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Abstract Renewable sources can provide a clean and smart
solution to the increased demands. Thus, photovoltaic and
wind turbine are considered here as sources of distributed
generation (DG). Allocation and sizing of DG have greatly
affected the system losses. In this paper, ant lion optimiza-
tion algorithm (ALOA) is proposed for optimal allocation
and sizing of DG-based renewable sources for radial distri-
bution system. First, the most candidate buses for installing
DG are suggested using loss sensitivity factors. Then the pro-
posed ALOA is employed to deduce the locations of DG and
their sizing from the elected buses. The proposed algorithm
is tested on 69 bus radial distribution system. The obtained
results via the proposed algorithm are compared with oth-
ers to highlight its benefits in reducing total power losses
and consequently maximizing the net saving. Moreover, the
results are introduced to verify the superiority of the pro-
posed algorithm to enhance the voltage profiles for various
loading conditions.
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List of symbols

Pk, Qk The total effective active and reactive power
supplied behind the bus ‘k’

Vk The magnitude of voltage at bus k
Rik, Xik The resistance and reactance of transmission

line between bus ‘i’ and ‘k’
Vi The magnitude of voltage at bus i
KP The cost per kW-Hours
n The maximum number of ants
r(t) A stochastic function
t The step of random walk (current iteration in

this paper)
Mant The matrix for saving the position of each ant
Anti, j The value of the j th variable of i th ant
d The number of variables
Moa The matrix for saving the fitness of each ant
Mant lion The matrix for saving the position of each ant

lion
Ant lioni, j The value of the j th variable of i th ant lion
Moal The matrix for saving the fitness of each ant

lion
Ai The minimum of random walk of i th variable
Ct
i The minimum of i th variable at t th iteration

Ct The minimum of all variables at t th iteration
Ct

j The minimum of all variables for i th ant
Dt
i The maximum of i th variable at t th iteration

Dt The vector including the maximum of all vari-
ables at t th iteration

Dt
j The maximum of all variables for i th ant

Ant liontj The position of the selected j th ant lion at t th
iteration

I This ratio equals to 10w t
T

T The maximum number of iterations
w To adjust the accuracy level of exploitation
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r ta The random walk around the ant lion selected
by the roulette wheel at t th iteration

r te The random walk around the elite at t th itera-
tion

Antti The position of i th ant at t th iteration
PLoss The total power losses after compensation
Ft The total objective function
f1 The part of Ft that express the minimization of

power losses
f2 The part of Ft that express the enhancement of

voltage profiles
f3 The part of Ft that express the improvement of

VSI
w1, w2, w3 The weighting factors
PSwing The active power of swing bus
QSwing The reactive power of swing bus
L The number of transmission line in a distribu-

tion system
Pd(q) The demand of active power at bus q
Qd(q) The demand of reactive power at bus q
N The number of total buses
Vmin The minimum voltage at bus i
Vmax The maximum voltage at bus i
PDG The installed active power of the DG
QDG The installed reactive power of the DG
NDG The number of installed unit of the DG
Pmin
DG , Pmax

DG The minimum and maximum real outputs of
the DG unit

Qmin
DG , Qmax

DG The minimum and maximum reactive outputs
of the DG unit

SLi The actual complex power in line i
SLi(rated) The rated complex power in that line i

Abbreviations

ALOA Ant lion optimization algorithm
DG Distributed generation
LSFs Loss sensitivity factors
PV Photovoltaic system
WT Wind turbine
GA Genetic algorithm
PSO Particle swarm optimization
PGSA Plant growth simulation algorithm
CSA Cuckoo search algorithm
ABC Artificial bee colony
ACO Ant colony optimization
FA Firefly algorithm
MINLP Mixed integer non-linear programming
HS Harmony search
ICA Imperialist competitive algorithm
BF Bacteria foraging

VSI Voltage Stability Index
MTLBO Modified teaching learning-based optimiza-

tion
BB–BC Big Bang–Big Crunch
SGA Standard genetic algorithm
NR Not reported

1 Introduction

In recent years, the attention has shifted to projections of
energy and related greenhouse gas emissions as a result of
increasing environmental concern and global warming [1–3].
Renewable distribution generation (DG) such as wind tur-
bine (WT) and photovoltaic (PV) systems presents a cleaner
power production. The main advantages of DG are reduced
line losses, increased efficiency, improved system reliability
and minimized total costs [4–6].

The problem of DG placements and sizing was solved
using various techniques. The authors in [7] used ant colony
algorithm (ACA) with harmony search (HS) to solve the net-
work reconfiguration problem. A cat swarm optimization is
introduced in [8] for optimal location and sizing of DG units.
Two ways to reach integration of multiple DG units in low-
and medium-voltage distribution networks while optimizing
many relevant objectives are discussed in [9]. Genetic algo-
rithm (GA) combined with fuzzy programming to design
multi-objective function for optimal sizing and siting of mul-
tiple DGs is illustrated in [10]. Mixed integer non-linear
programming (MINLP) is introduced in [11] for multi-
objective design to reduce both cost and losses effectively by
optimal selection of DG size and location. GA is presented
in [12] to determine the optimal size and locations of DGs
taking into account system constraints; maximizes system
loading margin and voltage profiles. In [13], GA and fuzzy
are employed to transform original objectives and constraints
into a fuzzy weighted single objective function to optimize
DGs.MonteCarlo simulation embeddedGA-based approach
is displayed in [14] to minimize the DG cost, network loss
cost, and capacity cost by optimally siting and sizing of DGs.
A combination ofGAand particle swarmoptimization (PSO)
for optimal sizing and siting of DG unit is addressed in [15].
PSO is presented in [16] for determining optimal DG loca-
tions, sizes and generated power contract price. Bacterial
foraging optimization algorithm for optimal placement and
sizing of distributed generation is illustrated in [17]. Firefly
algorithm (FA) for optimal sizing and siting of voltage-
controlled distributed generators in distribution system to
reduce losses is considered in [18,19]. A multi-objective
optimization for sizing of DG using cuckoo search algorithm
is discussed in [20]. Artificial bee colony (ABC) algorithm
is employed in [21] to determine the optimal DG unit’s
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size, power factor and location to minimize the total sys-
tem real power loss. Differential evolution (DE) is employed
in [22,23] to determine optimal DG capacity for minimum
power losses. An effective method based on evolutionary
programming (EP) and GA is presented in [24] to iden-
tify the switching operation plan for feeder reconfiguration
and distributed generation size simultaneously. An imperi-
alist competition algorithm (ICA) to maximize the benefits
of distribution network, improve voltage stability and reduce
costs is discussed in [25,26]. Plant growth simulation algo-
rithm (PGSA) is illustrated in [27,28] for loss reduction and
voltage profile improvement in distribution systems.

A newoptimization algorithm known as ant lion optimiza-
tion algorithm (ALOA) has been presented by Mirjalili [29].
It proves its superiority in many fields which are shown in
[30–33]. ALOA optimizes DG in distribution system has not
been considered yet. This encourages us to develop ALOA
to deal with this problem. It is used to determine the optimal
locations and sizing of DG in radial distribution systems. The
results of the ALOA are comparedwith various techniques to
detect its superiority in solving the problem of optimal loca-
tions and sizing of DG and thus reducing the active power
losses and mitigating the voltage profiles for various loading
conditions.

2 Loss sensitivity factors

LSFs are employed in this paper to assign the candidate buses
for DG installation [34]. The area of search is greatly reduced
and consequently the time consumed in optimization process
using LSFs. A transmission line ‘l’ connected between ‘i’
and ‘k’ buses is given in Fig. 1:

The active power loss in this line is specified by I 2l Rik ,
which can be given by,

Pik-loss = (P2
k + Q2

k)Rik

(Vk)2
(1)

The LSFs can be computed from the following equation:

∂Pik-loss
∂Qk

= 2Qk ∗ Rik

(Vk)2
(2)

The normalized voltages are obtained by dividing the base
case voltages by 0.95 [35]. If the values of these voltages are

ikjXikRikZ +=i k

kjQkP +

Fig. 1 Radial distribution system equivalent circuit

less than 1.01, they can be considered as candidate buses for
installing DG.

3 Overview of ant lion optimization algorithm

Ant lion optimizer (ALO) is a novel nature-inspired algo-
rithm presented by Mirjalili in [29]. The ALO mimics the
hunting mechanism of ant lions in nature. An ant lion larva
digs a cone-shaped pit in sand by moving along a circular
path and throwing out sands with its massive jaw [36–38].
After digging the trap, the larva hides underneath the bot-
tom of the cone and waits for insects to be trapped in the pit
[39,40]. The edge of the cone is sharp enough for insects to
fall to the bottom of the trap easily. Once the ant lion realizes
that a prey is in the trap, it tries to catch it. Then, it is pulled
under the soil and consumed. After consuming the prey, ant
lions throw the leftovers outside the pit and prepare the pit for
the next hunt [30]. The pseudo code of the ALO algorithm
is shown in appendix.

3.1 Operators of the ALO algorithm

TheALO algorithmmimics the interaction between ant lions
and ants in the trap. To model such interactions, ants are
required to move over the search space and ant lions are
allowed to hunt them and become fitter using traps. Since
ants move stochastically in nature when searching for food,
a random walk is chosen for modeling ants’ movement as
follows:

X (t) = [0, cums(2r(t1) − 1), . . . , cums(2r(tn) − 1)] (3)

where cums calculates the cumulative sum and r(t) is defined
as follows:

r(t) =
{
1 if rand > 0.5
0 if rand ≤ 0.5

}
(4)

The location of ants are stored and used during optimization
process in the following matrix:

Mant =

⎡
⎢⎢⎢⎣
ant1,1 ant1,2 . . . ant1,d
ant2,1 ant2,2 . . . ant2,d

...
...

...
...

antn,1 antn,2 . . . antn,d

⎤
⎥⎥⎥⎦ (5)

The location of an ant refers the parameter for each solution.
MatrixMant is considered to save the position of each ant.
The objective function is employed during optimization and
the following matrix saves the fitness value for each ant:
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Moa =

⎡
⎢⎢⎢⎣
Ft ([ant1,1, ant1,2, . . . ant1,d ])
Ft ([ant2,1, ant2,2, . . . ant2,d ])

...

Ft ([antn,1, antn,2, . . . antn,d ])

⎤
⎥⎥⎥⎦ (6)

In addition, the ant lions are hiding in the search space. The
followings matrices are used to save their locations.

Mant lion =

⎡
⎢⎢⎢⎣
ant lion1,1 ant lion1,2 . . . ant lion1,d
ant lion2,1 ant lion2,2 . . . ant lion2,d

...
...

...
...

ant lionn,1 ant lionn,2 . . . ant lionn,d

⎤
⎥⎥⎥⎦ (7)

Moal =

⎡
⎢⎢⎢⎣
Ft ([ant lion1,1, ant lion1,2, . . . ant lion1,d ])
Ft ([ant lion2,1, ant lion2,2, . . . ant lion2,d ])

...

Ft ([ant lionn,1, ant lionn,2, . . . ant lionn,d ])

⎤
⎥⎥⎥⎦ (8)

3.1.1 Random walks of ants

Ants change their positions randomly based on Eq. (3). To
keep the random walks inside the search space, they are nor-
malized using the following equation:

Xt
i = (Xt

i − Ai ) × (Di − Ct
i )

(Dt
i − Ai )

+ Ci (9)

3.1.2 Trapping in ant lion’s pits

Random walks of ants are affected by ant lions’ traps. To
model this supposition, the following equations are intro-
duced:

Ct
i = Ant liontj + Ct (10)

Dt
i = Ant liontj + Dt (11)

Equations (10, 11) give that ants walk randomly in a hyper-
sphere defined by the vectors C and D around a selected ant
lion.

3.1.3 Building trap

A roulette wheel is used to model the ant lion’s hunting abil-
ity. TheALOalgorithm is required to employ a roulettewheel
operator for selecting ant lions based of their fitness during
iterations. This mechanism shows high chances to the best
ant lions for catching ants.

3.1.4 Sliding ants towards ant lion

With the previous mechanisms, ant lions can build traps rel-
ative to their fitness and ants are required to move randomly.

However, ant lions shoot sands outwards the center of the pit
once they sense that an ant is in the trap. This behavior slides
down the trapped ant that is trying to escape. To model this
behavior, the radius of ant’s random walk hyper-sphere is
decreased adaptively. The following equations are presented
in this regard:

ct = ct

I
(12)

dt = dt

I
(13)

3.1.5 Catching prey and re-building the pit

In this step, the objective function is calculated. If the ant has
a better objective function than the selected ant lion then it
changes its position to the latest position of the hunted ant
to improve its chance of catching new one. The following
equation is illustrated in this regard:

Ant liontj = Ant lionti if f (Antti ) > f (Ant liontj ) (14)

3.1.6 Elitism

It is important to maintain the best solution acquired at each
step of optimization task. The best ant lion achieved so far in
each iteration is saved as the elite. Since the elite is the best
ant lion, it should be capable to affect the motions of all ants
during iterations. Thus, it is assumed that every ant randomly
walks around a selected ant lion by the roulette wheel and
the elite simultaneously as follows:

Antti = r ta + r te
2

(15)

4 Objective function

The proposed objective function is used to reduce the power
losses and to improve the voltage profiles and Voltage Sta-
bility Index. The DG locations and their sizing can be
obtained optimally by solving the following objective func-
tion [15,41]:

Ft = w1 f1 + w2 f2 + w3 f3 (16)

where f1 can be expressed as shown in the following equa-
tion:

f1 =
∑L

i=1 (PLineloss(i))after DG∑L
i=1 (PLineloss(i))before DG

(17)
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f2 can be defined as the following equation:

f2 =
∑N

i=1

∣∣Vi − Vi,ref
∣∣
after DG∑N

i=1

∣∣Vi − Vi,ref
∣∣
before DG

(18)

f3 can be defined as:

f3 = 1

VSI(k)after DG
(19)

where VSI is formulated as the following Eq. [15,42]:

VSI(k)=|Vi |4−4(Pk Xik−Qk Rik)
2−4(Pk Rik+Qk Xik) |Vi |2

(20)

w1, w2 andw3 areweighting factors. The sumof the absolute
values of the weights assigned to all impacts should add up
to one as shown in the following equation:

|w1| + |w2| + |w3| = 1 (21)

In this paper, w1 is taken as 0.5 while w2 and w3 are taken
as 0.25.

4.1 Equality and inequality constraints

Equation (16) is minimized whilst satisfying the following
equality and inequality constraints.

4.1.1 Equality constraint

• Power conservation constraint

The algebraic sum of all incoming and outgoing power flow
over the distribution system should be equal [43]; thus,

PSwing +
NDG∑
i=1

PDG(i) =
L∑

i=1

PLineloss(i) +
N∑

q=1

Pd(q) (22)

QSwing+
NDG∑
i=1

QDG(i)=
L∑

i=1

QLineloss(i)+
N∑

q=1

Qd(q) (23)

4.1.2 Inequality constraints

• Voltage constraint

The magnitude of voltage at each bus must be limited by the
following equation:

Vmin ≤ |Vi | ≤ Vmax (24)

where Vmin and Vmax are taken as 0.95 and 1.05p.u, respec-
tively, as given in [44].

• DG limits constraint

To prevent reverse power flow, the installed capacity of DG
in the network has been limited so as not to exceed the power
supplied by the substation [43].

NDG∑
i=1

PDG(i) ≤ 3

4
×

⎡
⎣ L∑

i=1

PLineloss(i) +
N∑

q=1

Pd(q)

⎤
⎦ (25)

NDG∑
i=1

QDG(i) ≤ 3

4
×

⎡
⎣ L∑

i=1

QLineloss(i) +
N∑

q=1

Qd(q)

⎤
⎦ (26)

Pmin
DG ≤ PDG(i) ≤ Pmax

DG (27)

Qmin
DG ≤ QDG(i) ≤ Qmax

DG (28)

• Line capacity constraint

The complex power through any line must be less than its
rating value as given by the following equation.

SLi ≤ SLi(rated) (29)

5 Results and discussion

The effectiveness of the proposed ALOAwith LSFs is exam-
ined. The results of 69 bus radial distribution systems are
given below in details. The proposed algorithm has been per-
formed via Matlab.

5.1 69 bus test system

The suggested algorithm is applied on the 69 bus system.
Figure 2 shows the system diagram which consists of main

 47  48   49 50

~
2   3   4   5   6   7   8   9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

 68 69 

53  54  55 56  57 58 59 60  61  62  63  64  65

28 29 30 31 32 33 34 35 

66 67 51 52 

36 37 38 39 40 41 42 43 44 45 46 

1

Fig. 2 The line diagram of the 69 bus system
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Fig. 3 The values of LSFs for
69 bus system

Table 1 Results for 69 bus system

Items Without-DG With DG (kVA/P.F)

One DG Two DG

PV WT PV WT

Total losses (kW) 224.94 81.776 23.1622 70.750 20.9342

Loss reduction (%) – 63.645 89.703 68.547 90.69

Minimum voltage 0.9102 0.9679 @bus 27 0.9716 @bus 27 0.9801 @bus 65 0.9742 @bus 65

Maximum voltage 1.00 1.0 @bus 2 1.0 @bus 2 1.0000 @ bus 2 1.0001 @bus 17

Total DG – 1800/1 @bus 61 2227.9/0.82 @bus 61 538.777/1 @bus 17 726.627/0.83 @bus 17

1700/1 @bus 61 1500/0.8 @bus 61

VSI 61.2379 64.4323 65.3523 65.8042 66.2031

Cost of losses ($) 118,228.46 42,981.46 12,174.05 37,186.2 11,003.02

Saving ($/year) – 75,247 106,054.41 81,042.26 107,225.44

feeders and seven branches. This system has a total load of
3800kWand2690kVArat 12.6kV.The systemdata are given
in [45]. The order of candidate buses for this system accord-
ing to their LSF values is 57, 58, 61, 60, 59, 64, 17, 65, 16,
21, 19, 63, 20, 62, 25, 24, 23, 26, 27, 18 and 22 as appeared
in Fig. 3. The superiority of the proposed technique to solve
the problem of optimal location and sizing of DG compared
with those obtained in [21,43,46–53] is confirmed.

Single DG location
For single DG installation, the optimal location and size
are obtained via ALOA. Table 1 summarizes the developed
results for installing single and two DGs. Bus number 61 is
the best location for DG installation with a size of 1800kW
for PV type. A reduction in the total active power losses
to 81.776kW is resulted which illustrates a 63.645% reduc-
tion. The annual energy saving is 75,247$ via the proposed
ALOA. The minimum voltage is grown from 0.9102 p.u to
0.9679 p.u. In addition, compared with [21,43,46,48–52]

and [53], the proposed algorithm introduces better results in
terms of power losses and percentage reduction of power as
displayed in Table 2.Moreover, the effects of DG installation
on voltage profiles and VSI are given in Figs. 4 and 5, respec-
tively. With WT type, the power losses are constringed to
23.1622kWwith percentage reduction of 89.703. The annual
energy saving is 106,054.41$ via the proposed ALOA. The
minimum voltage is increased to 0.9716p.u. Thus, the pro-
posed algorithm outlasts GA, CSA, SGA, PSO and BB–BC
in minimizing losses and consequently improving saving. In
addition, the designed WT type shows better results than PV
type in terms of voltage profiles and VSI as clarified in Figs.
4 and 5.

Two DG locations
For two DG installation, the optimal location and size are
gained using ALOA as given in Table 1. For PV type, bus
numbers 17 and 61 are the best locations for DG installation
with size of 538.777 and 1700kW, respectively. The power
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Table 2 Results for installing
one DG in 69 bus system

DG Type Technique DG installation Power loss

Size (kVA/P.F) Bus Value (kW) Percentage

– Without – – 224.94 –

PV ABC [21] 1900/1 61 83.31 62.96

GA [43] 1872/1 61 83.18 63.02

Analytical [46] 1810/1 61 81.44 63.79

Analytical [48] 1807.8/1 61 92 59.1

Grid search [48] 1876.1/1 61 83 63.1

GA [49] 1794/1 61 83.4252 62.91

PSO [50] 1337.8/1 61 83.206 63.01

CSA [51] 2000/1 61 83.8 62.74

SGA [51] 2300/1 61 89.4 60.3

PSO [51] 2000/1 61 83.8 62.75

MTLBO [52] 1819.691/1 61 83.323 62.95

BB-BC [53] 1872.5 61 83.2246 63

Proposed 1800/1 61 81.776 63.645

WT GA [43] 2155.6/NR 61 38.458 82.9

CSA [51] 2300 /NR 61 52.6 76.6

SGA [51] 2600/NR 61 64.4 71.37

PSO [51] 2300/NR 61 52.6 76.6

BB-BC [52] 2223/0.81 61 23.1737 89.697

Proposed 2227.9/0.82 61 23.1622 89.703

Fig. 4 The effect of installing
one DG on voltages of 69 bus
system

10 20 30 40 50 60
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Bus number

V
ol

ta
ge

 (p
.u

)

Without DG
With one DG-type PV
With one DG-type WT

losses are decreased to 70.75 kW with percentage reduc-
tion of 68.547. The annual energy saving is 81,042.26$ via
the proposed algorithm. The minimum voltage is modified
from 0.9102 p.u to 0.9801 p.u. In addition, compared with
[47,49,51,52], the proposed algorithm gives better results in
terms of power losses and percentage reduction of power as
reported in Table 3. Moreover, the effects of DG installation

on voltage profiles and VSI are displayed in Figs. 6 and 7,
respectively. With WT type, the power losses are lowered
to 20.9342kW providing a 90.69% reduction in total power
losses. The annual energy saving is 107,225.44$ via the pro-
posed ALOA. Thus, the proposed algorithm outperforms
CSA, SGA and PSO in diminishing losses and enhancing
saving. The minimum voltage is grown to 0.9742 p.u. In
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Fig. 5 The effect of installing
one DG on VSI of 69 bus
system
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Table 3 Results for installing
two DG in 69 bus system

DG type Technique DG installation Power loss

Size (kVA/P.F) Bus Value (kW) Percentage

– Without – – 224.94 –

PV GA [47] 1777/1 61 71.7912 68.08

555/1 11

GA [49] 6/1 1 84.233 62.55

1794/1 62

CSA [51] 600/1 22 76.4 66

2100/1 61

SGA [51] 1000/1 17 82.9 63.1

2400/1 61

PSO [51] 700/1 14 78.8 64.97

2100/1 62

MTLBO [52] 519.705/1 17 71.776 68.09

1732.004/1 61

Proposed 538.777 /1 17 70.750 68.547

1700 /1 61

WT CSA [51] 800 /NR 18 39.9 82.26

2000/NR 61

SGA [51] 600/NR 18 44 80.4

2300/NR 62

PSO [51] 900/NR 18 42.4 81.15

1900/NR 62

Proposed 726.627/0.83 17 20.9342 90.69

1500/0.8 61
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Fig. 6 The effect of installing
two DG on voltages of 69 bus
system
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Fig. 7 The effect of installing
two DG on VSI of 69 bus
system

10 20 30 40 50 60
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Bus number

V
S

I

Without DG
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addition, the designed WT type gives superior results than
PV type in terms of voltage profiles and VSI as mentioned
in Figs. 6 and 7. In addition, the reactive power capability of
WT has a considerable effect on reducing power losses and
improving voltage profiles.

5.2 Effect of variable load

A constant load over the year is a hypothetical case as the
load profile has the impact of seasonal and time variations. To

Table 4 Duration of different load levels

Load levels L1 L2 (base case) L3

Level 0.625 1.0 1.25

Duration time (h) 1000 6760 1000

mimic this effect, the load of the entire year has been consid-
ered as combination of three load levels of different durations
as given in Table 4. ALOA finds the optimal sizes of DG for
different load levels. The values of losses, installed DG and
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Table 5 Optimal located PV units at different loadings for 69 bus system

No of PV units Load levels Size of DG (kW) at bus Losses (kW) Minimum voltage Maximum voltage

61 17

One L1 1600 – 32.47 0.9792 1.0

L2 1800 – 81.776 0.9679 1.0

L3 2129.5835 – 130.6164 0.9624 1.0

Two L1 1500 500 28.3599 0.9823 1.0

L2 1700 538.777 70.750 0.9801 1.0

L3 1935.5929 654.5052 112.549 0.9878 1.0

minimum and maximum voltage profiles are displayed for
69 bus system in Table 5 with variable loads. It can be seen
that the losses are reduced at different loads as the number
of locations increase. Moreover, the voltages are within the
specified limits.

6 Conclusions

In this paper, ALOAhas been successfully implementedwith
LSFs for optimal location and sizing of DG-based renewable
sources in 69 bus radial distribution system. The designed
problem has been formulated as an optimization task with
computing of power losses, voltage profiles and VSI. The
results have been compared with those obtained using other
algorithms. It is obvious from the comparison that the pro-
posed approach provides a notable performance in terms of
power losses and saving. Moreover, the proposed ALOA is
robust and it can be applied for variable loads demand.Appli-
cations of the proposed algorithm to large-scale distribution
power systems and unbalanced one are the future scope of
this study.

Appendix

The pseudo code of the ALO algorithm is defined as follows:

Step 1: Initialize the first population of ants, ant lions ran-
domly, LSFs and DG. Run load flow and calculate
the fitness of ants and ant lions.

Step 2: Find the best ant lions and assume it as the elite.
Step 3: For each ant, select an ant lion using roulette wheel

3.1 Create a randomwalk and normalize it to keep it inside
the search space,

3.2 Update the position of ant,
3.3 Update the values of c and d,
End for

Step 4: Run load flow and calculate the fitness of all ants,
Step 5: Replace an ant lion with its corresponding ant it if

becomes fitter,

Step 6: Update elite if an ant lion becomes fitter than the
elite,

Step 7: Repeat from step 3 until a stopping criteria is satis-
fied. ALOA parameters: Number of ant lions = 30,
maximum number of iterations = 500.
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