8 fr, or even a whole series
of high-frequency harmonics [3].

3.2 Unbalance rotor fault

Unbalance is characterized by an uneven distribution ofmass
about the IM rotating centerline (mechanical origin) [3]. The
addition of keys and keyways helps to avoid the unbalance
condition in IM, where the ISO 8821 standard establishes
conventions for shaft and fitment key, but in practice, differ-
ent manufacturers follow their own procedures as to use a
full key or half key. The source of these failures can be the
imprecision inmanufactured parts that produce concentricity
and unbalance individually. Thus, when amotor is assembled
and the permanent key is added, unbalance will often be the
result. Moreover, looseness of parts can result in shifting dur-

123



Electr Eng (2018) 100:59–73 63

ing operation, causing a change in balance, other factors as
corrosion, wear and deposit build up that can lead to severe
unbalance, particularly to fans, blowers and compressors.

Due to the small amplitude of the fault harmonics in cur-
rent spectrum, when this fault is emerging is difficult to be
detected; therefore, we used the vibration information. How-
ever, the faults considered in this paper are detected when
they are already present and not in the emerging phase. Sim-
ilarly to a misalignment fault, an unbalanced rotor causes
variations in the air-gap length, so it is expected components
once more at fault frequencies fm = fs ± k fr k = 1, 2, ...
in the spectrum of the stator currents [2]. Although there are
similarities in the electrical diagnostic media for misalign-
ment and unbalanced rotor, the frequency information of the
vibration signal provides additional insight. For a case of
unbalance, there is a predominant component of vibration
signal at the rotational speed of the machine fr in the radial
direction [3].

3.3 Bearing faults

The frequency spectrum of the vibration signal related to a
bearing failure can be split into four zones, observed as the
bearing wear progresses [3], these zones are at (i) rotational
speedmachine and harmonics, (ii) bearing defect frequencies
zone (80–500 Hz), (iii) bearing component natural frequen-
cies zone (500–2 kHz), and (iv) high-frequency zone (beyond
to 2 kHz). As a result, features in the frequency spectrum of
the vibration signal can be isolated according to the severity
of the wear. For example, for an IM with an incipient bear-
ing defect, the frequency components present in the vibration
information refer to zone in the 500 Hz to 2 kHz range. At
this stage, the fatigued raceways begin to developminute pits,
where as the rolling elements pass over these pits, the ringing
or the bearing component natural frequencies are generated
[3]. There are several studies of bearing fault diagnosis using
stator currents information [14], as the Hilbert modulus cur-
rent space vector (HMCSV) and Hilbert phase current space
vector (HPCSV) [44]. However, this study shows that the
vibration measurements provide key information for multi-
class fault detection [39].

4 Features extraction

The first step in the design of an FDI scheme is to define
residual signals of the process, i.e., signals that will change
their time or frequency patterns when a fault appears. From
the analysis in the previous section, stator currents and
radial vibration can serve for this purpose. In fact, only
the measurement of one stator current could be enough
due to the symmetry in the IM. Nevertheless, due to pulse-
width-modulation (PWM) inverters and electrical noise, the

frequency components in the stator current could be affected.
In addition, all IMs have an intrinsical stator unbalance due to
themanufacturing process. So,we include a residual basedon
Clarke transformation of the three stator currents [7]. As will
be shown in the next section, this extra information allows
separability in the features space. The mathematical founda-
tion of this residual is detailed next.

In the presence of a misalignment fault, the stator currents
spectrum will contain components at frequencies described
in (10). These new components could be viewed as sideband
elements of the supply frequency fs. Clarke transformation
is used to obtain a two-dimensional representation of the
three-phase IM stator currents, [4,5,7]. As a function of the
stator currents (ia, ib, ic), Clarke vector is represented by
idq = [id iq ]T whose components are:

⎧
⎨

⎩
id =

√
2
3 ia − 1√

6
ib − 1√

6
ic,

iq = 1√
2
ib − 1√

2
ic.

(12)

Hence, the squared magnitude of Clarke vector is

‖idq‖2 = i2d + i2q . (13)

Evaluating (13), the spectrum of Clarke vector modulus will
have components at frequencies 2 fs, 2 fs ± fr, 2 fs ± 2 fr, fr
and 2 fr, in addition to a DC level [4,5]. Consequently, there
are two distinctive components at the rotational frequency
fr and its second harmonic 2 fr related to the misalignment
fault in this residual.

5 Features quantification

The fault diagnosis scheme relies on a features vector to
achieve accurately the multi-classification process of the IM
condition, and next, the features vector is classified using
a voting scheme based on SVMs. The features proposed in
this work are the amplitudes of the spectral components at
the distinctive fault frequencies for each diagnostic element.
An FFT is then performed to extract the frequency char-
acteristics of the stator current, Clarke vector modulus and
vibration measurement. The power spectral density (PSD)
for each signal is

Pc
k = |Dc(k)|2, (14)

where Dc(k) is the Discrete Fourier Transform of signal c(n)

Dc(k) =
N−1∑

n=0

c(n)e− j2πkn/N k = 0, 1, ... , N − 1,
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N is the number of samples of c(n), 0 ≤ n ≤ N − 1. In
this study, the stator current of phase-a in the IM (ia), Clarke
vector modulus (‖idq‖), and the vibration signal (v) are sam-
pled at a frequency of f = 40 kHz with a time window of
800,000 samples, i.e., an acquisition time window of 20 s.
Then the resolution in the PSD is Δ f = f/N = 0.05 Hz.
From the experimental measurements, the minimum reso-
lution necessary to obtain accurate classification results is
0.05 Hz. The data acquisition card is equipped with a low-
pass filter (cutoff frequency of 40 kHz), which is used to
eliminate electrical noise in the signals. Note that the fre-
quency resolution is important, because in a noisy spectrum
a fault-related spectral component couldbeoverlooked. From
the information of a stator current (ia), Clarke vector mod-
ulus (‖idq‖), and mechanical vibration (v) are extracted six
distinctive features:

(i) ζia → energy of the frequency components in the line
current at frequencies fs+ fr, fs+2 fr, fs+3 fr , fs+4 fr .

(ii) ζ‖idq‖ → energy of the frequency components in Clarke
vector modulus at frequencies fr, 2 fr and 4 fr .

(iii) ζ 1
v → energy of the component at frequency fr in the
radial vibration measurement.

(iv) ζ 2
v → energy of the components at frequencies 2 fr and
3 fr in the radial vibration measurement.

(v) ζ 3
v → energy of the components at frequencies 5 fr, 6 fr
until 900 Hz in the radial vibration measurement.

(vi) ζ 4
v → energy of the components in the range 1500 to
1800 Hz in the radial vibration measurement.

Therefore, according to the description of the fault compo-
nents in Sect. 3, ζia and ζ‖idq‖ are characteristics obtained
from the stator current and Clarke vector modulus, related
to misalignment and unbalance faults. ζ 2

v and ζ 3
v are char-

acteristics obtained from the vibration signal related to a
misalignment fault. Finally, ζ 1

v and ζ 4
v are characteristics

obtained from the vibration signal associated with unbal-
ance and bearing faults, respectively. Next, the mathematical
descriptions of these indexes based on (14) and measure-
ments (ia, ‖idq‖, v) are presented:

ζia =
ks+kr+10∑

k=ks+kr−10

Pia
k +

ks+2kr+10∑

k=ks+2kr−10

Pia
k

+
ks+3kr+10∑

k=ks+3kr−10

Pia
k +

ks+4kr+10∑

k=ks+4kr−10

Pia
k , (15)

ζ‖idq‖ =
kr+10∑

k=kr−10

P
‖idq‖
k +

2kr+10∑

k=2kr−10

P
‖idq‖
k

+
4kr+10∑

k=4kr−10

P
‖idq‖
k , (16)

ζ 1
v =

kr+10∑

k=kr−10

Pv
k , (17)

ζ 2
v =

2kr+10∑

k=2kr−10

Pv
k +

3kr+10∑

k=3kr−10

Pv
k , (18)

ζ 3
v =

5kr+10∑

k=5kr−10

Pv
k +

6kr+10∑

k=6kr−10

Pv
k + · · ·

+
�18000/kr�kr+10∑

k=�18000/kr�kr−10

Pv
k , (19)

ζ 4
v =

36000∑

k=30000

Pv
k , (20)

where �·� denotes the floor function, index ks = fs/Δ f
represents the sample number corresponding to the supply
frequency fs, and kr = fr/Δ f with respect to the rota-
tional speed of the IM. The estimated energy of the harmonic
components at rotational frequency fr is carried out over a
window of ±0.5 Hz for indexes in (15)–(19). Therefore, the
features vector x given over a time window is denoted by

x = [ζia , ζ‖idq‖, ζ 1
v , ζ 2

v , ζ 3
v , ζ 4

v ]� ∈ R
6. (21)

where each component of the features vector x contains the
power carried by the respective signal, per unit frequency,
known as the PSD of the signals. The PSD of these signals
is expressed in watts per hertz (W/Hz). The indexes in equa-
tions (15)–(20) are established according to correspondence
between the fault frequencies and the range of samples in
the PSD. The relationships between the frequency range of
the faults and the number of samples in the spectrum of each
diagnostic media are shown in Table 1.

Figure 1 shows the general scheme of the proposed fault
diagnosis strategy based on SVMs. In this scheme, the mea-
surements are given by stator currents, radial vibration,
supply frequency and shaft speed of the machine. Next, after
data acquisition, the diagnosis architecture is programmed
in LabView to compute in real time the health assessment of
the IM. Hence, the program performs Clarke transformation
over the current measurements, and the FFT of the radial
vibration, stator current and Clarke vector modulus signals
to compute the features vector x.

6 Experimental results

To observe and analyze the frequency information produced
by the studied faults, the kit “Machine Fault Simulator” from
SpectraQuest, Inc., shown in Fig. 2 is employed. The IM
is supplied from a three-phase power inverter Altivar 11
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Table 1 Relationship between the frequency range of the faults and the number of sample in the spectrum of each diagnostic media

No. of sample ks + kr ± 10 kr ± 10 k = 30,000 k = 36,000

Frequency fs + fr ± 0.5 Hz fr ± 0.5 Hz 1500 Hz 1800 Hz

Fig. 1 SVM motor fault
detection system

IM

Load
InverterSource

Vibration signalClarke vector modulusStator current signals

Induction Motor Configuration 

SVM 1 SVM 2 SVM 5SVM 4SVM 3 SVM 6

One-against-one procedure
Fault classification

Features fusion

Fault features 
computation

sgniraeByhtlaeH
 damage

Misalignment Unbalanced
     rotor

Data Acquisition

Power spectrum

3φ 3φ

ζia ζ||i    ||dqζv
1 ζv

2 ζv
3 ζv

4

of 1.5 kW. The motor shaft is coupled to a gearbox by a
belt drive system used to load the motor with a permanent
magnet brake (Precision Tork). The brake can be adjusted
to provide a constant torque of 87.56 to 1751.26 Nm. The
IM used in the test bench has the following specifications:
60 Hz, 375 W, two-pole (p = 2), 230/469 V, and 2.2/1.1 A.
The test bench consists of four IMs with a predefined status:
healthy, rotor misalignment, unbalanced rotor and bearing
damage. Although the IM used is of p = 2 and 375 W, this
machine is useful to show the applicability of the proposed
methodology to solve the multi-fault classification problem,
since it presents the same frequency components in the radial
vibration and stator currents described in Sect. 3 by the stud-
ied faults. Moreover, these machines are still being used for
low-power applications and research, as in [45], which uses

SVMs applied to an induction motor of p = 2 for rolling
element bearing fault detection.

Figure 3a illustrates the unbalance rotor, for this purpose,
screws are attached to disks mounted over the motor shaft,
such that when the shaft rotates unequal centrifugal forces
are generated inducing the fault. For the misalignment fault,
metal shims are stacked under a machine foot, generating
a shaft misalignment, as is shown in Fig. 3b. Meanwhile,
for the bearing fault, the IM provided by SpectraQuest con-
tains fixed bearings on both sides with wearing on the inner
and outer raceways. Therefore, at this stage, our classification
scheme cannot distinguish between a failure in inner or outer
raceways, but only as a general bearing fault. Each bearing
contains 9 balls, with a ball diameter of 7.94 mm, outer race
diameter of 31.38 mm, and inner race diameter of 47.26 mm.
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Fig. 2 Experimental setup of “Machine Fault Simulator”

The fault severity of unbalance rotor andmisalignment could
be increased or modified, for the unbalance rotor, by increas-
ing the distribution of screws mounted over the disks, and
for the misalignment fault, by increasing the metal shims.
However, this work is focused just on the ability of detecting
multiple faults, and in a future work, the fault identification
or quantification will be addressed.

Each faulty motor reproduces the frequency components
in the current and vibration measurements reported in the
literature [2]. To obtain measurements of the stator currents,
Clarke vector modulus and radial mechanical vibration, a
data acquisition card NI-DAQ-9172 is used. The board is
installed in a Pentium Dual Core, 2.5 GHz PC. For the vibra-
tion measurements, an accelerometer from ICP® (model
604B31) is used with a measurement range of ±490 m/s−2

and a frequency bandwidth of 0.5 Hz to 5 kHz, which is
suitable for acquiring acceleration signals generated by the
vibration of the studied mechanical faults.

On the other hand, the mechanical speed of the IM has
to be measured, to normalize the frequency components in

the stator current, Clarke vector modulus and radial vibra-
tion measurement. For this purpose, an infrared sensor is
employed tomeasure the rotational frequency,which consists
of an infrared light emission diode (LED) and a photodiode.
This sensor provides a +5 V pulse after each complete rota-
tion of the shaft.Next, this signal is processed by theLabView
software to extract an estimation of the rotational frequency.
The resolution of the measurements is 40,0000 samples/s,
provided by data acquisition card NI-DAQ-9172. As a result,
the overall diagnosis algorithm requires information from
stator currents, radial vibration and mechanical speed to
achieve multiple-fault diagnosis at variable operating condi-
tions in the supply frequency and load torque;where these last
two measurements (vibration and mechanical speed) allow
to expand the diagnosis capability from standard MCSA.

Figure 4 compares the frequency information of one stator
current and Clarke vector modulus of the healthy response
with respect to two studied fault conditions: misalignment
and unbalance (supply frequency fs = 60 Hz and maximum
load torque). Hence, the frequency components predicted for
ζia and ζ‖idq‖ by the analysis in Sect. 5 are present in Fig. 4.
We point out that due to the induced faults, the rotational
frequency is different for the misalignment ( fr = 57.65 Hz)
and unbalance rotor ( fr = 58.25 Hz) scenarios despite that
the supply frequency fs and load torque do not change. Now,
Fig. 5 shows the radial vibration for the three studied faults:
bearing damage, unbalance rotor, and misalignment (supply
frequency fs = 60 Hz and maximum load torque). Similar
to Fig. 4, the frequency terms captured by (ζ 1

v , ζ 2
v , ζ 3

v , ζ 4
v ) in

the radial vibration and described in Sect. 5 are visualized in
Fig. 5.

6.1 Features map

For illustration purposes, Fig. 6 shows the resulting current
features, stator current feature ζia and Clarke vector feature
ζ‖idq‖, versus vibration feature ζ 4

v , as can be observed from

Fig. 3 Fault emulation of a
unbalance rotor and b
misalignment
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Fig. 4 Electrical diagnostic information in frequency domain (sup-
ply frequency of 60 Hz and maximum load torque): a stator current
for healthy and misalignment conditions, b stator current for healthy

and unbalance rotor scenarios, c Clarke vector modulus for healthy
and misalignment conditions, d Clarke vector modulus for healthy and
unbalance rotor scenarios
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Fig. 5 Radial vibration in frequency domain (supply frequency of 60 Hz and maximum load torque): a bearings damage, bmisalignment scenario,
and c unbalance rotor fault

the plot some training points for the unbalanced rotor and
misalignment faults lie in the same region of the features
space. However, using information from mechanical vibra-
tion of the IM, the data of the studied faults become separable,
this is shown in the plot for the vibration features ζ 1

v , ζ
2
v and

ζ 3
v in Fig. 7. Although the vibration sensor represents an
extra cost in the fault diagnosis scheme, the economic losses
caused by a fault in the induction motors of a production line
could be larger.

In Figs. 6 and 7 are shown all data used for training and
testing phases, that is, 35 data sets for each one of the 4
IM conditions (healthy, misalignment, unbalance, and bear-
ing fault), for different load levels in the range of 350.25 to
1751.26 Nm and supply frequencies of 30, 40, 50 and 60 Hz.
In addition, note that measurement noise will have a mini-
mal effect on the resulting classification accuracy, since the
main noise component in the stator current and vibration sig-
nals is coming from high-frequency switching of the variable
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speed drive of the IM (usually >2500 Hz). However, since
the classification features are located in the low-frequency
side (<1800 Hz according to Table 1), the noise effect in the
resulting FDI is negligible.

Although there is no overlap in the failure frequency
ranges, the features for each fault are also based on the mag-
nitude of the frequency components at specific ranges for
the mechanical and electrical signals. In fact, for a healthy
IM due to non-ideal manufacturing and noise, the frequency
components at the fault ranges could not be zero, and this
scenario makes the classification process a non-trivial task.
As can be seen in Figs. 6 and 7, the data sets for each fault
are not linearly separable. Therefore, nonlinear classifiers as
SVMs have to be employed to solve the multi-classification
problem.

6.2 SVM training

To collect the training and testing data sets, IMs with faulty
and healthy conditions were run at different speeds and load
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Fig. 8 Error in bootstraped samples for the training phase

torques, and the features vector were extracted. The load
levels were in the range of 350.25–1751.26 Nm, and the
supply frequencies are 30, 40, 50 and 60 Hz. In total, 35
data sets were acquired for the design and evaluation of the
multi-classification scheme. The training data for the 6SVMs
detailed in Sect. 2.1 included 10 sets, which were chosen
randomly B = 10 times and according to the bootstrapped
technique (see Sect. 2.2), where the validation data gathered
25 samples for each IM condition. For the training stage, the
parameters of the Gaussian RBF (σ ’s) in (6) were selected
to minimize the error in (9), see Fig. 8. Note that the values
for σ of (2, 3, 2, 2, 3, 3) provided less error in training each
SVM for the bi-classification problem.

For illustration purposes, Fig. 9a presents the binary clas-
sification of data from an IM without fault (healthy) and one
with misalignment, through features ζ 3

v and ζ‖iiq‖. Thus, by
applying the sign function to the decision surface d(x, α∗),
the correct classification of the fault (y = −1) is obtained, as
is shown in Fig. 9b. Another example is described in Fig. 10a,
where the classification is shown between a misaligned IM
and another with mechanical unbalance, through only the
electrical diagnosticmedia ζia and ζ‖idq‖. Hence, even though
the data are not linearly separable, the SVM can effectively
achieve the nonlinear classification with a good degree of
precision. Note that the intersection of the decision function
d(x, α∗) with the plane of features defines the optimal sepa-
ration hyperplane, as shown in Fig. 10b.
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Fig. 9 a Decision surface d(x, α∗) for binary classification of case:
healthy vs. misalignment, b separation of healthy and misalignment
data sets

6.3 Experimental validation

The results of the diagnostic scheme for the validation stage
are shown in Tables 2 and 3, where the best accuracies are
highlighted. These tables present the percentages of correct
classification as a function of the parameter σ in the RBF
in (6). The algorithm is tested considering the 4 IM condi-
tions: healthy, unbalance, misalignment and bearing fault. As
a result, a total of 25×4 = 100 operating regimes were eval-
uated, which were not used for training in the bootstrapped
technique. Hence, Tables 2 and 3 show a good classification
performance in the range of 84.8 to 100% under the variable
operating condition regime. The worst classification ratio is
obtained by the classifier of healthy andmisalignment.While
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Fig. 10 a Decision surface d(x, α∗) for binary classification of case:
unbalance vs. misalignment, b separation of unbalance rotor and mis-
alignment data sets

the best classification ratio is obtained by the classifier of
bearing and unbalanced faults.

The results indicate that the radial vibration signal together
with the electrical diagnosticmedia, stator current andClarke
vector modulus is a good indicator of a fault condition in
the IM. Consequently, the FDI strategy based on SVM clas-
sification with one-against-one procedure and bootstrapped
samples to select the parameters σ ’s in the RBF showed a
good degree of generalization by the validation results in
Tables 2 and 3.

By comparing with previous results, in [37], the authors
obtained a classification accuracy of 97.98% in an SVM
multi-classification scheme to detect four kinds of gear-
box faults (two related to bearing degradation) by means
of vibration signals. Similar accuracies are obtained in the
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Table 2 Classification results
with the proposed scheme for
SVM1, SVM2 and SVM3

σ SVM1healthy vs.
misalignment

SVM2 healthy vs. unbalance SVM3 healthy vs. bearing damage

2 84.8 93.2 98.8

3 81 93.4 97.6

4 72.6 93.2 95.8

5 66.6 93 94.2

6 68.4 93 93.2

7 61.4 92.6 93

8 59.6 91.8 92.2

9 56.8 90.8 89.2

10 58 89.8 86.6

11 58 88.4 84.8

12 56 86.4 82.6

13 55.2 82.4 81.8

Table 3 Classification results
with the proposed scheme for
SVM4, SVM5 and SVM6

σ SVM4 misalignment vs.
unbalance

SVM5 misalignment vs.
bearing damage

SVM6 bearing damage vs. unbalance

2 97.8 99.4 100

3 96.8 99.4 100

4 94.4 97.4 97.6

5 93.8 95.8 95.2

6 92.6 96 93

7 92.8 95.6 93.4

8 92.8 95.8 93

9 93.2 96.2 93

10 93.2 96 91.6

11 93.4 97.2 89.8

12 92.8 95.8 90.6

13 92.4 96.4 86.6

present study with 98.8, 99.4 and 100% for SVMs classi-
fying bearing faults. These good classification accuracies
are attributed to the structure of the features vector x in
(21) that incorporates mechanical and electrical fault sig-
natures. However, this scheme presented some difficulty in
distinguishing amisalignment fault from a healthy condition,
which produced an accuracy of 84.8%. In [44], a multi-fault
classification scheme is presented using current signatures
to diagnostic broken rotor bars, supply voltage asymmetry,
air-gap eccentricity and outer raceway ball bearing defects,
with a classification accuracy rate of 95%. Hence, similar
accuracies are obtained in the presented work for multi-fault
classification, although the studied faults were not similar.

7 Conclusions

In this paper, we proposed a fault diagnosis algorithm
based on SVMs for multi-fault classification of four IM

conditions (healthy, bearing damage, unbalanced rotor and
misalignment). These conditions have been detected and iso-
lated using a one-against-one multi-classification scheme.
Our diagnosis scheme could detect the studied faults under
variable operational conditions (supply frequency and load
torque). The fault features extracted from electrical and
mechanical diagnostic media were used as inputs for the
SVMs, which perform the features data fusion. This data
fusion capability improved largely the reliability of the pro-
posed scheme compared to previous efforts in the field. The
optimal parameters of the SVMs were obtained using a boot-
strapped technique to minimize the error classification for
different training datasets. We trained and tested our diagno-
sis algorithm with 10 and 25 different operating conditions,
respectively, of the induction motor for the studied scenar-
ios (140 conditions including a no-fault scenario) to validate
our conclusions. Hence, the proposed diagnosis features (fre-
quency components of stator current, radial vibration and
Clarke vector modulus) allowed multiple-fault detection at
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different operating conditions of the IM. In fact, just using
radial vibration or MCSA, the diagnosis task could not be
achieved effectively, so our contribution relied on combining
electrical and mechanical diagnostic features to accomplish
our goal. The FDI scheme was implemented in LabView for
a real-time diagnosis, which highlights the applicability of
the proposed FDI scheme for an industrial setting.

On the other hand, since the frequency information of the
diagnosis features did not depend on the power rating of the
IM, this FDI approach could be scaled to larger machines.
Nonetheless, for larger IMs, the magnitudes of the supply
voltages and currents will be increased, and most likely the
baseline radial vibration signal. As a result, to re-scale the
diagnosis approach, only the healthy information of the IM
is required to normalize all the fault indexes. This obser-
vation will be the focus of future research. Meanwhile, the
main drawback of the suggested FDI strategy is the limita-
tion to extend the algorithm to study more faults, since the
number of SVMs will have to increase, and most likely, also
the number of features for classification; in addition, a new
training procedure is required. Nevertheless, as future work,
to extend the proposed FDI scheme, we will pursue to study
short circuit faults in stator windings and eccentricity, and
also to address the diagnosis problem in transient state and
fault identification.
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