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Abstract Switched reluctancemotors (SRMs) require sen-
sitive rotor information in order to work sensitively and
properly and especially for the commutation of phase cur-
rents. Position information is generally acquired from a
sensor which is generally placed into the stator or connected
to the rotor. However, sensors have disadvantages in terms of
cost, safety, complexity and volume. In order to remove these
disadvantages, recent studies concentrate on SRMs work-
ing without a position sensor. In this study control methods
working without a position sensor are examined, the applied
method is presented comprehensively. The education and test
data of the artificial neural network is not obtained from sim-
ulation or experimental results; it is obtained from magnetic
analyses carried out in ANSYS 10 and the results are used in
position speed and current sensorless control of SRM. The
validity of proposed method is demonstrated by using DS
1103.
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1 Introduction

Position controlwithout sensor have been classified and these
methods have been described shortly. Themethod used in the
article is also given comprehensively with another sub-title.
Sensorless position control can be classified as below [1].

1. Active measurement methods

a. Waveform detection
b. Magnetic flux detection
c. Modulation-based methods

i. Frequency modulation
ii. Amplitude modulation
iii. Amplitude/phase modulation

2. Methods based on the characteristics of the motor

a. Open loop control
b. Common voltage method
c. Magnetic flux/current method
d. Fuzzy logic and artificial intelligence methods
e. Model-based (observer) methods

i. State observer
ii. Kalman filter
iii. Luenberger observer
iv. Sliding mode observer

In active measuring methods, high-frequency signals are
applied to a stimulated phase to obtain phase induction
change. Thus, rotor position information can be obtained
from the phase inductance change.

Wave sensingmethod occurs in two parts. These are active
and passive wave sensing methods. These methods are not
used in high speeds due to the disadvantages such as opposite
emf, interaction between phases and continuous regulation
of sensing angle according to load [2,3].
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In magnetic flux sensing method, the voltage on the wind-
ing ismeasured by applying voltage to an unexcited phase in a
short time. Taking the integral of the voltagemeasured during
the trigger, flux is found. After calculating the magnetic flux,
rotor position is obtained from the motor’s flux–position–
flux characteristic. Thismethod is appropriate for high-speed
applications. However, in this method, as well as the sen-
sitivity of the rotor position information related with the
sensitivity of the voltage measured, the characteristic infor-
mation of themotor (must be defined correctly for application
[4,5].

Modulation-based methods are generally based on the
principle of obtaining changeable phase inductance in a
coded way by applying a high-frequency carrier signal. The
signal frequency containing the phase inductance informa-
tion is considerably smaller than the carrier signal frequency.
Modulation-based methods are basically divided into three
parts: frequency, amplitude and amplitude/phase modulation
[6].

In Fig. 1, the phase current–inductance and transmission
angle relations of the cycle control are given. In open cycle
control, settlement angle or period is controlled by θD =
θ2 − θ1. Any position sensor is not used to synchronize rotor
positionwith θ1 or θ2. In this system, commutation frequency
is controlled [7]. Two problems can be basically observed
about open cycle control. Firstly, if load momentum exceeds
nominal momentum, the motor will not be synchronized and

Fig. 1 Phase current–inductance and the transmission angle relation-
ships at open-loop control

it will stop because of not having a position sensor. Secondly,
adjustments for each motor controlled by this method must
be made separately.

While SRMs are working in chopper or PWM mode, the
value of the voltage inducted in the other two phases close to
the stimulated phase changes as a function of rotor position.
If we can measure the common voltage, we can estimate the
rotor position. In this method, common tension of any phase
close to the two phases can be used for the calculation of
rotor position in 6/4 SRMs, but in 8/6 SRMs, measuring the
voltage of the phase which is opposite to the active phase is
appropriate. In this application, sampling signal should be
synchronized with PWM signal. This makes the application
of such a circuit difficult [8].

The basis of magnetic flux/current method is based on
obtaining rotor position frommagnetic flux/current and rotor
position values of the SRM on an observation table together
the current value that is measured by calculating magnetic
flux. The flux value obtained from this is used for com-
mutation by being compared with the reference flux value.
A micro-controller is necessary for the application of this
method, that is, for making an observation table and calcula-
tions. Many studies of this type is available in the literature
[9–11]. One of the drawbacks of the method is the voltage on
the phase resistance. Especially in chopper operation mode,
phase coil resistance becomes active. Another drawback is
the change in resistance with heat and important mistakes
which can occur in magnetic flux calculations due to measur-
ing. In order to prevent these mistakes, new methods called
magnetic flux/current correction have been developed [12].

Fuzzy logic and artificial neural nets (ANN) can estimate
rotor position by using the SRM’s magnetic flux–current–
position characteristics. Since rotor position is estimated by
using ANN in our study, ANN is explained in detail in the
next edge. Fuzzy logic or ANNmethods do not need a math-
ematical model for motor.

In the literature, many studies can be found about obtain-
ing rotor position by using fuzzy logicmethodwithout sensor
[13–15]. In this method, in order to find rotor position, input
currents and magnetic flux are needed to be measured with
fuzzy rule-based SRMmodel. Magnetic flux is not measured
directly; it is obtained from integration. However, since the
noise and measurement mistakes in the system will directly
reflect on flux calculation, this considerably affects the rotor
position estimate. Filler circuits should be used to minimize
these mistakes, but this makes application difficult. Another
problem of this method is that SRMs need detailed magneti-
zation curves.

Model-based methods are based on estimating the state
variables of the SRM using information related with the
SRM and calculations based on them. For this reason, an
observer which symbolizes the system in parallel to the
physical system is used [1]. Observers are divided into two
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types: linear and non-linear observer. While linear observer
is well-developed, there have still been some difficulties
in the non-linear observer. Due to the non-linear structure
of SRMs, researchers first did not prefer using non-linear
observer in control without sensor. However, it is possible to
see many studies on the four basic observers recently. These
are state observer, Kalman filter, Luenberger observer and
sliding mode observer. In addition, it is also seen that these
observers are used as hybrid (mixed) in many studies [1–17].

2 Estimation of rotor position by using ANN

Firstly, general information will be provided about ANN and
then, how rotor position can be estimated will be explained.

2.1 General information about ANN

Artificial neural nets are information processing systems
which were developed with the purpose of developing skills
such as producing new knowledge, forming and discover-
ing new knowledge by way of learning which is a feature of
the human brain. ANNs are used for the calculation of prob-
lemswhich cannot bemodeledmathematically orwhich have
complicated mathematical models. Setting out from this def-
inition, ANNs have been used for the calculation of such
problems recently and successful results have been obtained
from most of them. ANNs are applied in many fields today.
Main areas of this application are industrial, finance, defense,
medicine, health and engineering applications.

The basic cell model of a basic artificial neural net can
be seen in Fig. 2. Artificial neural net cell consists of
entries, weights, addition function, activation function and
exit. Entries can be taken from the external environment or
from other neurons. The data taken from the external envi-
ronment is connected to the neuron via the weights and these
weights determine the effect of the related entry. Net entry is
calculated in the addition function. Net entry is the result of
entries and the multiplication of these entries with the related
weights. The activation function calculates net exit during the
transaction and this transaction also gives the neuron exit.

Fig. 2 Basic ANN cell

Generally, the activation function is a non-linear function. b,
is the threshold value of bias or activation function and it has
a fixed value in here.

Mathematical model of the neuron

o = f (W · X + b) (1)

is expressed with, W is the matrix of weights and X is the
entry matrix in here. N is entry number;

W = w1, w2, . . . , wn

X = x1, x2, . . . , xn (2)

after being written as above, the exit expression is,

o = f

(
n∑

i=1

wi xi + b

)
(3)

In this equation, f is activation function. Activation func-
tions have various types such as linear, satisfied linear, sig-
moid, log sigmoid and threshold function.

ANN is formed by composition of artificial neurons by
way of connections. Layers are formed by the neurons com-
ing together at the same line. Connection of layers to each
other in different ways form different net architectures. The
general structure of ANN has been given in Fig. 3. ANN
consist of three basic layers as entry, middle and exit layers.
In the entry layer, information obtained from the external
world is transmitted to middle layers. In the middle layer
(hidden layer), the information coming from the entry layer
are processed and sent to the exit layer. There may be more
than one middle layer in a network. In the exit layer, the
information coming from the middle layer is processed; the
output of the network is produced and sent to the external
world.

Fig. 3 The general structure of ANN
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Table 1 Network types and fields used

Intended use Network type Network usage

Estimate Multi-layer
network

Estimating the value of an
output of the network inputs

Classification LVQ Class determining inputs

ART

Probabilistic
neural networks

Data asso-
ciation

Hopfield Finding erroneous
information in the inputs
and completion of missing
information

Boltzmann
network

Memory-cell
neural network

2.1.1 Design of ANN

The success of ANN applications is related to the approaches
which will be used and experiences. For the success of
the application studied, it is very important to determine
the appropriate method. In the process of developing the
artificial neural net, these basic decisions related to the struc-
ture and functioning of the network need to be taken and
applied.

• Choosing the network architecture and determining the
determined structure properties (such as number of lay-
ers, number of neurons in layers).

• Determining the characteristics of the functions in the
neuron.

• Choosing the learning algorithm and determining its
parameters.

• Forming the education and test data.

The correctness of these decisions is very important. Other-
wise, the system complexity in the ANNmay increase. If the
ANN is designed for appropriate parameters, the ANN con-
tinuously produces fixed and consistent results. In addition,
since the response time of the system is related to the size of
the network, the size of the network should be small enough
for the response time to be short enough.

(a) Choosing the network structure

Choosing the network structure in the ANN design process
depends on the application problem. It is important to know
which network is more appropriate for which problem. Pur-
pose of use and network types which are successful in that
area are given in Table 1 [18].

The learning algorithm which is considered to be used
in the network is very important for choosing an appropri-
ate ANN. When the algorithm is chosen, the architecture
which is necessary for that algorithm is also compulsorily

chosen. To illustrate, back-propagation algorithm requires
feed-forward network architecture. The most effective way
of minimizing the complexity of the ANN is changing the
network structure. In network structures which involve more
than necessary number of processors, a lower generalization
may emerge.

(b) Choosing the learning algorithm

The learning algorithm is themost important factor that deter-
mines the success of the application after the choosing the
structure of the ANN. Generally, network structure is a deter-
mining factor in choosing the learning algorithm.

There are a great number of learning algorithms to be used
so as to develop the ANN. Appropriate learning algorithms
will be chosen according to application type.

(c) Determining the number of middle layers

Another step in designing the ANN is the decision of the
number of middle layers. In most of the problems, a 2- or 3-
layered network can produce satisfying and correct results.
The number of entry and exit layers depends on the structure
of the problem. The best way to determine the number of
layers is to make a few trials to decide on the most appro-
priate structure. Another point which should also be taken
into account is that since transactions will also increase due
to the increase in the number of middle layers, the working
speed also decreases. For this reason, an appropriate solution
is found.

(d) Determining the number of neurons

One of the structural features of the network is the number
of neurons in each layer. The number of neurons in a layer is
generally determined by using the trial-and-error method. To
do so, the number of neurons in the beginning is increased
until the desired performance is reached or they are decreased
without falling below the desired performance. The number
of neurons which is used in a layer should be as few as pos-
sible. Less number of neurons increases the ability of the
artificial neural net to generalize and more than necessary
neurons cause the network tomemorize data. However, using
fewer than necessary neurons can cause a problem such as
the pattern in the data not being learned by the network [18].

(e) Normalization of the education cluster

Normalization of the entry and exit data is important for the
convergence and learning transactions. If we try to explain
this based on the sigmoid function; because of the feature
of the sigmoid function, the exit of the network should be
between 0 and 1. In addition, entry variables should be kept
as small as possible so that the sigmoid function does not
enter satisfaction. Therefore, entry and exit data need to be
normalized before the network is educated. There are vari-
ous normalization techniques in application. The most basic
normalization transaction is the division of the entry and exit
neurons one by one by the biggest value in that neuron. At
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the end of the normalization transaction, value of the entry
and exit vectors are between 0 and 1.

2.2 Estimation of the rotor position

ANN is beneficial in non-linear system approach and inmany
applicationswhich requiremovement control.Many publica-
tions can be found about this subject in the literature. Hudson
et al. realized the position and speed control of SRM with-
out sensor by using only current and/or tension signals and
the ANN structure given in Fig. 4. They paid attention to the
ANN structure which was used to have minimum configura-
tion and the education data of ANN, current and flux were
obtained during the system operation process [19].

Meşe and Torrey carried out the position estimation of
an SRM of 20 kW, 6/4 and 3 phase by using ANN. In this
study, they used the SRM’s flux–current curve to estimate
the position [20]. Using the measured tension and current
they calculated the flux. Both of flux which was measured
and calculated were given as the input of the ANN and the
position was obtained from output. In another study, they
comprehensively made an estimation about position using a
double ANN structure the block diagram of which has been
provided in Fig. 5. If the block schema is scrutinized, the
main ANN estimates the position from the flux and current,
but a second auxiliary ANN is used to minimize the mistakes
which occur during the commutation or calculation of flux.
In this case, the position which is the result of the first ANN
and the flux measured is given as the entry of the auxiliary
ANN and flux is obtained from output. The flux calculated
is compared with the flux in the exit of the ANN—and a
position correction is obtained from the amount of mistake.
Thus, position estimation wasmade by adding the position in
the ANN exit and the position correction. In addition, Fuzzy
logic methods were compared with ANN [21].

In these studies which are different from the previously
mentioned ones, Reay and Williams claimed that magnetic
characteristics of the motor did not have to be known exactly
during position control. In the method proposed, they said

Fig. 4 Traditional ANN structure with a single-hidden layer

Fig. 5 The estimated location with double artificial neural network

Fig. 6 The block diagram of the position estimation

that two phases did not have energy at any moment of a four-
phase SRM, and position control was made from the induc-
tion estimations by sending short-lasting voltage impacts to
the phases that do not have energy. The block schema is given
in Fig. 6. The inductance, rotor position and current relation
calculated and stored were used for estimation of induction
[22]. In addition, voltage need not be measured for position
estimation. The position is found from Eq. 4.

θ̂ = 1

Nr
tan−1

( 1
�ia(k)

− 1
�ia(k−1)

1
�ib(k)

− 1
�ib(k−1)

)
(4)

Bellini et al. and his friends emphasized that SRM was an
ideal candidate about definition and control of ANN due to
its high and non-linear structure and they carried out position
and speed control by using ANN with radial-base function
[23].

3 The method used

The block diagram of the position detection without sen-
sor applied is shown in Fig. 7. Flux is calculated by using
the voltage and current information measured from the con-
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Fig. 7 The block diagram of rotor position detection using ANN
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vertor. Flux and current are given as the entry of the ANN.
Rotor position is obtained from the entry of the ANN, but
this rotor position causes an error because of the commuta-
tion between phases and the integrator in flux calculation.
A correction block is needed to correct this mistake. In this
method which is different from other methods, the education
and test data of the ANN is not obtained from simulation or
experimental results; it is obtained from magnetic analyses
carried out in ANSYS 10. In Fig. 8, inductance curves are
obtained from ANSYS 10. These curves were obtained by
sliding the rotor 1◦ angle from unaligned situation to aligned
situation.

In this study, feed-forward multi-layered network struc-
ture was used. To reduce work time and the memory used,
network structure was chosen as three-layered. There are two
entries, seven hidden neurons and a single exit in the ANN.
The number of neurons in the hidden layer was found by trial
and error. Trying different numbers of neuron between 3 and
14, it was detected that a faster learning and a better model-
ing could be achieved by using seven neurons. In the hidden
and exit layer neurons, log sigmoid and linear transfer func-
tions were used, respectively. As the network structure, the
back-propagation learning algorithm used in multi-layered
networks was used for the education of the network. As it is
known, the purpose of the learning transaction is to mini-
mize the performance index terms found in the exit mistake
terms. The data used for education in the artificial neural net
development process is divided into two parts.While some of
this data is used for the education of the network and named
as education set, the rest is used for measuring the perfor-
mance of the network and is named as the test set. The basic
problem about education and test sets is whether the number
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of education and test data is sufficient. In situations where an
endless number of data can be found, the artificial neural net
should be educated with the maximum number of possible
data. In order to be sure about whether the education data is
sufficient or not, the amount of education data is increased

Fig. 10 Experimental setup of the current and speed control of the
SRM

up to the point where it does not change in the performance
of the network. However, in some situations which this is not
possible, closing to each other of the performances of the arti-
ficial neural network on education and test data, the number
of data can be regarded as sufficient. In addition, the amount
of data contained by the education set can vary according to
artificial neural net models and especially according to the
complexity of the problem [18]. The samples which are used
for the education of the ANN consisted of fluxes calculated
from ANSYS 10.0 as indicated above for different currents
and different positions. Since the learning tolerance to finish
the education transaction is chosen as le-4, the result of the
performance desired was reached after 623 steps. The result
of the education related to this situation is given in Fig. 9a.
In Fig. 9b, the test results of the ANN are shown.

4 Simulation and experimental results

4.1 Experimental setup

The experimental setup consists of a 8/6 poles SRM,
IGBT-based classic two-switched convertor, incremental
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encoder, four current and voltage sensor, dSPACE ACE-
Kit 1103 with DS1103R&D Controller Board and PC.
DS1103 R&D Controller Board is based on Texas Instru-
ments’ DSP TMS320F240. The experimental setup of the
current and speed sensorless control of the SRM is shown in
Fig. 10.

The current and speed sensorless control algorithm of
the SRM is formed in MATLAB/Simulink software and
uploaded to DS1103. Measurement of motor currents and
voltages is performed using LEM current and voltage sen-
sors. The speed measurement is realized using incremental
encoder interfaced to DSPACE quadrature decoder. Control

of experiments, visualization and data acquisition are real-
ized by dSPACE software ControlDesk Developer.

4.2 Simulation and experimental results of the current
and speed control without sensor

In operation without sensor, the rotor position needs to be
detected. The modeling of the rotor position block diagram
detection given in Fig. 7 in MATLAB/Simulink is given
in Fig. 10. By adding the model in below to the MAT-
LAB/Simulink models instead of sensor, they were operated
without sensor.
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Fig. 12 The results of the simulation of sensorless speed and current control of SRM at 200 rad/s. a The estimation of reference speed–rotor speed.
b Speed estimation error. c The estimation of position angle. d The error of position angle estimation
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Fig. 13 The experimental results of the experimental of sensorless speed and current control of SRM at 200 rad/s. a The estimation of reference
speed–rotor speed. b Speed estimation error. c The estimation of position angle. d Position angle estimation error

TheANN-basedMATLAB/Simulink simulationmodel of
the SRM without sensor which was formed for current and
speed control was operated without motor load to see the
accuracy of estimation at different reference speed values and
results concerning position angle, angle estimation mistake,
angle speed, speed estimation and speed estimation mistake
were obtained. Two basic studies were carried out for high
and low speeds. The results were given for the steady situa-
tion.

The first study was carried out at 200 rad/s and simulation
results of the steady state are given in Figs. 11 and 12 and
experimental results are given in Fig. 13. In operationwithout
sensor, as shown in the results, position was detected well in

both simulation and experimental operation and reference
speed was reached properly.

Low-speed study was carried out at 50 rad/s and simu-
lation results of the steady state are given in Fig. 14 and
experimental results are given in Fig. 15. Just as at high speed,
position was detected well at low speed and reference speed
was examined properly in experimental results despite small
fluctuations.

5 Conclusion

In this study, magnetic characteristics of SRM obtained from
the FEM solution are were used to perform sensorless posi-
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Fig. 14 The results of the simulation of sensorless speed and current control of SRM at 50 rad/s. a The estimation of reference speed–rotor speed.
b Speed estimation error. c The estimation of position angle-position angle. d The error of position angle estimation

tion estimation. Voltage and current data were taken from
the converter so as to calculate the flux of SRM. According
to the results of the FEM, the flux calculated and the cur-
rent measured were given as the input of ANN which was
trained. Rotor positionwas obtained from the output ofANN.
However, The rotor position gave rise to an error because of
commutation between phases and integrators of flux account.
Correction block was made to resolve this error. Low-and
high-speed simulation results have been were obtained. At
the same time, results were obtained at different speeds under
load. Estimation of rotor position which was obtained from
FEM using the ANN method gave good results at low and
high speeds.

Appendix

The size of the motor is given following [24]:

The number of stator/rotor poles :8/6
The stator/rotor pole arc length :22◦/24◦
The stator/rotor pole width :9.98/10.9mm
The stator/rotor pole step :45◦/60◦
The stator outer diameter :92.2 mm
The stator inner diameter :52 mm
The length of the stator package :180 mm
The shaft diameter :22 mm
The rotor outer diameter :51 mm
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Fig. 15 The results of the experimental of sensorless speed and current control of SRM at 50 rad/s. a The estimation of reference speed–rotor
speed. b The error of speed estimation. c The estimation of position angle. d The error of position angle estimation

The length of the stator pole :10.1 mm
The length of the rotor pole :7.9 mm
The size of air gap :0.5 mm
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