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Abstract This paper investigates the dynamic properties
and chaos control in a fractional order brushless DC (BLDC)
motor. The fractional order model of the brushless DCmotor
has been derived from its integer order model. Then the qual-
itative properties of the fractional order BLDC motor are
derived. Bifurcation analysis of the BLDC motor with the
fractional order has been also discussed. Fractional order
chaos control in the BLDC motor is achieved using slid-
ing mode control, robust control and extended back-stepping
control.
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1 Introduction

Chaos is defined as an aperiodic long-time behavior arising
in a deterministic dynamical system that exhibits a sensitive
dependence on initial conditions [1]. It is well known that
chaotic behavior may lead to undesirable effects and may
need to be controlled in electrical systems and many engi-
neering applications. Control of chaotic systems in science
and engineering is an important research area in the control
literature[1].

In [2], Li et al. studied the bifurcation and chaos control
in a permanent-magnet synchronous motor (PMSM). In [3],
Jing et al. studied the complex dynamics and properties of
the permanent-magnet synchronous motor (PMSM). In [4],
Jabli et al. discussed the bifurcation and chaos control of a
PI-controlled induction motor.

Fractional order calculus is developed from ordinary
calculus and it is a generalization of the integration and
differentiation to the non-integer (fractional) order gener-
alization operator aDq

t in which aand t are limits and q
is the order of the operator. This operator is a notation for
both the fractional derivatives and fractional integrals in
a single expression [5]. Two general fractional order inte-
gral/differential operations are commonly discussed, viz.
Caputo and Riemann–Liouville (R–L) fractional operators.
Physically, the R–L fractional operator has initial value prob-
lem [6]. Thus, theCaputo fractional operator ismore practical
than the R–L fractional operator.

Fractional order models of real dynamical objects and
processes have applications in various fields of science and
technology [7]. Even though synchronization has been imple-
mented in many chaotic systems with integer derivatives
[1], only few works have been reported on fractional order
chaotic systems due to complexity in fractional order models
of chaotic systems [8].
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In this paper, we investigate the chaotic oscillations in a
fractional order brushless DC motor. Brushless DC motors
have wide applications in aerospace industries [9] and robot-
ics [10]. Chaotic oscillations in an integer order brushlessDC
motor was controlled using sliding mode control [11]. Mod-
eling and analysis of brushless DC motors (BLDC motors)
have been extensively discussed in the literature [12–15].

In this paper,wefirst discuss the dynamics of the fractional
order BLDC motor. We investigate the bifurcation diagrams
of theBLDCmotor for various systemparameters. Fractional
order of the chaotic systems close to their integer order mod-
els exhibits larger Lyapunov exponents. As discussed in [16],
we control chaos of the BLDCmotor in the nearest fractional
order of the system. Chaos control in the fractional order
BLDCmotor is achieved with sliding mode control [17–20],
robust control [21] and extended back-stepping control [22].

2 Chaotic dynamics of brushless DC motor

The dimensionless mathematical model of the BLDC motor
has been studied in [12–15]. BLDC motor is described by
the 3-D dynamics

ẋ = vq − x − yz + ρz

ẏ = vd − δy + xz

ż = σ(x − z) + ηxy − TL (1)

The BLDC system (1) exhibits chaotic oscillations when
vq = 0.168, ρ = 60, vd = 20.66, δ = 0.875, η =
0.26, TL = 0.53 and σ = 4.55.

Figure 1 shows the chaotic state portrait of the BLDC
system (1) for the initial conditions x(0) = 3.63, y(0) =
56.02 and z(0) = 0.29. Figure 2 shows the time series of the
states of the BLDC system (1).

Fig. 1 3D state portrait of BLDC motor (1)

3 Fractional order BLDC motor

The fractional order model of BLDCmotor system is derived
from (3) with the Caputo fractional order definition, which
is defined as

Dq
t f (t) = 1

�(1 − q)

t∫

t0

ḟ (τ )

(t − τ)q
dτ (2)

where α is the order of the system, t0 and t are limits of the
fractional order equation, and ḟ (t) is integer order calculus
of the function.

For numerical calculations, we use Caputo-Riemann-
Liouville fractional derivative [23,24]. Thus, the equation
(2) is modified as

(t−L)D
α
t f (t) = lim

h→0

⎧⎨
⎩h−α

N (t)∑
j=0

b j ( f (t − jh)

⎫⎬
⎭ (3)

Theoretically fractional order differential equations use infi-
nite memory. Hence when we want to numerically calculate
or simulate the fractional order equations we have to use
finite memory principal, where L is the memory length
and h is the time sampling as N (t) = min

{[ t
h

]
,
[ L
h

]}
and

b j =
(
1 − a+α

j

)
b j−1.

Applying these fractional order approximations in to the
integer order BLDC motor system (1) yields the fractional
order BLDC motor model described by (4),

Dqx x = vq − x − yz + ρz
Dqy y = vd − δy + xz
Dqz z = σ(x − z) + ηxy − TL

(4)

where qx , qy, qz are the fractional orders of the BLDCmotor
system.

The parameter values in the system (4) are taken as vq =
0.168, ρ = 60, vd = 20.66, δ = 0.875, η = 0.26, TL =
0.53 and σ = 4.55.

Figure 3 shows the 3-D state portrait of the fractional order
BLDC motor (4).

4 Qualitative properties of the fractional order
BLDC motor

In this section, we analyze the fractional order BLDC motor
(4) system for various properties of chaotic behavior like
Lyapunov exponents, bifurcation with parameters, bifurca-
tion with fractional orders and bicoherence [25].
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Fig. 2 Uncontrolled state
oscillations of BLDC motor (1)

Fig. 3 3D state portraits of the fractional order BLDC motor (4) for
qx = qy = qz = 0.98

4.1 Lyapunov exponents

The Jacobian matrix of the fractional order BLDC system
(4) is given by,

J =
⎡
⎣ −1 −z ρ − y

z −δ x
σ + ηy ηx −σ z

⎤
⎦ (5)

The initial conditions are chosen as x(0) = 3.63, y(0) =
56.02 and z(0) = 0.29.

The parameter values for the system (4) to exhibit chaotic
oscillations are taken as vq = 0.168, ρ = 60, vd =
20.66, δ = 0.875, η = 0.26, TL = 0.53 and σ = 4.55.

The Lyapunov exponents of the fractional order system
are L1 = 0.560208, L2 = 0 and L3 = −6.989981. Figure 4
shows the Lyapunov exponents of the fractional order BLDC
system (4).

Also, the Kaplan–Yorke dimension of the fractional order
system (4) is calculated as

DKY = 2 + L1 + L2

|L3| = 2.0802 (6)

which is fractional.

4.2 Bifurcation and bicoherence

Here we investigate the bifurcation of the attractor for vari-
ous parameters. The fractional order of the system are kept as
qx = qy = qz = 0.98. By fixing all the other parameters, TL
is varied and the behavior of the fractional order system (5)
is investigated. The bifurcation plot for various states versus
load TLis given by Fig. 5a. Figure 5b shows the bifurcation
of the attractor for the parameter η. Figure 6 shows the bifur-
cation of the attractor for the fractional order BLDC motor
parameter σ .

The parameter σplays an important role in the chaotic
behavior of the BLDC motor. When σ = 3.9, the fractional
order BLDC motor shows the period 1 of its chaotic behav-
ior as shown in Fig. 7a. For σ = 4.05, the fractional system
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Fig. 4 Lyapunov exponents of the fractional order BLDC motor

Fig. 5 Bifurcation plot versus. a Load torque. b η

shows the period 2 of the chaotic oscillation as shown in
Fig. 7b. When σ = 4.10, period 3 of the chaotic oscilla-
tion is exhibited as shown in Fig. 7c. For σ = 4.20, the
system shows period 4 of its oscillation as in Fig. 7d . For
σ = 4.30the system goes in to the chaotic oscillation state
showing the entry into the positive Lyapunov exponent as
shown in Fig. 7e. When σ = 4.40, the fractional order
BLDC motor system exhibits the second scroll as shown
in Fig. 7f. Figures 7g, h show the complete chaotic attrac-
tor for σ = 4.50 and σ = 4.55.. Generally speaking, when
the system’s biggest Lyapunov exponents is larger than zero,
and the points in the corresponding bifurcation diagram are

dense, the chaotic attractor will be found to exist in this sys-
tem. From the Lyapunov exponents and bifurcation diagrams
in figures, a conclusion can be obtained that chaos exist in the
fractional order system (4) when selecting a certain range of
parameters. Next the individual state responses are studied
in detail by varying the parameters.

The bifurcation of the fractional order BLDC motor with
the fractional orders qx , qy, qzgenerally mentioned as q are
shown in Fig. 8a–l. It can be clearly seen that the system
(4) shows large Lyapunov exponents when the fractional
order is close to 1 and hence the controllers designed in
fractional order close to 1 are more efficient and effec-
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Fig. 6 Bifurcation plot versus σ

tive than the integer order controllers. The fractional order
BLDC motor shows chaotic oscillations when the order is
0.93 ≤ q ≤ 0.98. The chaotic oscillations show periodic
behaviour when the order of the system is q ≤ 0.92 and
completely loses the positive Lyapunov exponent when the
order is q ≤ 0.90.

The bicoherence or the normalized bispectrum is a mea-
sure of the amount of phase coupling that occurs in a signal or
between two signals. Both bicoherence and bispectrum are
used to find the influence of a nonlinear system on the joint
probability distribution of the system input. Phase coupling
is the estimate of the proportion of energy in every possible
pair of frequency components f1, f2, f3, . . . , fn . Bicoher-
ence analysis is able to detect coherent signals in extremely
noisy data, provided that the coherency remains constant for
sufficiently long times, since the noise contribution falls off
rapidly with increasing N . The auto bispectrum of a chaotic
system is given by Pezeshki [25]. He derived the auto bis-
pectrum with the Fourier coefficients.

B(ω1, ω2) = E[A(ω1)A(ω2)A
∗(ω1 + ω2)] (7)

where ωn is the radian frequency and A is the Fourier coeffi-
cients of the time series. The normalizedmagnitude spectrum
of the bispectrum known as the squared bicoherence is
given by

b(ω1, ω2) = |B(ω1, ω2)|2 /P(ω1)P(ω2)P(ω1 + ω2) (8)

P(ω1)and P(ω2) are the power spectrums at f1 and f2. Fig-
ure 9a–c shows the bicoherence plots of the fractional order
BLDC motor.

5 Stability properties of the fractional order
brushless DC motor

The Lyapunov stability of the fractional order brushless DC
motor system (4) cannot be directly established as the first
derivative of the Lyapunov function yields a complex dynam-
ical fractional order equation. Hence, we derive the following
as an alternative to investigate Lyapunov stability.

Lemma 1 If s (t) is a continuous and derivable function,
then for any time instantt ≥ t0,

1

2
Dα
t s

2(t) ≤ s(t) × Dα
t s(t) ∀α ∈ (0, 1) (9)

Proof To prove that expression (9) is true we start with

s(t)Dα
t s(t) − 1

2
Dα
t s

2(t) ≥ 0 ∀α ∈ (0, 1) (10)

By Definition

Dα
t s(t) = 1

�(1 − α)

t∫

t0

ṡ(τ )

(t − τ)α
dτ (11)

1

2
Dα
t s

2(t) = 1

�(1 − α)

t∫

t0

s(τ ) · ṡ(τ )

(t − τ)α
dτ (12)

Modifying (12),

1

�(1 − α)

t∫

t0

s(t) · ṡ(τ ) − s(τ )ṡ(τ )

(t − τ)α
dτ ≥ 0 (13)

Let us assume,

S(τ ) = s(t) − s(τ ) and Ṡ(τ ) = −ṡ(τ ) (14)

Substitute (14) in (13)

1

�(1 − α)

t∫

t0

S(τ )Ṡ(τ )

(t − τ)α
dτ ≥ 0 (15)

Integration (15) by parts

1

�(1 − α)
(t − τ)−α · 1

2
S2(τ ) −

t∫

t0

1

2
S2(τ ) ·

×
(

α(t − τ)−α−1

�(1 − α)

)
≤ 0 (16)
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Fig. 7 3D phase portraits of the
fractional order BLDC motor
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Fig. 8 Phase portraits for the fractional order q
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Fig. 9 Bicoherence plots of the
fractional order BLDC motor. a
X, b X–Y, c X–Y–Z

[
S2(τ )

2�(1 − α)(t − τ)α

]
τ=t

−
[

S2(t0)

2�(1 − α)(t − t0)α

]

−1

2

α

�(1 − α)

t∫

t0

S2(τ )

(t − τ)α+1 dτ ≤ 0 (17)

Solving first term of (17) for τ = t

lim
τ→t

S2(τ )
2�(1−α)(t−τ)α

= 1
2�(1−α)

lim
τ→t

[
s2(t) + s2(τ )

−2s(t) · s(τ )

]2

(t−τ)α

= 1
2�(1−α)

lim
τ→t

⎡
⎢⎢⎣

−2s(t)ṡ(τ )+
2s(τ ) · ṡ(τ )

−α(t−τ)α−1

⎤
⎥⎥⎦ = 0

(18)

Equation (18) can be rewritten as
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S2(t0)

2�(1 − α)(t − t0)α
+ α

2�(1 − α)

t∫

t0

S2(τ )

(t − τ)α+1 dτ ≥ 0

(19)

which clearly holds as α lies between 0≤ τ ≤ 1, the L.H.S of
the Eq. (19) will always be a positive value. This completes
the proof. �	

6 Chaos suppression of the fractional order BLDC
motor

The control goal of this paper is to design suitable controllers
for suppression of chaotic oscillations in the fractional order
BLDC motor (4). We investigate three control methods,
viz. sliding mode control [17–20], robust control [21] and
extended back-stepping control [22] for chaos control of the
system.

6.1 Sliding mode control

We define the fractional order BLDC motor with fractional
order sliding mode controllers as

Dqx x = vq − x − yz + ρz + ux

Dqy y = vd − δy + xz + uy

Dqz z = σ(x − z) + ηxy − TL + uz (20)

where ux , uyand uz are sliding controllers to be designed.
The sliding surfaces for the three state variables are

defined as follows.

sx = [Dqx + λx ]
⎡
⎣

t∫

0

x(τ )dτ

⎤
⎦ = x + λx

t∫

0

x(τ )dτ

sy = [Dqy + λy]
⎡
⎣

t∫

0

y(τ )dτ

⎤
⎦ = y + λy

t∫

0

y(τ )dτ

sz = [Dqz + λz]
⎡
⎣

t∫

0

z(τ )dτ

⎤
⎦ = z + λz

t∫

0

z(τ )dτ (21)

The fractional derivatives of the sliding surface (21) is given
by,

Dqx sx = Dqx x + λx x

Dqy sy = Dqy y + λy y

Dqz sz = Dqz z + λz z (22)

By the definitions of the reaching law[20], we set the con-
trolled fractional order system as,

Dqx x = −ηx sgn(sx ) − Kxsx

Dqy y = −ηysgn(sy) − Kysy

Dqz sz = −ηzsgn(sz) − Kzsz (23)

Comparing (22) and (23) and solving with (20),

vq − x − yz + ρz + ux = −ηx sgn(sx ) − Kxsx

vd − δy + xz + uy = −ηysgn(sy) − Kysy

σ(x − z) + ηxy − TL + uz = −ηzsgn(sz) − Kzsz (24)

From Eq. (24), the controller can be derived as follows.

ux = −vq + x + yz − ρz − ηx sgn(sx ) − Kxsx

uy = −vd + δy − xz − ηysgn(sy) − Kysy

uz = −σ(x − z) − ηxy + TL − ηzsgn(sz) − Kzsz (25)

The stability of the controller (25) can be proved using the
Lyapunov function

V (sx , sy, sz) = 1

2
(s2x + s2y + s2z ) (26)

The first derivative of the Lyapunov function (26) can be
given by,

V̇ = sx ṡx + sy ṡy + sz ṡz (27)

Using Lemma 1, we find that

V̇ ≤ sx [−ηx sgn(sx ) − Kxsx ] + sy[−ηysgn(sy) − Kysy]
+ sz[−ηzsgn(sz) − Kzsz] (28)

Simplifying (28),

V̇ ≤ −ηx |sx | − ηy
∣∣sy∣∣ − ηz |sz | − Kxs

2
x − Kys

2
y − Kzs

2
z

(29)

Hence, V̇ is a negative definite function. Thus, we infer that
the closed-loop system is asymptotically stable and is valid
for any bounded initial conditionswhere Kx , Ky, Kz are pos-
itive constants.

For numerical simulations the fractional order system (20)
with the controller (25) are implemented in LabVIEW.

Figure 10 shows the controlled states of the system (4) at
t = 70 s.
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Fig. 10 Controlled states of the
fractional order BLDC motor
(control in action at t = 70 s)

6.2 Robust control

We derive a robust controller [21] for chaos suppression of
the fractional order BLDC motor by introducing controllers
to the states X and Z .

We define the brushless DC motor with the robust con-
trollers as

Dqx x = vq − x − yz + ρz + ux

Dqy y = vd − δy + xz

Dqz z = σ(x − z) + ηxy − TL + uz (30)

Let x∗, y∗, z∗denote the equilibrium points. Then the control
errors can be defined as

ex = x − x∗

ey = y − y∗

ez = z − z∗ (31)

The fractional derivative of the errors (31) are obtained as
follows.

Dqx ex = vq − (ex + x∗) − (ey + y∗)(ez + z∗)
+ρ(ez + z∗) + ux

Dqy ey = vd − δ(ey + y∗) + (ex + x∗)(ez + z∗)
Dqz ez = σ((ex + x∗) − (ez + z∗))

+η(ex + x∗)(ey + y∗) − TL + uz (32)

For any equilibrium point, the fractional order BLDC motor
system can be given by

Dqx x = vq − x∗ − y∗z∗ + ρz∗

Dqy y = vd − δy∗ + x∗z∗

Dqz z = σ(x∗ − z∗) + ηx∗y∗ − TL (33)

Simplifying (32), we obtain

Dqx ex = vq − ex − x∗ − ey(ez + z∗) − ez(y
∗ − ρ)

−z∗(y∗ − ρ) + ux

Dqy ey = vd − δ(ey + y∗) + ex (ez + z∗) + x∗(ez + z∗)
Dqz ez = ex (σ + ηey + ηy∗) + x∗(σ + ηey + ηy∗)

−σ(ez + z∗) − TL + uz (34)

At the equilibrium point x
∗ = 0, y

∗ = 0, z
∗ = 0, the equa-

tion (34) simplifies to

Dqx ex = vq − ex − eyez + ρez + ux

Dqy ey = vd − δey + exez

Dqz z = σex + ηexey − σez − TL + uz (35)

From Eq. (35), for the system to be asymptotically stable, the
controller can be defined as,

ux = −vq + ex + eyez − ρez − kxex

uz = −σex − ηexey + σez + TL − kzez (36)

The stability of the controller (36) can be proved using the
Lyapunov function

V = 1

2
(e2x + e2y + e2z ) (37)
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Fig. 11 Stabilized states of the
fractional order BLDC motor
(control in action at t = 80s)

The first derivative of the Lyapunov function can be given by

V̇ = ex ėx + eyėy + ezėz (38)

Using Lemma 1, we find that

V̇ ≤ ex D
qx ex + eyD

qy ey + ezD
qz ez (39)

V̇ ≤ −Kxe
2
x − Kye

2
y − Kze

2
z (40)

From (40), it is evident that the designed controller is globally
asymptotically stable.

Figures 11 and 12 shows the stabilized states and the errors
respectively.

7 Extended back-stepping control

The third control is about using an extended back-stepping
control [22] to stabilize the states of the fractional order
BLDC motor.

In this control scheme, the states of the fractional order
BLDC motor are forced to follow a periodic function. The
fractional order system with the controllers are defined by

Dqx x = vq − x − yz + ρz + ux

Dqy y = vd − δy + xz + uy

Dqz z = σ(x − z) + ηxy − TL + uz (41)

The control errors for the chaos suppression of the fractional
order BLDC motor (41) are defined as follows.

ex = x − xd

ey = y − yd

ez = z − zd (42)

where xd = f (t), yd = kxex , zd = kyex + kzey and f (t) is
a smooth periodic function of time.

The fractional derivatives of (42) are calculated as the
fractional order error dynamics

Dqx ex = Dqx x − Dqx fx (t)

Dqy ey = Dqy y − kx D
qx ex

Dqz ez = Dqz z − kyD
qx ex − kzD

qy ey (43)

Using (41) and (43), we find the following.

Dqx ex = vq − x − yz + ρz + ux − Dqx fx (t)

Dqy ey = vd − δy + xz + uy − kx D
qx ex

Dqz ez = σ(x−z) + ηxy − TL + uz − kyD
qx ex − kzD

qy ey

(44)

We define the controllers for chaos suppression of the frac-
tional order BLDC motor as
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Fig. 12 Dynamics of the errors
(control in action at t = 80 s)

Fig. 13 Stabilized states of the
fractional order BLDC motor
tracking the smooth periodic
function (control in action
t = 45 s)

ux = −vq + x + yz − ρz + Dqx fx (t) − k1ex

uy = −vd + δy − xz + kx D
qx ex − k2ey

uz = −σ(x − z)−ηxy+TL + kyD
qx ex + kzD

qy ey − k3ez

(45)

To analyze the stability of the designed control algorithm,
we use Lyapunov stability theory. We take the Lyapunov
function as

V = 1

2

(
e2x + e2y + e2z

)
(46)

The first derivative of the Lyapunov function is derived as

V̇ = [ex (t)ėx (t) + ey(t)ėy(t) + ez(t)ėz(t)] (47)

Using Lemma 1, we find that
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V̇ ≤ −k1e
2
x (t) − k2e

2
y(t) − k3e

2
z (t) (48)

Since V̇ is a negative definite function, we conclude that the
closed-loop system is stable and is valid for any bounded
initial conditions.

Figure 13 shows the stabilized states of the closed-loop
BLDC system tracking the smooth periodic function. For
numerical simulations, we use the smooth periodic function
f (t) = 35 sin 0.57t. Also, we take the initial conditions as
x(0) = 3.63, y(0) = 56.02 and z(0) = 15.09.

8 Conclusion

In this paper, we derived new results for the fractional
order brushless DC motor. First, we discussed the dynamic
properties of the fractional order brushless DC motor such
as bifurcation with parameters, bifurcation with fractional
orders, Lyapunov exponents, and bicoherence. Next, we
achieved chaos control and stabilization of the fractional
order brushless DC motor with three control schemes (slid-
ing mode control, robust control and extended back-stepping
control). The fractional order controller stability is estab-
lished using Lyapunov stability theorem through a modified
fractional order Lyapunov first derivative. Numerical sim-
ulations are established to illustrate the mail results for
the fractional order brushless DC motor. As future work,
we plan to investigate the fractional order controllers for
fractional order brushless DC motor with other methods
such as super-twisting and terminal sliding mode control,
etc.
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