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Abstract This paper develops a precise proportional–inte-
gral (PI) type control system for repeatable tracking control
of a permanent magnet synchronous motor (PMSM) under
motor parameter and load torque variations. By adding a very
simple learning feedforward term, a conventional PI control
system can be enforced to have a perfect tracking perfor-
mance under model parameter and load torque variations.
The convergence and stability of the closed-loop control sys-
tem response are analytically shown. Finally, the simulation
and experimental results are given to verify the effectiveness
of the proposed PI-type learning control law under the uncer-
tainties such as motor parameter and load torque variations
using a prototype PMSM drive system.

Keywords Learning feedforward control · Permanent
magnet synchronous motor (PMSM) · PI control ·
Uncertainties

1 Introduction

A permanent magnet synchronous motor (PMSM) is popular
for some advantages over others such as low noise, low iner-
tia, high efficiency, robustness, and low maintenance cost.
Conventional proportional–integral (PI) and proportional–
integral–derivative (PID) control methods usually work well
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under some operation point [1]. However, due to motor
parameter variations and external disturbances, the conven-
tional control methods cannot achieve the fast and precise
speed response, quick recovery of speed from disturbances,
parameter insensitivity, and robustness in the variable speed
domain. To overcome these problems,many researchers have
proposed various advanced control design methods, e.g.,
model predictive control [2–4], sliding mode control [5,6],
internal model control [7], adaptive control [8,9], nonlin-
ear feedback linearization control [10], nonlinear optimal
control [11,12], fuzzy control [13–16], and neural network
control [17]. Recently, several researchers have introduced
disturbance observers to compute load torque compensating
terms. These terms have been incorporated into conventional
PI/PID controllers to perform rejection of load torque distur-
bances [18,19]. However, all the PI/PID methods and most
of the previous advanced controllers can assure perfect track-
ing performance only under the restrictive assumption that
the PMSM parameters are accurately available.

This paper shows that by including an additional simple
learning feedforward term, a conventional PI control sys-
tem can be enforced to have perfect tracking performance
in the presence of repeating load torque and model para-
meter variations. Because PMSMs are used for repetitive
tasks in many industrial applications such as robots and
hard disk drives, this paper focuses on developing a sim-
ple PI-type controller for a PMSM with a repetitive desired
trajectory. The proposed controller can be divided into the
stabilizing part and the intelligent part. A conventional PI
feedback control input term is used as the stabilizing part,
and a feedforward term to compensate for repeating load
torque and model parameter uncertainties is incorporated as
the intelligent part. Since the proposed method constructs
the feedforward compensating term using a simple learning
rule, it does not require any load torque disturbance observer
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unlike the previous disturbance-observer-based PMSM con-
trol methods of [18,19]. The additional learning feedforward
term requires no information on motor parameter and load
torque values and, thus, the proposed PI-type controller is
insensitive to model parameter and load torque uncertain-
ties. Additionally, stability and convergence of the proposed
control system response are analytically proven. It should be
noted that unlike the previous learning-type control meth-
ods given in [7–9,16,17], our controller does not require
any identification procedure. Simulation and experimental
results are shown to demonstrate the effectiveness of the
proposed learning controller under the uncertainties such as
motor parameter and load torque variations using a prototype
PMSM drive system.

2 Problem formulation

Afield-oriented vector-controlled PMSM can be represented
by the following dynamic equation:

ω̇ (t) = k1iqs (t) − k2ω (t) − k3TL (t) (1)

where ω = θ̇ is the electrical rotor angular speed, θ is the
electrical rotor angle, TL represents the load torque distur-
bance input, and ki > 0, i = 1, . . . , 3 are the parameter
values given by

k1 = 3

2

1

J

p2

4
λm, k2 = B

J
, k3 = p

2J

and p is the number of poles, and J , B, λm are the rotor
inertia, the viscous friction coefficient, themagnetic flux. The
uncertainties on the parameters ki as well as the load torque
disturbance can severely deteriorate the control performance.

The following assumptions will be used:

A1 ω, iqs, ids are available.
A2 The desired trajectory and the load torque are T-

periodic, i.e., θd(t + T ) = θd(t), ωd(t + T ) =
ωd(t), ω̇d(t + T ) = ω̇d(t), TL (t + T ) = TL (t) .

It should be noted that most of the previous methods use
the restrictive assumption that the parameters ki are exactly
known. The assumption A2 is not so restrictive because
PMSMs are usually called upon to execute repetitive opera-
tions in many industrial applications such as robots and hard
disk drives. Figure 1 illustrates a block diagram of a gen-
eral field-oriented vector control system for a PMSM. In a
field-oriented PMSM control system as shown in Fig. 1, the
three-phase current commands are computed by converting
the controller current commands iqsd, idsd. The d axis refer-
ence current idsd is usually set as idsd = 0. Thus, our problem
can be formulated as proposing a simple learning control
algorithm to generate the q axis reference current command
iqsd for the system model (1) under the assumptions A1-2.

The following background results will be used to derive
main results:

Definition 2.1 A vector f (t) ∈ Rn is said to be f (t) ∈
L2 if and only if ‖ f (t)‖2 ∼=

√∫ ∞
0

∑n
i=1 f 2i (t) dt < ∞

And f (t) ∈ Rn is said to be f (t) ∈ L∞ if and only if
max1≤i≤n | fi (t)| < ∞.

Lemma 2.2 If y (t) ∈ L2 ∩ L∞, and ẏ (t) is bounded, then
y (t) converges to zero [20].

3 Controller design and stability analysis

Let iqs consist of a PI feedback input term ufb as the stabi-
lizing part and a feedforward compensating input term uff as
the intelligent part:

iqs (t) = ufb (t) + uff (t) (2)

where

ufb (t) = −βσ (t) (3)

σ (t) = γ e1 (t) + e2 (t) (4)

and β > 0, γ > 0, e1 = ∫ t
0 e2dτ = θ − θd , e2 = ω − ωd ,

and uff will be specified later. It should be noted that the

Fig. 1 Block diagram of a
field-oriented PMSM control
system
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positive constants β and γβ correspond to the P and I gains,
respectively.

Using the error vector e = [e1, e2]T , we can obtain the
following error dynamics:

ė1 = e2

ė2 = −k1βσ + k1ue − k2e2 (5)

where ue = uff − u∗
ff and u∗

ff is given by

u∗
ff (t) = 1

k1
[k3TL (t) + ω̇ (t) + k3ωd (t)] (6)

Let us define the Lyapunov function V0(t) as:

V0 (t) = ζe21 + σ 2 (7)

where ζ = γ (γ − k2). It should be noted that if γ is suffi-
ciently large, then ζ > 0 and V0(t) ≥ 0. The time derivative
of V0(t) along the error dynamics (5) is given by

V̇0 (t) = 2ζe1ė1 + 2σ σ̇ = 2ζe1e2 + 2σ (γ e2 + ė2)

= 2ζe1 (σ − γ e1) − 2 (k1β − k2 + γ ) σ 2

− 2ζe1σ + 2k1σue

≤ −2qr ‖er‖22 + 2k1σue (8)

where qr = min(ζγ , k1 β − k2), er = [e1, σ ]T , and the
following equation is used

σ̇ = γ e2 + ė2 = − (k1β − k2 + γ ) σ − ζe1 + k1ue

If the feedforward compensating input term is zero, thenue =
−u∗

ff and the inequality (8) can be reduced to

V̇0 (t) ≤ −2qr ‖er‖22 + 2k1η ‖er‖2
where η = max0≤t≤T

∣∣u∗
ff (t)

∣∣. On the other hand, for the case
of accurate feedforward compensation, the inequality (8) can
be reduced to

V̇0 (t) ≤ −2qr ‖er‖22 ≤ 0

which implies that the perfect tracking response of the con-
ventional PI control system can be guaranteed under the
restrictive assumption of availability of accurate information
on motor parameter and/or load torque values. This demands
incorporating an effective compensation algorithm into the
conventional PI control system to get good performance in
the presence of motor parameter and load torque variations.

Now, let the feedforward control input uff be updated by
the following simple repetitive learning rule:

uff (t) = uff (t − T ) − δσ (t) . (9)

where δ > 0 is the learning gain. Figure 2 shows the overall
block diagram of the proposed learning control algorithm.

Theorem 3.1 Let iqs be given by (2)with (3) and (9). Assume
that γ is sufficiently large enough to guarantee γ > k2. Then,
the tracking error e1 converges to zero.

Proof Let us define the Lyapunov functional as:

V (t) = V0 (t) + k1
δ

∫ t

t−T
u2e (τ ) dτ .

Its time derivative along the error dynamics (5) is given by

V̇ (t) = V̇0 (t) + k1
δ
u2e (t) − k1

δ
u2e (t − T )

≤ −2qr ‖er (t)‖22 + 2k1σ (t) ue (t)

+k1
δ
[ue (t − T ) − δσ (t)]2 − k1

δ
u2e (t − T )

≤ −2qr ‖er (t)‖22 + 2k1σ (t) [ue (t − T ) − δσ (t)]

+k1
δ
[ue (t − T ) − δσ (t)]2 − k1

δ
u2e (t − T )

≤ −2qr ‖er (t)‖22 + k1δσ
2 (t)

which implies that er ∈ L2 ∩ L∞ (i.e., e1 ∈ L2 ∩ L∞,
σ ∈ L2 ∩ L∞, e2 ∈ L2 ∩ L∞). After all, by Lemma 1 it can
be concluded that the tracking error e1 converges to zero. 
�

Instead of (9), the following repetitive learning rule can
be used without losing the stability property

uff (t) = uff (t − T ) − δσ (t − T ) (10)

where 2β > δ > 0.

Corollary 3.2 Let iqs be given by (2) with (3) and (9).
Assume that the control parameters β, δ, and γ satisfy the
following inequalities:

2β > δ > 0, γ > k2 (11)

Then, the tracking error e1 converges to zero.

Proof Define a Lyapunov functional as:

Vc (t) = V0 (t) + k1
δ

∫ t+T

t
u2e (τ ) dτ

Then, the time derivative of Vc along the error dynamics (5)
is given by

V̇c (t) = V̇0 (t) + k1
δ
u2e (t + T ) − k1

δ
u2e (t) (12)
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Fig. 2 Block diagram of the
proposed learning control
algorithm

By referring to the inequality (8), the above Eq. (12) can be
reduced to

V̇c (t) = −2ζγ e21 (t) − 2 (k1β − k2 + γ ) σ 2 (t)

+ 2k1σ (t) ue (t) + k1
δ
u2e (t + T ) − k1

δ
u2e (t)

(13)

The learning rule (9) implies ue(t +T ) = ue(t)−δσ (t) and,
thus, (12) can be rewritten as:

V̇c (t) = −2ζγ e21 (t) − 2 (k1β − k2 + γ ) σ 2 (t)

+ 2k1σ (t) ue (t) + k1
δ
[ue (t) − δσ (t)]2 − k1

δ
u2e (t)

= −2ζγ e21 (t) − [
k1 (2β − δ) + 2 (γ − k2)

]
σ 2 (t)

which implies that e1 ∈ L2 ∩ L∞, σ ∈ L2 ∩ L∞, e2 ∈
L2 ∩ L∞ as long as the inequalities (11) hold. After all,
by Lemma 1 it can be concluded that the tracking error e1
converges to zero. 
�

Remark 3.3 If the control law (2) and learning rule (9) are
replaced with

iqs (t) = ufb (t) + Sat [uff (t)] (14)

uff (t) = Sat [uff (t − T )] − δσ (t) (15)

where

Sat (x) =
⎧
⎨
⎩
u∗ x > u∗
x −u∗ ≤ x ≤ u∗
−u∗ x < −u∗

(16)

where u∗ is a sufficiently large constant satisfying u∗ ≥
max 0 ≤ t ≤ T

∣∣u∗
ff (t)

∣∣, then using Lemma 1 and the
fact that

(
Sat [uff (t)] − u∗

ff (t)
)2 ≤ (

uff (t) − u∗
ff (t)

)2

Table 1 PMSM parameters for simulation and experiment

Rated power Prated 750 (W)

Number of poles p 8

Stator resistance Rs 0.43 (�)

Stator inductance Ls 3.2 (mH)

Magnetic flux λm 0.085 (V s/rad)

Equivalent inertia J 0.0018 (kgm2)

Viscous friction coefficient B 0.0002 (Nms/rad)

It can be shown that er ∈ L2 ∩ L∞, uff(t) ∈ L∞, ė2 (t) ∈
L∞, thus limt→∞e2(t) = 0, and therefore e1 as well as e2
converges to zero.

Remark 3.4 Because the positive constants β and γβ corre-
spond to the P and I gains, we can easily design the constants
β and γ using the PI tuning rule given in the previous PI
control methods such as [1]. The tuning rule of [1] implies
γ = ωs/1.4 where ωs is the bandwidth of the speed loop
PI controller. Usually, ωs is much larger than 1 and, thus,
we may assume that γ = ωs/1.4>>1. On the other hand,
the viscous friction coefficient B is very small and, thus, we
can regard k2 as a small constant. This implies that the sta-
bility condition γ = ωs/1.4 > k2 of Theorem 3.1 can be
trivially satisfied when the PI feedback control term u f b(t)
is designed by the existing tuning method.

4 Simulation and experiment

From the PMSM parameters given in Table 1 for simula-
tion and experiment, we can derive the following dynamic
equation:

ω̇ = 1679.4 iqs − 0.2837ω − 3782.4 TL (17)

Referring to the result given in the previous section, we
can obtain the following current control law
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Fig. 3 Overall block diagram
of the proposed PMSM learning
control system

Fig. 4 Simulation results of the first trial under +200 % variations of
some parameters (J, B, λm , and TL )

Fig. 5 Simulation results of the fifth trial under +200 % variations of
some parameters (J, B, λm , and TL )

Fig. 6 Simulation results about the speed tracking error under +200 %
variations of some parameters (J, B, λm , and TL ) (blue first trial,
green second trial, red third trial, cyan fourth trial, and purple fifth
trial)

iqsd (t) = −0.2σ (t) + uff (t) (18)

where σ(t) is given by

σ =
∫ t

0
(ω − ωd) dτ + (ω − ωd) = e1 + e2 (19)

and uff(t) are updated by the following adaptation law:

uff (t) = uff (t − T ) − 0.2σ (t) (20)

where T = 1 and uff(t) = 0 for t ∈ [−T, 0]. Figure 3 shows
the overall block diagram of the proposed PMSM learning
control system. All blocks in the dotted line are implemented
on a Texas Instruments TMS320F28335 floating-point DSP.
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Table 2 Maximum speed tracking errors of each trial

1st 2nd 3rd 4th 5th

Maximum tracking errors (rad/s) 15 7.8 4.4 2.8 1.6

Fig. 7 Experimental results under the same condition as Fig. 4. a ωd ,
ω, and e2. b iqsd, iqs, and ids

Two stator currents (ia, ib) as well as a dc-link voltage (Vdc)
aremeasured for control and their analog signals are precisely
converted to digital values by a 12-bit ADC module with a
built-in sample-and-hold circuit. The rotor position (θ) as
well as themotor speed (ω) is obtained. In this figure, the con-
trol system uses the cascade control structure including two
control loops : a proposed learning controller in an outer loop
and a conventional PI current controller in an inner loop. As
shown in Fig. 3, a conventional PI current controller is used to
evaluate the performance of the proposed learning controller,
so the output of the proposed learning controller becomes the
q axis current command (iqsd) of the PI current controller. In
this paper, the switching frequency is chosen as 5 (kHz), and a

Fig. 8 Experimental results under the same condition as Fig. 5. a ωd ,
ω, and e2. b iqsd, iqs, and ids

space vector pulse-widthmodulation (SVPWM) technique is
used. In simulations and experiments, the motor speed com-
mand (ωd) is changed from 125.7 to 251.3 (rad/s). Figure 4
shows the simulation results (ωd , ω, e2, iqsd, iqs, ids) of the
first trial using MATLAB/Simulink under +200 % variations
of some parameters (J, B, λm , and TL). It should be noted
that the results of the first trial are equivalent to those by the
following PI speed control law:

iqsd = −0.06
∫ t

0
(ω − ωd) dτ − 0.2 (ω − ωd)

= −0.06e1 − 0.2e2

Figure 5 shows the simulation results of the fifth trial under
+200 % variations of some parameters (J, B, λm , and TL).
Figure 6 shows the simulation results about the speed track-
ing error (e2) under +200 % variations of some parameters
(J, B, λm , and TL). As shown inFigs. 4, 5 and 6, the proposed
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Table 3 Speed tracking errors of the first trial and the fifth trial during
steady state

Case Simulation Experiment

1st 5th 1st 5th

Tracking errors (rad/s) 10.18 0.27 17.43 0.42

learning controller is very insensitive tomodel parameter and
load torque variations. Table 2 summarizes the maximum
speed tracking errors of each simulation trial. Figure 7 shows
the experimental results under the same condition as Fig. 4.
Figure 7a illustrates the desired speed (ωd), measured speed
(ω), and speed error (e2). Figure 7b shows the desired q axis
current (iqsd), measured q axis current (iqs), and measured d
axis current (ids). Also, Fig. 8 shows the experimental results
under the same condition as Fig. 5.

The simulation and experimental results verify that the
proposed PI-type controller gives a remarkable control per-
formance, in that it can accurately control the speed of a
PMSM without precise information about motor parameter
and load torque values. And our simple controller guarantees
a fast convergence in the presence of repeating load torque
and model parameter uncertainties. Table 3 summarizes the
speed tracking errors of the first trial and the fifth trial during
steady state based on the simulation and experimental results.

5 Conclusion

This paper showed that by adding a very simple learning
feedforward term a conventional PI control system can be
enforced to have perfect tracking performance in the presence
of model parameter and load torque variations. Convergence
and stability of the proposed control system were proven
by showing that the tracking error of the closed-loop sys-
tem asymptotically goes to zero. To validate the practicality
and feasibility of the proposed PI-type learning controller,
simulations and experiments were carried out under no infor-
mation on motor parameter and load torque values using a
conventional PI current controller with the proposed speed
controller. From simulation and experimental results, it was
verified that even though the proposed PI-type control algo-
rithm is simple and easy to be implemented it yields good
control performance.
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