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Abstract This paper presents genetic algorithm optimiza-
tion method with a suitable objective function to determine
optimum location and rated values of FACTS devices by tak-
ing into account changes in the power system load over time.
In this study, annual daily loadprofile is considered as awhole
instead of an instant load profile while looking for optimum
size and location of FACTS devices. For this reason, to sim-
plify the optimization procedure, a graph-based panelized
objective function is developed, which can be used in amixed
integer search heuristic optimization technique. This paper
focuses on the evaluation of the simultaneous use of thyristor
controlled series capacitor and static VAR compensator. The
proposed method allows including, in a simple way, the long
term load profile in the planning stage to improve the power
system performance using FACTS devices. After the opti-
mization process, the performance of the proposed method
has been tested on the IEEE-30 bus system with several
annual test load profiles. The planning horizon is included
in the optimization framework and the impact of planning
horizon result is presented to compare with that of single
load profile. The optimization strategy is shown to lead a
significant reduction in the voltage and line violations under
the long term test load profiles.
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1 Introduction

As the use of electricity penetrates into every area of life,
the power delivery network is becoming more complex in
terms of efficiently managing the growing power network.
The transmission lines are difficulty in catching up with the
growth in generation capacity [1]. Therefore, the overall sys-
tem is obliged to operate under stress due to the voltage
profile and thermal capacity problems. On the other hand,
distributed generation increasingly becomes an attractive
concept for meeting load demands in the future grid. How-
ever, the voltage regulation is one of the primary problems to
be dealt in distributed generation integrated power systems
[2,3]. Transmission linesmight reach their thermal limits that
endanger the energy security or the blackout events might
occur because of the voltage collapse. As a result, the con-
sequences of large blackouts have vital impacts in terms of
very high costs, depending on duration of the outage and load
types. In that manner, the flexible AC transmission system
(FACTS) devices are playing important role for the system
security and power quality. These devices have the ability
to control active and reactive power flow within their oper-
ating limits [4]. The existing power system can be operated
effectively using FACTS devices. Thus, the construction of
new infrastructure can be postponed. However, the high cost
concern has limited the widespread deployment of FACTS
solutions. Thus, the problemof determining the size and loca-
tion of FACTS devices is essential due to the technical and
economical reasons.

Optimal FACTS allocation problem has been solved using
various optimization techniques and different objective func-
tions. The methods on the allocation FACTS studies in the
literature can be categorized into threemain headlines, which
are sensitivity based, classical optimization based, and intel-
ligence based techniques [5]. In [6], amethodbased onhybrid
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group search optimization technique is presented to enhance
the power system security through eliminating or minimiz-
ing the over loaded lines and the bus voltage limit violations
under single line contingencies. Another hybrid evolutionary
algorithm is used for increasing total transfer capability and
minimizing the system real power loss [7]. System loadability
is increased using genetic algorithm (GA)with the considera-
tion of thermal and voltage limits [8]. In [9], a mathematical
objective function is used to derive objective function for
GA by including voltage stability, cost of FACTS devices,
and power losses. On the other hand, in [10], a similar objec-
tive function is reconstructed using weighted coefficients for
voltage stability, costs, and power losses. These weighted
coefficients are optimized by trial and error method. So, it
is very important to derive an objective function without
being too specific so that it limits the algorithm needlessly.
In [11], the FACTS devices based on SVC can be utilized
withmicrogridAC/DCsystems to improve the overall perfor-
mance of a typical hybridmicrogrid. Reference [12] proposes
a GA based optimization strategy and includes directly in its
formulation both the reactive power capability from wind
turbines and the reactive power injection from SVC units. In
[13], an easy static synchronous series compensator model
based on the power injection approach is presented to reduce
the code complexity of load flow algorithms. In [14,15], only
the investment cost of FACTS is considered as an objec-
tive function while allocating the FACTS devices. In another
study, a multi-objective genetic algorithm (MOGA) proce-
dure is used for solving the problem of optimal allocation
of FACTS devices by considering maximization of system
security and minimization of investment cost [16]. The main
difference between a conventional GA and aMOGA is based
on the assignment of fitness function which is a particular
type of objective function in GA [17]. In [18], an algorithm
is developed for optimal choice and location of FACTS con-
trollers for congestion management in deregulated power
systems for comparison of optimization results with differ-
ent objectives. It is observed that the obtained results which
present favorable solution according to one of the objec-
tives, are not suitable according to other objectives. The
most difficult and most important concept of genetic pro-
gramming is the objective function, because it determines
how well a program is able to solve the problem. In [19],
three objective functions such as active power loss, invest-
ment cost, and peak point power generation are considered
using MOGA optimization technique. Despite its effective-
ness, the implementation of this technique is more difficult
than a traditional GA programming. Reference [20] presents
a GA to seek the optimal location, types, and values of multi-
type FACTS devices in terms of branch loading and voltage
levels. It is observed that there is a maximum number of
FACTS devices beyond which the loadability of the system
cannot be improved.

It is well understood from the literature that different
objective functions have been considered to solve the optimal
placement of FACTS devices problem by different tech-
niques. However, the improvement in one objective does
not guarantee the same improvement in others [18,19]. This
can make difficult a fair comparison between the methods.
In [21,22], different optimization methods are compared
to observe which one shows better performance for opti-
mal allocation of FACTS devices. However, the comparison
results show that there is no optimization method that uni-
versally outperforms all others [22,23]. The selection of an
algorithm is problem dependent. On the other hand, simpli-
fying the formulation in the FACTS optimization problem
is challenging [13] while including uncertainty in the power
network such as load demand, because the most difficult task
of an optimization problem is to find a suitable objective
function in GA programming. The objective function needs
to accurately describe the problem and should include all
possible combinations of data available during the simula-
tion runs. On the other hand, most of the existing studies
are developed on the assumption that there is no change in
the power system load over time. These optimizations are
performed under a constant load profile or overloaded con-
ditions. It is assumed that the optimization results obtained
using single load profile cover different load conditions. It
is not possible to get the same performance obtained from
single load profile under different load profiles. On the other
hand, it is very difficult to include the long-term load pro-
file into the optimal power flow programming because of
the complexity of problem. The mathematical optimization
methods may not converge with a huge number of constraint
functions. In that manner, the decomposition techniques are
used to overcome this kind of problem in the optimization
formulations. Nevertheless, the load variability profile in a
long term perspective should be included into optimization
of FACTS integrations in power systems since the load pro-
file changes over time. The including long term load profile
in the optimization process is a challenging issue.

The heuristic search algorithms, based on the evolutionary
ideas of natural selection and genetics, have promising poten-
tial for solving non-convex optimization problems [30–33].
In this study, to simplify the optimization procedure when
determining optimum location and rated values of FACTS
devices by taking into account changes in the power system
load over time, a graph based panelized objective function
is developed, which can be used in a mixed integer search
heuristic optimization technique with classical power flow
calculations. The proposed approach are conducted with GA
and NOMAD (Nonlinear Optimization by Mesh Adaptive
Direct Search) to test the optimization strategy. Matlab envi-
ronment is used for both optimization processes. NOMAD
is a useful derivative-free algorithm and an open source
optimization solver within Matlab environment [34–36].
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NOMAD can handle mixed integer variables optimization
problems using the variable neighborhood search option and
it is able to escape from local minima [37].

This paper focuses on the evaluation of the simultaneous
use of thyristor controlled series capacitor (TCSC) and static
VAR compensator (SVC). The proposed approach merges
heuristic mixed integer programming with classical power
flow calculations. So that, the proposed approach allows
including, in a simple way, the long-term load profile in the
optimization stage to improve the power system performance
under various load profiles using FACTS devices. The per-
formance of the proposed method has been tested on the
IEEE-30 bus test system with different annual load profiles
that are not used in the optimization process.

This paper is organized as follows: Sect. 2 describes
the model of SVC and TCSC devices. Section 3 presents
objectives and procedure of the optimization. The simulation
results by applying the proposed method on the IEEE-30 bus
test system are presented in Sect. 4. The impact of long-term
load profile result is presented to compare with that of sin-
gle load profile. The conclusion of this paper is presented in
Sect. 5.

2 FACTS devices and modeling

FACTS devices are high power electronic devices that can
control the power flow and voltage profile in power sys-
tems [4]. The flow in heavily loaded transmission lines can
be reduced by controlling line impedance, bus voltage and
angles. So, the existing transmission system can be utilized
more effectively using FACTS devices [24,25]. In literature,
the existing steady-state models of FACTS devices can be
classified into two categories: power injection and variable
reactance modeling techniques [13,19,20,26]. In this study,
two main types of FACTS devices, SVC and TCSC, are con-
sidered as described below.

SVC is a bus reactive power controller. It can adjust
injected reactive power to control the voltage magnitude at
the point of connection of power network [27]. The working
range of SVC is set −100 to 100 MVAr [20,28]. SVC is a
shunt FACTSdevice that can bemodeled as an ideal source of
rapidly controllable reactive power compensator at the point
of connection as given in Fig. 1a. The injected reactive power
at bus i is:

�Qi.in j. = QSVC (1)

where QSVC is the SVC size.
The TCSC is a series connected device and incorporated

into the transmission line model by simply adding the vari-
able reactance XTCSC to the line reactance as shown in Fig.
1b [29,30]. It mainly controls the active power flow in a line

(a)

(b)
AC Network 

Bus i 
TCSC 

Bus j 

AC Network 

Bus i jQ 

SVC 

Fig. 1 Model of FACTS devices a SVC, b TCSC

by adjusting the line reactance and is modeled as variable
reactance. The equivalent reactance of the transmission line
Xi j is defined as:

Xi j = Xl + XTCSC (2)

where Xl is the original transmission line reactance, XTCSC

is TCSC controllable reactance placed in the transmission
line connected between bus i and bus j . The operation value
of TCSC is a function of line reactance Xl as follows:

XTCSC = kTCSC · Xl (3)

where kTCSC is variable and it varies continuously between
−0.7 and 0.2. It means that the compensation of the TCSC
varies between 70 % capacitive and 20 % inductive. The
working range of TCSC is adjusted by kTCSC and its typical
operation range is selected between −0.7Xl and 0.2Xl to
avoid overcompensation [18,20].

The SVC operating values are modeled as reactive power
injection in the bus data that is used in classical newton
raphson based power flow calculations. So, the reactive
power coming from SVC size is included into reactive power
balance equations in a simple way. The TCSC values are
embedded into the line data by updating the reactance of
the corresponding transmission line. The updated bus data
and line data using design variables coming from the opti-
mization framework will be used in the classical power flow
calculations. This approach can allow us to use long term
load profile in the optimization process in a simple way.
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3 Problem description and formulation

In this study, instead of considering single load profile, a
graph based panelized objective function is developed to
determine the size and location of FACTS devices consider-
ing long term load profile. The proposed approach is suitable
for mixed integer heuristic optimization techniques. In that
manner, the proposed approach is appliedwithGeneticAlgo-
rithm. And then, another heuristic search algorithm called
NOMAD that can handle mixed integer variables to observe
the performance of the proposed methodology under long
term load profiles. Both optimization processes were con-
ducted using Matlab software. The optimization process is
carried out with classical power flow calculations. By this
way, the long-term load profile can be integrated into the
optimization process without increasing the number of con-
straints. It is well known that the long term planning is a very
difficult issue for electric power system. In that manner, the
novelty of this paper lies in considering long term load profile
while looking for size and location of FACTS devices using
a simple approach. The planning horizon is included in the
optimization framework and the impact of planning horizon
result is presented to compare with that of single load profile
in this study.

3.1 Genetic algorithm

TheGAoptimizationmethod is usedwith a suitable objective
function, which allows simplify the optimization problem
of allocation FACTS devices for a long term load profile.
The GA is one of the popular heuristic methods because of
its effectiveness and simple structure. It is based on prin-
ciples of natural genetics and natural selection [38]. It has
somedifference from the traditional optimization techniques,
which is: in starting process it uses a population of initial
points rather than single initial point. If the population size
is too large, genetic algorithm will take a long running time
to find the optimal solution. The GA uses actual objective
function instead of derivative of it. This feature allows opti-
mizing non derivative functions. Binary number is the most
common approach for representing the design variables for
crossover and mutation processes. In this study, the loca-
tion and size of FACTS devices are integer and continues
variables, respectively. The fundamental terms of natural
genetics are reproduction, crossover and mutation opera-
tors which work like probabilistic procedure. They are used
in The GA process to find best objective value. The GA
optimization problemsolution startswith creating initial pop-
ulation. Specified number of population contains random
strings related to design variable. Each string is evaluated
to find its fitness value. In this study, the classical power
flow calculations are utilized when evaluating the fitness val-
ues. New population is produced by reproduction, crossover

and mutation operators. They are evaluated again to find
the fitness value then stop criteria is checked. Each iterative
process is called generation. Iteration stops if the difference
between new and old fitness values is smaller than the spec-
ified value or the generation number reaches its specified
number. Reproduction aims to choose good string of the pop-
ulation to generate a mating pool. It chooses better strings in
population and replacesmultiple copies in themating pool by
probabilistic procedure. Therefore, good ones go their ways
but badones donot, like natural selection.After reproduction,
the crossover operator is performed. Aim of this operator is
composing new strings in themating pool. It is done by swap-
ping information between strings. Mostly, two individual
strings are selected randomly frommating pool and exchange
some portions of their strings. It is the main operator for
creating new generation to achieve better fitness value. Last
operator is mutation that performed for creating new popula-
tion. It changes string information in bitwise with a specific
small mutation probability. All these operations are worked
in probabilistic procedure. It is important to state that, theGA
method is operated in iterative procedure to get best results.

3.2 Optimization strategy and objection function

One of the most important issues of genetic programming
is the objective function, because it determines how well a
program is able to solve the problem in a simple manner. In
[39], an algorithm is presented to create more randomness
for efficient handling of integer restrictions on decision vari-
ables and to increase the possibility of getting global optimal
solution. This procedure is based on penalty function meth-
ods which have been the most popular approach because of
their simplicity and ease of implementation. So, the penal-
ized objective function can be used as an objective function
in GA optimization [40]. The genetic algorithm attempts to
minimize a penalty function, not the fitness function. In this
study, static penalty function is utilized for objective function
and a general formulation is as follows for a minimization
problem:

F =
m∑

i=1

δi

{
δi = 1 if constraint is violated
δi = 0 if constraint is satisfied

(4)

where m is the number of cases. In this paper, this basic for-
mulation is adapted for finding the best locations and rated
values of FACTS to minimize system operating risks at bus
voltages and lines by taking into account of long term load
profile instead of a specific single load condition. Here the
number of cases will be the load variations in a year. This
approach allows dealing only with the total violation num-
ber for a long period of time. The violations can be observed
simply in the optimization framework using newton raphson
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based classical power flow calculations. The planning stud-
ies considered long term is a very difficult problem in terms
of optimization process with optimal power flow formula-
tion. In this study, the objective function is based only on the
number of interested operating conditions over time, which
is presented in the following sections.

3.3 Penalized objective function in terms of violations
in voltages and line flows

In a power system, the electricity generation and consump-
tion must balance at all times. Difference in load and power
supply could cause grid instability or severe voltage varia-
tions, and cause failures in power systems. Unfortunately,
unexpected load changes might cause a blackout. When
power lines are overloaded, the transmission lines exceed
their thermal limits. With the existing infrastructure, over or
under voltage situations may occur due to the limited control
capability of synchronous generators and limited static reac-
tive power resources. In that manner, suitable located FACTS
devices allow better utilization of existing grid infrastructure.
The SVC and TCSC are the most commonly used FACTS
devices in controlling the voltage and active power, respec-
tively.

Power system operators must take technical precaution
to hold bus voltages in permissible levels according to the
acceptable voltage variations in the grid voltage. However,
there might be unexpected situation where the conventional
solutions are not feasible, and some bus voltages would
exceed their permissible limits. So, bus voltage violation (Vv)

occurs. It is expected that SVC minimize these violations.
Besides the bus voltages, transmission lines may reach their
thermal limits at different load conditions. This is called as
line violations (Lv). TCSC maintains active power flow in
the branch of the network at a specified level under a wide
range of load conditions. In this study, annual daily load
profile is considered in the optimization process as a whole
instead of an instant load profile while looking for optimum
size and location of FACTS devices. For this reason, to sim-
plify theGAoptimization procedure, a graph based panelized
objective function is developed as shown in Fig. 2. If the bus
voltage exceeds the permitted value, the return value of ‘1’
indicates that a violation occurs. In contrast, the return value
of ‘0’ that indicates that there is no problem in terms of volt-
age profile. The same methodology is applied for power flow
in the transmission line in terms of overloaded lines. Here,
the specified voltage variation and line overloaded limits are
±5 % and 95 %, respectively. The main aim of the proposed
methodology is to find the optimum location and rated val-
ues of SVC and TCSC devices for reducing the number of
violations for a long period of time.

If total number of buses and lines in a network are nb and
nl , respectively, and nd is the number of pairs of active and

Fig. 2 Graph based objective function a for voltage violation, b for
transmission line violation

reactive load demand, which can be given daily or hourly,
nb × nd and nl × nd cases should be considered as a whole
while allocating the FACTS devices to minimize the total
number of violations for a long term. The violation number
in bus voltages and overloaded lines are determined to be
used in the optimization using graph based objective function
easily. Consequently, the penalized objective function to be
minimized is expressed as below:

min : Fobj =
nd∑

j=1

( nb∑

i=1

V i j
v +

nl∑

i=1

Li j
v

)
(5)

V i j
v =

{
0 0.95 pu ≤ V i j ≤ 1.05 pu
1 0.95 pu ≥ V i j 1.05 pu ≤ V i j (6)

Li j
v =

{
0 0.95 pu ≥ Li j

1 0.95 pu ≤ Li j (7)

where nd is the number of pairs of active and reactive load
demand for a long period time. nb and nl are the number of
buses and lines, respectively. Li j is branch loading of every
line of the network and V i j is voltages of all buses of the
network for each load profile.

The proposed methodology is summarized in Fig. 3. The
design variables are locations and rated values of FACTS
devices which have specified upper and lower bounds. The
SVC rated values (QSVC) are between−100 and 100MVAr.
The TCSC rated values are limited between −0.7Xl and
0.2Xl , where Xl is the corresponding line reactance. The
candidate locations of SVC are all buses except slack and
PV buses. It is also noted that TCSC rated value depends
on connected line reactance, thus its operation interval is
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Fig. 3 Flow chart of the optimization procedure

changeable. The allocation of more than one SVC and TCSC
unit into the same bus and line is not allowed in the optimiza-
tion process.

There are some criteria to stop the GA process. The
efficient value of maximum generation is problem depen-
dent. The GA stop criteria adopted here is that the process
stops when the maximum number of iterations, here is 100
iterations, are reached or when no significant changes are
observed in the objective function.

4 Simulation studies and results

Several test load profiles have been conducted to evaluate
effectiveness of the proposed method by simulation with the
IEEE-30 test system [13] as shown in Fig. 4. The design
variables are locations and rated values of SVC and TCSC
devices. The annual daily load curve is generated using Eqs.
(8) and (9) to include the load uncertainty over time as shown
in Fig. 5. Themostly used IEEE-30 bus network has total real

Fig. 4 The IEEE-30 bus test system

and reactive loadof 283.4MWand126.2MVAr, respectively.
There are 24 load buses (PQ buses) and 41 lines. Different
load profiles can be generated by a uniform random number
generator [41–44]. Each load bus in the network has differ-
ent level of real and reactive power. Under normal operating
condition, load demand is taken as original real and reactive
load data (Porg, Qorg) of the test system [45]. In this paper,
the variability of the loads aremodeled based on nd randomly
generated values using as follows:

[P]mxnd = [Porg]mx1 · [1]1xnd + α · [Porg]mx1 · [randn]1xnd
(8)

[Q]mxnd = [Qorg]mx1 · [1]1xnd + α · [Qorg]mx1 · [randn]1xnd
(9)

wherem is the number of load buses in the network, nd is the
number of pairs of active and reactive load demand for a long
period time, α is index of standard normal distribution, randn
is normally distributed pseudorandom numbers, P and Q are
randomly generated real and reactive powers, respectively.
Them and nd are the dimension of [P] and [Q] matrixes. The
generated load data are obtained using the original loads (Porg
and Qorg). These data profiles are integrated with the GA
optimization procedurewith the proposed objective function.
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Fig. 5 Annual daily load profile for the optimization process of the
IEEE 30 bus system. a Total active power. b Total reactive power

The randomly generated load conditions are simulated based
on power flow to calculate the number of violations in the
voltage of buses and the branch loading in the network. In
each generation process in GA, the objective function takes
into account the annual load profiles. Thus, the optimization
is performed for annual load profile instead of single load
level.

4.1 Optimization results of the proposed method

The aim of the optimization is to minimize violations in bus
voltages and line power flow by considering load variations
for a long term period. In that manner, three different cases
are investigated for testing the proposed method. In the first
case, 1 SVCand1TCSCare handled for looking for optimum
allocation simultaneously. In the second, 2 SVC and 2 TCSC
devices are considered. Finally, the optimum sizes and rates
are investigated for 3 SVC and 3 TCSC devices. Population
sizing is one of the important topics in evolutionary compu-
tation. Small population size may cause to poor solutions.
On the other hand, large population size causes to increase
the computation time significantly. The GA algorithm here is
startedby creating100 random initial populations. In theopti-

Fig. 6 Penalized objective function versus generation for 1 SVC and
1 TCSC

Fig. 7 Penalized objective function versus generation for 2 SVC and
2 TCSC

Fig. 8 Penalized objective function versus generation for 3 SVC and
3 TCSC
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Table 1 Comparative optimization results using annual and single load profiles with the proposed method (Ann.: annual, Sng.: single, cap.:
capacitive, ind.: inductive)

Cases Voltage violation
number

Line violation
number

Case 0: Without FACTS under annual load profile 556 441

Location Rated value

Ann. Sng. Ann. Sng. Ann. Sng. Ann. Sng.

Case 1 SVC 1 15th bus 12th bus 19.42 MVAr cap. 15.60 MVAr ind. 5 48 256 421

TCSC 1 5th line (buses 2–6) 4th line (buses 3–4) −0.395Xl cap. −0.395Xl cap.

Case 2 SVC 1 15th bus 7th bus 21.20 MVAr cap. 17.38 MVAr cap. 4 11 243 306

SVC 2 21st bus 17th bus 1.00 MVAr cap. 29.28 MVAr ind.

TCSC 1 5th line (buses 2–6) 3th line (buses 2–4) −0.421Xl cap. −0.414Xl cap.

TCSC 2 3rd line (buses 2–4) 5th line (buses 2–5) −0.377 Xl cap. −0.494 Xl cap.

Case 3 SVC 1 15th bus 10th bus 21.51 MVAr cap. 16.60 MVAr ind. 0 2 151 394

SVC 2 3rd bus 4th bus 51.83 MVAr ind. 92.96 MVAr cap.

SVC 3 17th bus 12th bus 12.83 MVAr cap. 64.51 MVAr ind.

TCSC 1 41st line (buses 29–30) 10st line (buses 6–8) −0.691Xl cap. 0.069Xl ind.

TCSC 2 25th line (buses 12–16) 33rd line (buses 24–25) −0.362Xl cap. −0.554Xl cap.

TCSC 3 5th line (buses 2–6) 1st line (buses 1–2) −0.421Xl cap. 0.172Xl ind.

mization process, the parameters ofm, nd , and α are 24, 365,
and 0.25, respectively. To show the effectiveness of proposed
method, the graph based GA optimization procedure is also
performed using an instant load profile which is original load
of IEEE 30 bus system. The comparative optimization results
using the single load profile and annual load profile are given
in Table 1. The performances of the GA are given in Figs.
6, 7, and 8. The number of violations without using FACTS
devices under the annual load profile are also given inTable 1.
If the FACTS devices are not used under the annual load pro-
file given in Fig. 5, the number of violations in bus voltages
and lines are 556 and 441, respectively. Results show that
long term load profiles should be considered when allocating
FACTS devices to enhance the power system performance.
The best locations and rated values of FACTS devices when
using the annual load profile are different than that of the
single load profile. The number of violations can be reduced
with increasing the number of FACTS devices. The prob-
lematic buses, lines, and corresponding violation numbers
are given in Tables 2 and 3 in detail. The results show that
the number of TCSC devices should be increased to forestall
line overloading violations. The penalized objective function
with GA optimization method, as the one presented in this
paper, can effectively solve this problem in a simple manner.

4.2 Comparative optimization results with the GA and
the NOMAD

In this section, the results obtained from the GA have been
compared to those obtained using the NOMAD [34–37] with

Table 2 The number of voltage violations and corresponding bus num-
bers

Cases Bus number Violation
number

Total violation
number

Case 0 Without FACTS 9 181 556

10 9

12 362

16 4

Case 1 1 SVC 1 TCSC 9 4 5

30 1

Case 2 2 SVC 2 TCSC 9 3 4

30 1

Case 3 3 SVC 3 TCSC 0 0 0

various scenarios. TheNOMADhas been obtained from [46]
and can be used for solving mixed integer optimization prob-
lems. It is also a derivative-free optimization algorithm. The
NOMAD algorithm generates a trial point on the mesh that
improves the current best solution at each iteration. The next
iteration is initiated for a finer mesh, if an iteration is not
successful [46].

First, the annual load profile presented in Fig. 5 is used
in the optimizations process. The comparative optimization
results using the NOMAD method and the GA method are
shown in Table 4. The optimum rated values and locations
are presented in Table 4. The simulation results proves the
efficiency of the proposed method and shows that the GA
method is able to find better solutions than the NOMAD for
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Table 3 The number of line
violations and corresponding
lines

Cases Lines Violation
number

Total violation
number

Case 0 Without FACTS From bus 1 to 2 1 441

From bus 2 to 6 1

From bus 3 to 4 185

From bus 4 to 6 26

From bus 6 to 7 198

Case 1 1 SVC 1 TCSC From bus 1 to 2 1 256

From bus 2 to 6 21

From bus 3 to 4 21

from bus 4 to 6 1

From bus 6 to 7 212

Case 2 2 SVC 2 TCSC From bus 1 to 2 2 243

From bus 2 to 6 19

From bus 4 to 6 10

From bus 6 to 7 212

Case 3 3 SVC 3 TCSC From bus 1 to 2 1 151

From bus 2 to 6 25

From bus 3 to 4 13

From bus 4 to 6 1

From bus 6 to 7 111

Table 4 Comparison of the proposed method and NOMAD results using annual load profile of the IEEE 30 bus test system.(PM: ProposedMethod,
NMD: NOMAD, cap.: capacitive, ind.: inductive)

Cases Voltage violation
number

Line violation
number

Location Rated value

PM NMD PM NMD PM NMD PM NMD

Case 1 SVC 1 15th bus 3th bus 19.42 MVAr cap. 19.47 MVAr cap. 5 36 256 385

TCSC 1 5th line (buses 2–5) 5th line (buses 2–5) −0.395Xl cap. −0.451Xl cap.

Case 2 SVC 1 15th bus 15th bus 21.20 MVAr cap. 24.53 MVAr cap. 4 22 243 245

SVC 2 21st bus 3th bus 1.00 MVAr cap. 35.70 MVAr ind.

TCSC 1 5th line (buses 2–5) 6th line (buses 2–6) −0.421Xl cap. 0.199Xl ind.

TCSC 2 3rd line (buses 2–4) 10th line (buses 6–8) −0.377 Xl cap. 0.198 Xl ind.

Case 3 SVC 1 15th bus 10th bus 21.51 MVAr cap. 37.56 MVAr cap. 0 3 151 225

SVC 2 3rd bus 4th bus 51.83 MVAr ind. 53.83 MVAr cap.

SVC 3 17th bus 12th bus 12.83 MVAr cap. 8.11 MVAr ind.

TCSC 1 41st line (buses 29–30) 9th line (buses 6–7) −0.691Xl cap. 0.200Xl ind.

TCSC 2 25th line (buses 12–16) 18th line (buses 12–15) −0.362Xl cap. 0.003Xl ind.

TCSC 3 5th line (buses 2–5) 6th line (buses 2–6) −0.421Xl cap. 0.197Xl ind.

the cost of a lower number of violations especially in the
branch overloading.

Second, three different test load profiles having 8760 ran-
dom values are generated based on Eqs. (8) and (9). Here,
the value of nd is 8760 that resembles hour of year. Statis-
tical information of the load profiles are given in Table 5.
From Table 6, it is seen that significant reduction in the num-

ber of violations is achieved by the GA method compared
to the NOMAD method. It is worth noting that minimizing
the number of violation is very important for long period
of time to prolong the life of power system components.
In that manner, long term performance evaluations should
be taken into account when determining optimum allocation
of FACTS devices to improve the performance of existing
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Table 5 Statistical information of randomly generated test load profiles

Mean Max. Min. Standard deviation Variance

Load profile 1 Active load (MW) 283.360 311.728 255.065 16.312 266.1

Reactive load (MVAr) 126.172 138.815 113.581 7.283 53.0

Load profile 2 Active load (MW) 283.320 340.056 226.73 32.625 1064.4

Reactive load (MVAr) 126.152 151.431 100.962 14.567 212.2

Load profile 3 Active load (MW) 283.280 368.384 198.395 48.938 2395.0

Reactive load (MVAr) 126.128 164.047 88.343 21.851 477.4

Table 6 Violation numbers under the randomly generated load profiles in Table 5 (Case 1: 1 SVC and 1 TCSC, Case 2: 2 SVC and 2 TCSC, Case
3: 3 SVC and 3 TCSC)

Load profile 1 Load profile 2 Load profile 3

Cases Voltage violation
number

Line violation
number

Voltage violation
number

Line violation
number

Voltage violation
number

Line violation
number

Case 0: Without FACTS 13,683 8484 15,511 9769 17,825 10,970

Case 1 Proposed method 0 4411 1539 6432 5825 8629

NOMAD 929 8760 4895 10,156 12,132 12,868

Case 2 Proposed method 0 4407 954 5256 5869 10,347

NOMAD 220 2086 2073 7348 5062 10,570

Case 3 Proposed method 0 415 462 3884 3987 7322

NOMAD 0 3423 1100 6669 6408 9351

network infrastructures. It is not possible to get the same
performance under different load profiles. However, the opti-
mization results are consistent if we observe the results when
dealing with only single load profile. In a general, the opti-
mization results should be tested in different long-term load
profiles. As seen in Table 5, the standard deviation and vari-
ance of Load Profile 3 are higher than those of in Load
Profiles 1 and 2. The main aim of the comparison given in
Table 6 is to point out that the obtained optimization results
using a load condition may not be give the same perfor-
mance under a different load condition. The performance
of obtained optimization results can change with different
load conditions. So, the test results strongly depend on the
load conditions.

5 Conclusion

This paper has presented an effective and simple approach
for determining the optimal capacity and location of FACTS
devices in power systems. The objective functions consid-
ered in the study were minimization of the violation number
of bus voltages and line overloading aswell as the profit of the
system security and power quality. In this study, annual daily
load demand is considered as a whole instead of an instant
load profile while looking for optimum size and location of

FACTS devices. For this reason, to simplify the optimiza-
tion procedure, a graph based panelized objective function
is developed. The effectiveness of the proposed method is
examined by applying it to the IEEE 30-bus test system. The
results show that appropriate size and location of FACTS
devices are highly crucial by considering long term load
profile to maximize the benefits, and to operate the sys-
tem safely through minimizing the violations in bus voltage
and transmission line thermal limits. This method can facil-
itate to take into account of long term load variations while
looking for optimum location and size of multiple FACTS
devices.
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