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Abstract Grid-integrated wind turbine may experience low
voltages during transient events in grid. An increase observed
in inrush current leads to low voltage. To control the
increased current, an enhancement in a low voltage ride-
through (LVRT) capability is required. This study examines
the impact of an LVRT scheme on grid-integrated doubly fed
induction generator (DFIG)-based wind turbines which are
represented with new stator-damping resistor unit (SDRU)
and rotor current control (RCC). Besides, both stator and
rotor circuits of DFIG were enhanced with electro-motor
force (emk). Designed as hybrid with SDRU andRCC,DFIG
was examined to analyses symmetrical and asymmetrical
faults in the grid. Electro-motor-force dynamic modeling of
both stator and rotor was developed. The responses of wind
turbine against low voltage are investigated in terms of bus
voltages, angular speed, electrical torque, stator and rotor
current, and d–q axes current. The results of the study show
that the system became stable in a short timewhen the SDRU
and RCCwere incorporated with the stator and rotor electro-
motor-force models.

Keywords DFIG ·LVRT · SDRU ·RCC ·Transient stability

1 Introduction

Due to increased application of integration of wind power in
power systems, a need for some specific technical require-
ment emerges, with grid codes the most important technical
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requirement. As low voltage cases emerge due to faults, grid
codes must operate within certain limits [1]. For operation
within certain limits of system, low voltage ride through
(LVRT) capability methods is used in different studies in
the literature.

To control rotor current and rotor voltage in rotor-side
and grid-side converters of doubly fed induction genera-
tor (DFIG) during symmetrical voltage dip, hybrid current
control models, feed-forward, vector control, and transient
current control have been enhanced. Thanks to these mod-
els, inrush currents which occur in DFIG are removed [2–5].
For grid-rotor-side converter units of the DFIG, voltage
control strategy is enhanced. Thanks to this voltage con-
trol, converter protection provides coordinated control during
transient events, such as faults and wind speed increase–
decrease [6,7]. The finite-element method is used for the
LVRT method in DFIG. Owing to the reduction of sim-
ple circuit components, the finite-element method provides
active crowbar protection as well as torque control of DFIG
[8]. Enhanced using the positive-sequence component, new
LVRT capability improves voltage and phase angle during
varios voltage sag problems with low-high-pass filters and
reference current tracking used in wind farm based on DFIG
[9,10]. Electro-motive force voltages in DFIG based wind
turbines provide the controls of not only rotor-side converter,
but also stator-side converter during the transient cases, as
well. With compensation of electro-motive force voltages,
over-stator current and over-rotor current are reduced during
transient cases. In [11,12], passive and active LVRT com-
pensators are used to improve the LVRT capability during
symmetrical and asymmetrical faults in DFIG. The passive
compensator and active compensator reduce power oscilla-
tions and time response of parameters during faults owing
to new crowbar units. Besides, using virtual resistance, a
different control strategy is proposed to reduce exceeding
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rotor-circuit currents in [13,14], which can provide reactive
power to compensate for the latest grid code requirement in
transient conditions. To develop LVRT capability in DFIG,
a different approach called crowbar trip activation time is
used. Using bypass resistor in this control method, converter
units prevent various faults cases [15]. As a new control strat-
egy against transient cases in DFIG based on wind farm,
DC-link voltage control techniques are used. With the modi-
fication of grid-side converter unit of DFIG, DC-link voltage
control is carried out both by compensating active power of
the system and by regulating voltage fluctuations for LVRT
capability [16,17]. Dynamic voltage resistor (DVR) devices
are one of the most commonly used devices among con-
trol strategy of DFIG for LVRT capability. Besides, owing
to the positive and sequence component in DFIG for LVRT,
grid-side converter (GSC) and rotor-side converter (RSC)
are provided for the control of DFIG during fault conditions
[18,19]. Power oscillation damping (POD) is important for
regulating voltage dip or the exceed currents in the DFIG
during grid faults, Besides, POD has provided to power
control. Therefore, differentLVRTmethodswithPOD topro-
tect of the DFIG are developed [20–22]. Besides all control
strategies of DFIG based wind farm during transient condi-
tions, capability, flexible AC transmission system (FACTS)
devices are used to enhance LVRT capability. Especially, sta-
tic synchronous compensator (STATCOM) has provided to
reactive-power control and voltage controls as well as angle
control [23,24].

In this study, a new LVRT capability method in DFIG is
enhanced. Not only stator, but also rotor circuits were mod-
elled as electro-motive force instead of stator and rotor flux
equations for LVRT in the DFIG, as well. Besides, for sta-
bility of the DFIG, the SDRU and RCC were developed.
A comparison was made with and without the SDRU and
RCC in conditions variations, such as three–two faults. It
was shown that the SDRU–RCC LVRT capability control
yielded efficient results in this study.

2 Doubly fed induction generators (DFIG)

A crowbar unit, GSC and RSC are the components of DFIG
based on wind turbine. The DFIG circuit model is given in
Fig. 1.

It is essential that the grid-side converter regulates the
DC-link voltage besides providing reactive power, while the
rotor side is needed to regulate the real and reactive powers of
the DFIG. A crowbar unit control regulates voltage-current
limits. It is with d–q-axes equivalence circuits that volt-
age, current and flux calculations of the DFIG are facilitated
[25–27]. Mathematical enhancement of DFIG is based on
some assumptions. An arbitrary reference frame is used in
determining DFIG equations, while calculations of the DFIG
equations in power systems are facilitated with p.u. values.
Voltage and linkage flux computations obtained in line with
p.u. values in the DFIG are shown in Eqs. 1 and 4:

[
vds
vqs

]
=

[
Rs 0
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] [
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iqs

]
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[
0 −1
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] [
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]
+
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]
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=
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+
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[
Lm 0
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]
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[
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] [
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(4)

where vds , vqs , vdr , vqr : d- and q-axes are the stator and rotor
voltages; λds, λqs, λdr , λqr : d- and q-axes are the stator- and
rotor-magnetizing fluxes; ed , eq : d- and q-axes are the stator
source voltages; and ws : synchronous speed, s: slip, rs , rr
are the stator and rotor resistances.

Fig. 1 DFIG circuit model
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In creating the electro-motor force in the full-order model
(FOM), Eq. 5 is obtained with the incorporation of Eq. 4 into
Eq. 2:
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]

+
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(5)

Equation 6 is obtained with the isolation of the stator d–q
current in Eq. 3:
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d–q axes’ current obtained is given in Eq. 7:
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Equation 8 is obtained with the incorporation of Eqs. 5 and 6
into Eq. 4:
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The rotor electro-motive-force in the FOM is given in Eq. 9.
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In the DFIG reduced-order model (ROM), a electro-motive
force and transient reactance are applied rather than stator
flux derivations. Stator and rotor d–q voltages in the FOM in
mathematical equation of the ROM are given in Eqs. 1 and
4. Simplified rotor d–q-axes currents are obtained in Eq. 10:
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With the incorporation of the rotor, d–q axes’ currents in
Eq. 5 into Eqs. 3 and 11 are obtained:
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Equation 12 is obtained with the re-designation of Eq. 11:
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While stator transient reactance is shown in Eq. 13, steady-
state reactance is shown in 14:

X ′ = ws

(
(Lm + Ls) − L2

m

Lm + Lr

)
(13)

X = ws(Lm + Ls). (14)

Without considering the linkage flux derivation in Eq. 1,
Eq. 15 is achieved according to the descriptions in Eqs. 7–10:

[
vds
vqs

]
=

[
Rs 0
0 Rs

] [
ids
iqs

]
+

[
0 −X ′
X ′ 0

] [
ids
iqs

]

+
[
0 1
−1 0

] [
ed
eq

]
(15)
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With the incorporation of Eq. 10 into Eq. 2, the derivation
of the electro-motive force shown as ed and eq is given in
Eq. 16 [28–30]:
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The transient open-time constant of ROM in the DFIG is
given in Eq. 17:

T0 = Lr + Lm

Rr
. (17)

The aim is to maintain dynamic control of GSC–RSC by
creating an electro-motive force in the rotor axis apart from
the electro-motive force created without considering stator
flux derivations in the ROM [31]. The d–q axes stator volt-
age obtained without considering the stator axis linkage flux
derivation in the ROM is given in Eq. 18:
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With the incorporation of Eq. 4 demonstrated in the ROM
into Eq. 2, Eq. 19 is achieved:
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Simplified d–q-axes stator currents in Eq. 3 are given in
Eq. 20:
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The d–q-axes derivation of the stator flux is achieved in
Eq. 21:

[
i̇ds
i̇qs

]
=

[
Lm

Lm+Ls
0

0 Lm
Lm+Ls

] [
idr
iqr

]
. (21)

With the incorporation of Eqs. 20 and 21 into Eqs. 19, 22 is
achieved:
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Equation 23 is achieved through the simplification of Eq. 22:
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The rotor electro-motive force of the ROM achieved without
considering the stator resistance and d–q-axes stator voltage
is given in Eq. 24:
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[
Ed

Eq

]
=

[
0 − sws Lm

Ls+Lm
sws Lm
Ls+Lm

0

] [
λds
λqs

]
. (24)

Whereas the angular speed based on stator flux is stable
under normal operating conditions of DFIG, changes can
be observed in angular speed in transient case. On the other
hand, a drop in output voltage of DFIG does not change the
flux drastically according to the basic flux rule. Accordingly,
the stator flux ratio of the drop in three-phase’s voltage pro-
duces dc-component. This component is considered to be
an oscillator during the transfer in synchronous reference
frame, and it is applied as stator time constant at the same
time. The stator flux change during the voltage drop is given
in Eq. 25:

λsdq0 =
{

λ+
sdq0

λ+
sdq2+λ−

sdq2e
2ws t +(λ+

sdq0−λsdq2 −+ λ−
sdq2)e

−σ t e−ws t

}
.

(25)

Considering Eq. (25) and without considering stator resis-
tance and flux, equivalent rotor source voltage can be defined
as in the following equation. The first line of Eq. 25 points
to the pre-transient condition, while the second line points
to the stator flux after transient conditions. The stator flux is
demonstrated in two parts; before and after the voltage drop.
The rotor d–q axes are used in controlling these two parts. In
Eq. 26, (Lm/Lss)sλ

+
sdq0 points to the control as in the first

part, when the sliding rate of Rotor Edq voltage in transient
conditions is comparatively low. In the second part, converter
circuit in the rotor side is protected from the overcurrent and
long-term unstable condition through rotor:

Esdq0=
⎧⎨
⎩

Lm
Lss

sλ+
sdq0

Lm
Lss

sλ+
sdq2− Lm

Lss
(1 − s)(λ+

sdq0−λ+
sdq2−λ−

sdq2)e
−σ t e−ws t

⎫⎬
⎭

(26)

where λ+
sdqo is the positive-sequence steady stator flux link-

age, while λ+
sdq2 and λ−

sdq2 are the positive and negative
sequence transient stator flux linkages, respectively, t is the
time, and σ is the stator-damping coefficient, as shown in Eq.
(27):

σ = 1 − Lm

Ls Lr
. (27)

3 Enhancement of SDRU and RCC in DFIG based
wind farm

Three-phase resistors, r1, r2, and r3, directly connected to
stator windings of DFIG based wind farm are shown in Fig. 2
[32,33].

Equation 28 shows how the line voltages, ab and ca, of
the stator and the grid voltages relate to each other:

[
vnetworkab
vnetworkca

]
=

[
r1 −r2
−(r1 + r3) −r3

] [
isa
isb

]
+

[
vsab
vsca

]
. (28)

Equation (28) is obtained on the assumption that a neutral
current can find no way to flow out to ensure that zero
sequence component of the stator current is zero. Accord-
ingly, (isa + isb) replaces the phase c current isc. Following
matrix multiplications, (28) is changed into the stationary
reference frame through αβ axes, as follows:

[
vnetworkα
vnetworkβ

]
=

[
rα rαβ

rαβ rβ

] [
isα
isβ

]
+

[
vsα
vsβ

]
(29)

[
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]
=

[
4r1+r2+r3

6
r3−r2
2
√
3

r3−r2
2
√
3

r3+r2
2

] [
isα
isβ

]
+

[
vsα
vsβ

]
. (30)
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Table 1 Parameter values of the DFIG

Parameter Stator resistance Rotor resistance Stator inductance Rotor inductance Inertia constant

Values 0.00706 Ohm 0.005 Ohm 0.171 H 0.156 H 3.5

The first line of (30) points to the grid voltage vector equation
in stationary reference frame, demonstrated by

[
vnetworkα
vnetworkβ

]
=

[
rα+rβ

2 0
0 rα−rβ

2

] [
i∗sα
i∗sβ

]
+

[
vsα
vsβ

]
. (31)

A dc term is obtained through the positive sequence com-
ponent in the positive synchronous reference frame, d–q
axes positive rotating at the angular speed. This can also
be seen in the negative sequence component in the negative
synchronous reference frame, d–q axes negative rotating at
the angular speed. By replacing the positive into negative
sequence components of the grid and d–q axes stator voltage

shown in (31), Eq. (32) is obtained with some alterations as
follows:

[
vnetworkd
vnetworkq

]
=

[
rα+rβ

2 0
0 rα−rβ

2

][
i+sdq
i−sq

]
+

[
v+
sdq

v−
dq

]
. (32)

The positive and negative sequence components of the grid
voltage are described in Eqs. (31) and (32) as functions of
d–q axes stator voltage.

Under normal conditions, the outer power control loops,
also known as mainstream vector control, prove instrumental
in achieving the d–q components of the rotor reference cur-
rent. During fault conditions, the d–q components obtained

123



Electr Eng (2017) 99:673–683 679

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time(s)

3
4

.5
 k

V
 b

u
s 

vo
lta

g
e

 (
p

.u
.)

without SDRU+RCC
with SDRU+RCC

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

Time(s)

 D
F

IG
 t
e

rm
in

a
l v

o
lta

g
e

 (
p

.u
.)

without SDRU+RCC
with SDRU+RCC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Time(s)

 D
F

IG
 a

n
g

u
la

r 
sp

e
e

d
 (

p
.u

.)

without SDRU+RCC
with SDRU+RCC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

Time(s)

 D
F

IG
 e

le
ct

ri
ca

l t
o
rq

u
e
 v

a
ri
a
tio

n
s 

(p
.u

.)
 

without SDRU+RCC
with SDRU+RCC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

Time(s) D
F

IG
 d

 a
xi

s 
st

a
to

r 
cu

rr
e

n
t 
va

ri
a

tio
n

s 
(p

.u
.)

 

 

without SDRU+RCC

with SDRU+RCC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Time(s) D
F

IG
 q

 a
xi

s 
st

a
to

r 
cu

rr
e
n
t 
va

ri
a
tio

n
s 

(p
.u

.)

 

 

without SDRU+RCC

with SDRU+RCC

(a) (b)

(c) (d)

(e) (f)

Fig. 5 a 34.5 kV bus voltage of test system, b output voltage of DFIG, c angular speed of DFIG, d electrical torque of DFIG, e d-axis stator current
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Fig. 5 continued

in thisway can be used to develop theLVRTcapability. In this
section, a solution is proposed to enhance the LVRT capa-
bility during unbalanced voltage dips with the application of
the asymmetrical SDR and through a profound elaboration
on how to choose the d–q components of the rotor reference
current during the fault. In accordance with d–q axes stator
flux equations, the stator positive/negative sequence current,
in terms of stator flux and rotor current, is shown as

i+sdq = λ+
sdq − Lmi

+
rdq

Ls
(33)

i−sdq = λ−
sdq

Ls
. (34)

Transformation of (33) and (34) into (32) produces the neg-
ative sequence of the grid voltage in terms of rotor current,
stator voltage, and flux:

v−
networkdq = rα − rβ

2
× λ+

sdq − Lmi
+
rdq

Ls
. (35)

In this way, the negative sequence components of the sta-
tor voltage and flux turn out to be zero, thereby eliminating
unbalanced voltage fluctuation the stator voltage. It is impor-
tant to note that vsdq and λsdq are inter-dependent during the
unbalanced voltage dip. In the light of (35), it is plausible to
select the positive and negative sequence components of the
rotor reference current in the positive/negative synchronous
reference frames as follows:

i+rdq−re f = − Ls

Lm
× 2

rα − rβ
× v−

networkdq + 1

Lm
λ+
sdq (36)

i−rdq−re f = 0. (37)

The assumption that rotor current control loop is fast enough
gives rise to the possibility that the rotor current can be set
to its reference value. Accordingly, with the rotor current
during the unbalanced voltage dip chosen according to (34)
and (35), it is possible to nullify the negative sequence com-
ponent of the stator voltage and current, thereby balancing
stator voltage. Itmust be emphasized that the positive compo-
nents of rotor current are controlled in positive synchronous
reference frame, while negative components of rotor current
are controlled and in negative synchronous reference frame.
Therefore, as given in Fig. 3, separate controllers must be
used for positive and negative sequence components of the
rotor current.

The positive d–q frame helps in controlling positive
sequence rotor current with positive stator flux orientation,
where the d positive axis is fixed to the positive stator flux
with the rotation speed of wb, with its phase angle with the
α axis measuring θλs0. In d positive frame with positive sta-
tor flux orientation, the q positive axis rotor current is used
for the real-power control as well as the reactive-power con-
trol, while in the d–q axes frame, used to control negative
sequence rotor current, the angular speed of d negative axis
rotation is −wb with the phase angle −θλs0 regarding the α

axis.

4 Simulation study

The transient behaviour of the wind turbine was investigated
through the 2.3 MW wind power system, as given in Fig. 4.

The full-order DFIG based wind turbine model and the
developed DFIG based wind turbine model with an SDRU
and RCC are the two models that demonstrate the wind tur-
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Fig. 6 a 34.5 kV bus voltage of test system, b output voltage of DFIG, c angular speed of DFIG, d electrical torque of DFIG, e d-axis stator current
variations of DFIG, f q-axis stator current variations of DFIG, g d-axis rotor current variations of DFIG, h q-axis rotor current variations of DFIG
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Fig. 6 continued

bine generator, as can be seen in the previous section. A 2.6
MW, 0.69 kVY/34.5 kV� transformer was used in connect-
ing the wind turbine to a 34.5 kV system [34]. The distance
between the wind turbine and the 34.5 kV grid was 1 km. The
transmission grid connection wasmade available through the
0.69 kV Y/34.5 kV � transformers. 8 m/s was taken as the
constant speed of wind. The saturation of the transformers
was neglected. A 34.5 kV grid-side short-circuit power value
was selected as 2500 MVA, while the X/R rate was selected
as 7. As used in the DFIG-basedwind farm, parameter values
are given in Table 1.

5 Simulation results

A comparison was drawn for the effect of the SDRU and
RCC upon the system parameters during transient cases.
First, three fault was formed in the middle of the transmis-
sion line during a 0.55–0.6 s event. The observation for the
DFIG with and without the SDRU and RCC was examined
impacts on bus voltages and variation DFIG parameters. The
comparisons drawn are shown from Fig. 5a–h.

Figure 4a, b shows that there was a increase in the peak
values of the 34.5 kV bus voltage of test system and output
voltage of DFIG, system stabilized within shorter time using
the SDRU and RCC in LVRT. With and without SDRU and
RCC use in LVRT, 34.5 kV bus voltage of test system was
nearly 0.25 and 0.2 p.u., respectively. Moreover, there was
a considerable decrease in oscillations in the angular speed,
electrical torque, and d–q-axes stator currents with the use
SDRU and RCC in LVRT. While DFIG, angular speed, elec-
trical torque, and d–q-axes stator–rotor currents with SDRU

and RCC were stabilized in nearly 1.5, 1.25, 3, and 3 s after
three-phase fault, respectively, DFIG angular speed, electri-
cal torque, and d–q-axes stator–rotor currents without SDRU
and RCC were stabilized in nearly 7, 6.5, 6.5, and 6.5 s after
three-phase fault in 34.5 kV bus, respectively.

Second, two faults were formed in the middle of the trans-
mission line between 0.55 and 0.6 s. The observation for the
DFIG with and without the SDRU and RCC was examined
impacts on bus voltages and variation DFIG parameters, and
comparisons are given from Fig. 6a–h.

When there was a two-phase fault, the bus voltage of 34.5
kV of test system values and the output voltage of DFIG
were nearly 0.2 and 0.25 p.u. without and with an SDRU
and RCC in the DFIG, respectively, with an increase in the
latter. The SDRU and RCC use also reduced oscillations in
some parameters, such as the DFIG angular speed, electrical
torque, and d–q-axes stator current variations, aswas the case
in the three-phase fault. While DFIG, angular speed, electri-
cal torque, and d–q-axes stator–rotor currents with SDRU
and RCC were stabilized in nearly 1.5, 1.25, 1.25, and 1.25
s after three-phase fault, respectively, DFIG angular speed,
electrical torque, and d–q-axes stator–rotor currents without
SDRU and RCCwere stabilized in nearly 3, 5, 5, and 5 s after
three-phase fault in 34.5 kV bus, respectively.

6 Conclusions

This study throws light on the application of an SDRU and
RCC for DFIG based wind turbine grid-connected. The com-
parison of the transient behaviors of the system with and
without the SDRU and RCC in DFIG was based on voltage
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dip. A three-phase fault and two-phase fault were regarded
as transient stability cases which are likely to lead to a low-
voltage sag in the grid. Oscillation increased considerably in
the three-phase fault DFIG parameters, but it was lower in the
two-phase fault. The results showed that the output voltage
of DFIG and 34.5 kV bus voltage of test system increased
with the use of an SDRU and RCC in the both three and two
faults. It was found in the analysis results that the observed
oscillations after transient cases decreased within very short
time using the SDRU and RCC in DFIG based wind turbine.
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