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Abstract This paper presents a scheme for controlling the
output torque of a harmonic drive actuator equipped with a
torque sensor. The proposed control is composed of a feed-
back control and a feedforward learning control, in which the
feedback control shapes nominal system dynamics using the
internal model control structure. The feedforward learning
controller employs a disturbance observer (DOB) to eval-
uate compensation error of the feedforward control for the
learning, so as to compensate for torque ripples induced by
harmonic drives. Robust stability conditions of the proposed
DOB-based learning control system are provided. Experi-
mental results show the effectiveness of the proposed scheme
in alleviating the major component of torque ripples whose
frequency is twice the angular frequency of the input shaft.
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1 Introduction

Gear transmissions are usually integrated into machines to
provide high torque within a limited space. Among gear
transmissions, harmonic drives possess the advantages of
high gear reduction ratio, compact size, and high torque-
to-weight ratio with virtually no backlash. These salient
features make harmonic drives ideal for precise motion mech-
anisms such as lightweight service robot manipulators [1],
force-feedback haptic devices [2] and steer-by-wire systems
[3]. For these human–machine interaction applications, high
torque resolution is a necessity, and actuators including gear
transmissions should play the role of ideal torque sources.
However, the physical variable that is manipulated in prac-
tice is the armature current in a motor or, generally speaking,
the motor torque to the gear. Owing to Coulomb frictions,
structural damping and flexibility of a harmonic drive, the
relation between its input torque and output torque possesses
complex dynamics [4]. To move the harmonic drive actuator
toward an ideal torque source, its dynamics should be shaped
through feeding back the gear’s output torque transmitted to
the load, and torque ripples induced by the harmonic drive
should be compensated for.

Please refer to [5] for a description of the harmonic drive.
In a harmonic drive system, transmission flexibility would
cause output vibrations, and frictional forces would worsen
its output accuracy. To control the output torque of a harmonic
drive, many researchers [3,6–9] used disturbance observers
(DOB) to estimate torque disturbances. DOBs [10–12] are
useful in compensating for unknown system perturbations
to regulate plant’s dynamics to the nominal dynamics. Since
the nominal dynamics may not necessarily yield satisfac-
tory performances, the DOB usually accompanies a feedback
compensator to shape the nominal dynamics and meet perfor-
mance requirements. Therefore, a feedback compensator as
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well as a DOB needs to be designed in building a DOB-based
control system. In [5], the similarity between the DOB and
the internal model control (IMC) [13] has been demonstrated.
However, compared with the DOB-based control structure,
the IMC scheme reduces the efforts required in the controller
design as well as in the practical implementation. Therefore,
as in [5], the IMC is applied to the feedback control of the har-
monic drive system, instead of using the DOB-based control
configuration.

Due to mechanical imperfections such as misalignments
of the gear assembly and dimensional inaccuracies of the gear
itself, the output torque of the gear contains ripples that vary
for different drives, assemblies, speeds and loads. However,
a special characteristic of harmonic drives is that the domi-
nating component of torque ripple is repeated every half turn
of the input shaft [14], that is, the torque ripple is periodic in
nature and its fundamental component corresponds to twice
the rotational frequency of the motor shaft. To compensate
for the kinematic error of a harmonic drive, Nye et al. [15]
used an open-loop method by approximating the kinematic
error with a simple sinusoidal term and superimposing it on
the desired trajectory. Gandhi and Ghorbel [16] proposed
a PD-type controller to compensate for the kinematic error
of a harmonic drive in a closed-loop fashion. To alleviate
speed ripple caused by the harmonic drive, Hirabayashi et al.
[17] proposed a method of adaptive speed control, in which
the controller senses speed ripple through a high-resolution
encoder and modifies the speed command to the driving
motor. Godler et al. [18] applied repetitive learning control
for reducing speed ripple in a harmonic drive system. Han
et al. [19] passed the load-side acceleration signals through
a peak filter in parallel with an existing controller in order
to reject the disturbance at the resonant frequency. However,
the introduction of the peak filter deteriorates the transient
performance, and a time-varying gain to softly switch the
peak filter on/off is employed as a remedy. While the pre-
vious studies [15–19] aimed at reducing position or speed
ripples, Lu and Lin [5] focused on minimizing torque ripples
transmitted to the load. However, the robust stability issue
was not addressed, and an adaptation gain for ripple com-
pensation needed to be redesigned in accordance with the
variation of the disturbance frequency.

Following and enhancing the work [5], this paper proposes
a DOB-based repetitive learning control (RLC) scheme to
compensate for torque ripples. The RLC is a technique in
which the control signal is built iteratively from successive
cycles, that is, the control in the present operation cycle is
refined by feeding back the output error in the previous cycle.
For every operation cycle, the reference command and exter-
nal disturbance, that are periodic functions of time, remain
to be constant at any specific instant of local time. Since
constants are of the simplest form of unknowns, they can be
well compensated for through the betterment process, and

performance on repetitive tasks can be enhanced from one
cycle to the other till the final goal is achieved. The previ-
ous RLC schemes [18,20–24] update the present control by
referring to output errors in previous periods. However, the
objective of a learning controller is to generate an effort to
cancel out the input disturbance equivalent to the entire sys-
tem perturbation. The scheme proposed in this paper learns
directly from the DOB’s output that approximates the com-
pensation error of the learning control, rather than extracting
the disturbance information from tracking errors. This speeds
up the learning process. Since the torque ripple of a harmonic
drive contains mainly a component whose frequency is two
times that of the motor speed, we implement the RLC in
Fourier series expansion of the estimated compensation-error
signal and update only one relevant frequency component. In
contrast to [5], the robust stability conditions for the overall
system are given. Moreover, no adaptation gain for ripple
compensation needs to be redesigned as the disturbance fre-
quency varies. Experiments were conducted on a harmonic
drive actuator to demonstrate the feasibility of the proposed
scheme.

2 Torque control with the feedback structure of IMC

2.1 Experimental system

The harmonic drive actuator in the experimental system is a
hollow-shaft actuator with an integrated torque sensor, SD-
25B from Sensodrive GmbH. The experimental system is
shown in Fig. 1 with a photo of the harmonic drive actuator.
Please refer to [5] for details on the harmonic drive actuator
as well as the experimental system. With a sampling period
of 0.1024 ms, the DSP that is the controller core obtains the
torque and position information from the FPGA, calculates
the control algorithm, and sends the control effort to a reg-
ulated current converter through a 12-bit D/A converter and
some analog signal processing circuits. In the experimental
system, the input to the plant is the motor-torque command
to the regulated current converter, and the information on the
plant’s output is obtained from the torque sensor that mea-
sures the output torque of the harmonic drive gear to the
load. Let y(s) denote the Laplace transform of the harmonic
drive’s output torque y(t), and u(s) the Laplace transform
of the commanded motor torque u(t) referred to the load
side. The estimated nominal transfer function based on the
measured frequency response is [5]

Pn(s)= y(s)

u(s)

= 4.8371×1010

s4+998.95s3+1.2272 × 106s2+7.2805×107s+4.8480×1010 .

(1)

123



Electr Eng (2013) 95:357–365 359

Fig. 1 Experimental system. a Photo of the harmonic drive actuator. b Schematic representation of the hardware configuration

2.2 Design of an IMC torque controller

Consider a harmonic drive actuator described by

y = P(s) (u + d) (2)

in which P(s) denotes the actual transfer function of the
plant, and d represents all disturbances referred to the input.
With a reference r , the IMC structure using a nominal plant
model Pn(s) in parallel with the actual plant P(s) is shown
in Fig. 2, in which Qim(s) is a filter usually chosen so that the
so-called IMC controller Qim(s)P−1

n (s) is proper and then
its implementation does not involve direct differentiation of
the measured output signal. Whenever there is an output dif-
ference between the real plant and its nominal model, there
is a nonzero feedback to the IMC controller. The output of
the IMC system can be derived as

y(s) = Qim(s)P(s)P−1
n (s)

1 + Qim(s)
(

P(s)P−1
n (s) − 1

)r(s)

+ (1 − Qim(s)) P(s)

1 + Qim(s)
(

P(s)P−1
n (s) − 1

)d(s). (3)

When the nominal model is exact (Pn = P) and there is no
disturbance (d = 0) , we have y(s) = Qim(s)r(s), meaning
that the nominal closed-loop transfer function of the IMC sys-
tem is directly assigned to Qim(s). The IMC design is hence
straightforward, and closed-loop characteristics are related
straight to controller parameters [13].

From (3), it is found that, when Qim(s) = 1, we have
y(s) = r(s); that is, the output signal y attains the reference
command r instantaneously even in the presence of model
mismatches and external disturbances. However, this perfect
performance cannot be accomplished in practice since this
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Fig. 2 Structure of the IMC-based system

usually requires control efforts larger than those the actuator
can deliver, and the IMC controller Qim(s)P−1

n (s) is hardly
ever proper and cannot be implemented when Qim(s) = 1.
For our fourth-order harmonic drive actuator, Qim(s) is
chosen as

Qim(s) = ω4
c

(s + ωc)4 (4)

in which ωc is a design parameter to specify the desired
closed-loop poles. Now, the dynamics of the closed-loop sys-
tem can be tuned fast (slow) by simply increasing (decreas-
ing) ωc. It has been experimentally shown in [5] that although
the IMC leads to well-damped output responses, it is not
efficient in compensating for torque ripples induced by the
harmonic drive.

3 Compensation for torque ripples

3.1 DOB-based learning control

Harmonic drive gears typically contain kinematic inaccura-
cies due to manufacturing and assembly errors, which leads
to output-torque ripples that are periodic with respect to the
angular displacement of the input shaft. Since the ripple has
a period equal to half a rotation of the input shaft [25], the
RLC scheme should be effective in reducing the torque rip-
ple through repetitive trials. The previous learning control
schemes [18,20–24] update a learning control according to
tracking errors, extracting disturbance information from out-
put errors indirectly. The learning control’s objective, how-
ever, is to have a feedforward control cancel out the input
disturbance that is equivalent to the whole system perturba-
tion. Following this idea, this paper proposes a DOB-based
learning control scheme, in which a DOB is applied to eval-
uating the compensation error of the feedforward control for
the learning. Let L denote the duration of one cycle, that is,
the period of the periodical disturbance, i.e. d(t + L) = d(t).
Figure 3 shows the structure of the proposed scheme, in
which the IMC plays the role of a real-time feedback con-
troller while the learning control is delayed by L before being
applied to the plant. According to the proposed structure, we
have the control law during the i th cycle

+
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Fig. 3 Block diagram of the proposed DOB-based learning control
system

u = ufb + ui
ff (5)

in which ufb denotes the feedback control provided by the
IMC, and ui

ff denotes the feedforward learning control during
the i th cycle. Here, variables without a superscript denote
signals in the current time frame. The learning control is
updated by the following learning rule

ui+1
ff = α(s)ui

ff +
[

Qdo(s)ufb − Qdo(s)P−1
n (s)y

]
(6)

in which Qdo(s) determines the dynamics of the DOB, and
the filter α(s) is used to attenuate high-frequency compo-
nents and then increase system robustness to high-frequency
unmodeled dynamics and noises. The idea of using low-pass
filters to increase the system’s insensitivity to imperfections
in high frequencies can also be found in previous studies
[21–24]. Define the tracking error e = r − y. With the
assumption that r i + 1 = r i and di + 1 = di , it is shown in
Appendix A that the relationship between the tracking errors
in two consecutive cycles is described by

ei+1 = (α−Qdo H) ei +
[

P−1+(1−Qim)−1 Qim P−1
n

]−1

×
{[

(1−α) P−1+Qdo P−1
n

]
r −(1−α) d

}
(7)

in which ei and ei+1 denote the tracking errors at the
i th and (i + 1)th cycles, respectively, and H(s) = [Qim

+ (1 − Qim) Pn P−1
]−1

. The robust stability conditions for
the proposed learning system are then obtained as follows:

(i) All roots of the following equation have negative real
parts.

P−1(s) + (1 − Qim(s))−1 Qim(s)P−1
n (s) = 0 (8)

(ii) For all values of s = jω,

|α(s) − Qdo(s)H(s)| < 1. (9)
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Rearranging (8) after multiplying both sides by (1 − Qim(s))
P(s) yields 1 + Qim(s)

(
P(s)P−1

n (s) − 1
) = 0. In view of

(3), the stability condition (8) is thus equivalent to the stability
condition for an IMC system, and the necessary condition for
a stable learning system is that the IMC must stabilize the
uncertain plant (2). On the other hand, the stability condi-
tion (9) is the requirement for a stable DOB-based learning
process. When Pn(s) = P(s), the condition (9) is simplified
to |α(s) − Qdo(s)| < 1 for all values of s = jω. Unlike the
previous learning control schemes, this stability condition is
irrelevant to the closed-loop transfer function of the real-time
feedback system, and the dynamics of the proposed learning
process can be adjusted independently of the tuning of the
feedback compensator. Moreover, since the DOB in the pro-
posed scheme is not directly involved in the real-time feed-
back loop, its dynamics can be tuned fast by increasing the
cutoff frequency of Qdo(s) without exciting high-frequency
unmodeled dynamics. Fast dynamics of the DOB reduce the
time lag in estimating the compensation error, and thus accel-
erate the learning process.

Assume that the stability conditions (8) and (9) are ful-
filled. When α = 1 and Qdo �= 0, we have from (7) the
steady-state tracking error of the proposed DOB-based learn-
ing control system

e∞(s) = (1 − Qim(s)) r(s) (10)

irrespective of model uncertainties and external disturbances.
For comparison, the tracking error of the IMC system can be
derived from (3) as

e(s)= 1−Qim(s)

1+Qim(s)
(
P(s)P−1

n (s)−1
) (r(s)−P(s)d(s)) (11)

which shows that model uncertainties and external distur-
bances have certain influences on the tracking precision.
Actually, (10) corresponds to (11) with Pn = P and d = 0,
which means that the proposed learning control achieves the
ideal closed-loop dynamics of the IMC system through repet-
itive trials. Therefore, the introduction of a plug-in DOB-
based learning control to the IMC is advantageous in the
sense that it reduces the sensitivity of system performance to
modeling errors and unknown disturbances.

3.2 Implementation using Fourier series expansions

Currently, most advanced control schemes are implemented
with digital microprocessor systems. Here realizing the learn-
ing law (6) requires storage of the feedforward signal, uff(τ )

for 0 ≤ τ ≤ L , which requires a lot of memory space
if the temporal resolution between two consecutive storage
points needs to be small. To avoid this problem, Fourier
series expansions that can be effectively accomplished by
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Fig. 4 Implementation of the proposed learning control scheme using
truncated Fourier series

the microprocessing technology are applied for approximat-
ing an ideal feedforward signal with few parameters.

Let the Fourier series of the estimated disturbance signal
during the i th cycle be expressed as

Qdo

[
ufb − P−1

n y
]

=
∞∑

m=−∞
θ i

mφm (12)

in which θ i
m is a Fourier coefficient, and φm is a trigonometric

function in Fourier series. Furthermore, let the feedforward
compensation at the i th cycle be a trigonometric polynomial
of degree M , i.e.

ui
ff =

M∑
m=−M

wi
mφm (13)

in which M is a fixed integer, and wi
m denotes the weight

parameter associated with φm at the i th cycle. The choice
of the number M depends on how well the ideal feedfor-
ward compensation is to be approximated by the actual one
(13). Increasing the value of M reduces the approximation
error between the ideal feedforward signal and the real one,
while it complicates its implementation and requires more
computation efforts. The learning process is to adapt the
weight parameters, wi

m , so that the feedforward control com-
pensates for periodic disturbances that are related to φm for
−M ≤ m ≤ M . The learning law is designed as

wi+1
m = wi

m + θ i
m for − M ≤ m ≤ M. (14)

Figure 4 shows the structure of the proposed DOB-based
learning control using Fourier series, in which CTFA and
CTFS are the abbreviations of continuous-time Fourier
analysis and continuous-time Fourier synthesis, respectively,
and z−1 denotes the delay of one cycle in the discrete
domain. The estimated disturbance signal from the DOB dur-
ing one period is modeled by the CTFA using Fourier series
expansions for selective frequencies. The resulting Fourier
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coefficients are then used to update parameters in the learn-
ing controller, and the feedforward control is obtained by
restoring these parameters to a time-domain signal with the
CTFS (13). It is shown in Appendix B that, for the proposed
learning control system using the truncated Fourier series,
the stability condition (8) remains the same, but the stability
condition (9) is modified to

|1 − Qdo(s)H(s)| < 1 (15)

for all values of s = jωm, in which ωm denotes the frequency
corresponding to φm for −M ≤ m ≤ M . The benefits from
using truncated Fourier series to compensate for some distur-
bance components of certain frequencies are: (1) the Fourier
series approximation is effective since every trigonometric
function in Fourier series corresponds to a specific frequency
and is independent of each other in the frequency domain; (2)
the resulting system is further insensitive to high-frequency
imperfections since high-frequency signals including noises
are automatically eliminated in the CTFA of selective fre-
quencies; (3) it is convenient for realization since only sev-
eral parameters are required to reconstruct the feedforward
control signal by the CTFS, rather than storing time histories
of relevant signals that would require a lot of memory space
in digital implementations.

3.3 Experimental results on ripple compensation

The DOB-based learning control using truncated Fourier
series is applied to compensating for torque ripples that are
periodic with respect to the angular position of the motor
shaft. Since the torque ripples induced by harmonic drives are
periodic functions of position instead of time, the time in the
learning control formulation is implemented with the angular
position. In our experiments, the length of one cycle is consid-
ered to be one motor revolution, i.e. L = 2π (rad). Since the
torque ripples contain a main component whose frequency is
twice the angular frequency of the input shaft, the learning
control is designed to compensate for that major component,
and the feedforward compensation at the i th cycle is

ui
ff = wi

a cos(2qm) + wi
b sin(2qm) (16)

in which qm is the angular position of the motor shaft, and
wi

a and wi
b denote the weight parameters at the i th cycle.

Using the DOB’s output signal during the i th cycle, the pro-
posed scheme calculates its Fourier coefficients, ai and bi

corresponding to cos(2qm) and sin(2qm), respectively. The
weight parameters is then updated by

wi+1
a = wi

a + ai , wi+1
b = wi

b + bi . (17)

To verify the effectiveness of the proposed scheme, consider
the harmonic drive actuator under two kinds of operating
conditions: quasi-constant angular-speed motion and vari-
able angular-speed motion.

Fig. 5 Tracking responses under quasi-constant speed motion

Quasi-constant angular-speed motion: The servomotor is
forced to have an initial speed of approximately 11.4 (rps) at
the beginning of a torque-control task, and the output torque
of the harmonic drive actuator is then required to counter-
act the effects of the gravitational force exerted on the load,
that is, the torque reference r = −35.4 sin(qm/N ) (Nm)
in our setup. When the output torque perfectly follows the
reference, the load will move at a constant velocity as if it
was in the outer space and without external forces. Figure 5
shows the tracking responses of the proposed scheme, in
which Qdo(s) is designed as a fourth-order low-pass But-
terworth filter with a cutoff frequency of 180 Hz. Note that
the feedforward control by the learning control is null dur-
ing the first cycle, and the torque response of the proposed
scheme during the first motor revolution is hence nearly the
same as that of the IMC without feedforward compensa-
tion. Figure 5 demonstrates that the torque ripples, whose
frequency is twice the rotational frequency of the input shaft,
are well compensated for by the proposed scheme after the
first cycle under the quasi-constant speed motion.

Variable angular-speed motion: A torque-controlled actu-
ator does not necessarily operate at a constant speed. To eval-
uate the performance of the proposed scheme further, we
apply the following reference

r =

⎧
⎪⎨
⎪⎩

−35.4 sin(qm/N )−1.2(Nm) for qm ≥−10π(rad),

−35.4 sin(qm/N )+1.2(Nm) for qm < −10π(rad)

(18)

which, when followed precisely, accelerates the load during
the first five revolutions of the motor shaft, and decelerates
the load afterwards. Figure 6 shows the dynamic response
of the proposed scheme. From the output response of the
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Fig. 6 Tracking responses under variable speed motion

Fig. 7 Tracking errors and their spectra under variable speed motion

IMC without feedforward compensation, it is seen that the
magnitude of torque ripples varies with the angular speed
of the input shaft. Moreover, it is obvious that the tracking
performance of the pure IMC has been improved by the pro-
posed scheme even when the amplitude of torque ripples is
time-varying. According to the tracking responses shown in
Figs. 6, 7 shows the spectra of tracking errors. It reveals that
the torque ripple of twice the frequency of the motor shaft is
alleviated while remaining other high-frequency components
are almost the same.

4 Conclusions

This paper presents a DOB-based learning control scheme to
compensate for torque ripples induced by harmonic drives.

The proposed scheme learns straight from the compensation-
error signal evaluated by the DOB, rather than extracting the
disturbance information from output errors. Since the DOB
is not directly involved in the real-time feedback loop, its
bandwidth can be set to be relatively large, and the pro-
posed learning control has an excellent convergence prop-
erty. The experimental results show that the proposed scheme
effectively alleviates the major component of torque ripples
induced by harmonic drives.
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Appendix A: Derivation of the relation (7)

The inverse description of the plant’s actual model (2) is
u + d = P−1 y. Substituting the proposed control law (5)
into it gives

ufb + ui
ff + d = P−1 y. (19)

According to the proposed scheme shown in Fig. 3, we have
the feedback control

ufb = Qim P−1
n [r − (y − Pnufb)]

= Qim P−1
n (r − y) + Qimufb (20)

which can be rearranged as

ufb = (1 − Qim)−1 Qim P−1
n (r − y)

= (1 − Qim)−1 Qim P−1
n e. (21)

Substituting (21) into (19) and noting that y = r − e, we
have after rearrangement

e =
[

P−1 + (1 − Qim)−1 Qim P−1
n

]−1

×
(

P−1r − ui
ff − d

)
. (22)

Moreover, the proposed learning law (6) can be expressed as

ui+1
ff = α(s)ui

ff + Qdo(s)
[
ufb − P−1

n y
]
. (23)

Substituting (21) into (23) and noting that y = r − e yields

ui+1
ff = αui

ff + Qdo

[
(1 − Qim)−1 Qim P−1

n + P−1
n

]
e

−Qdo P−1
n r. (24)

Substituting (22) into (24) and rearranging the resulting
equation gives

ui+1
ff = (α − Qdo H) ui

ff + Qdo

(
HP−1 − P−1

n

)
r

−QdoHd (25)

123



364 Electr Eng (2013) 95:357–365

in which H(s) = [
Qim + (1 − Qim) Pn P−1

]−1
. According

to (22), the tracking error during the (i+1)th cycle is

ei+1 =
[

P−1 + (1 − Qim)−1 Qim P−1
n

]−1

×
(

P−1r − ui+1
ff − d

)
. (26)

Multiplying both sides of (22) by (α − Qdo H) gives

(α − Qdo H) ei =
[

P−1 + (1 − Qim)−1 Qim P−1
n

]−1

×(α − Qdo H)
(
P−1r − ui

ff − d
)
. (27)

Subtracting (27) from (26) and substituting (25) into the
resulting equation yields (7). Assume the stability of the
learning system, and examine (25). It is found that, when
α = 1 and Qdo �= 0, the steady-state learning control is

u∞
ff = Qim

(
P−1 − P−1

n

)
r − d (28)

implying that the learning control asymptotically rejects the
disturbance and compensates for the model discrepancy such
that the ideal closed-loop dynamics of the IMC design,
y = Qimr , is attained through the learning process. This can
be verified by substituting (28) into (22) or directly implied
from (10).

Appendix B: Derivation of the stability condition (15)

Combining (13) with (14) gives

ui+1
ff = ui

ff +
M∑

m=−M

θ i
mφm = ui

ff +
∞∑

m=−∞
θ i

mφm

−
−(M+1)∑
m=−∞

θ i
mφm −

∞∑
m=M+1

θ i
mφm . (29)

Substituting (12) gives

ui+1
ff = ui

ff + Qdo

[
ufb − P−1

n y
]

−
−(M+1)∑
m=−∞

θ i
mφm −

∞∑
m=M+1

θ i
mφm . (30)

Since ufb − P−1
n y = (1 − Qim)−1 Qim P−1

n e − P−1
n y =

(1 − Qim)−1 P−1
n e − P−1

n r according to (21), we rewrite
(30) as

ui+1
ff = ui

ff + Qdo

[
(1 − Qim)−1 P−1

n e − P−1
n r

]

−
−(M+1)∑
m=−∞

θ i
mφm −

∞∑
m=M+1

θ i
mφm . (31)

Substituting (22) into (31) and rearranging the resulting equa-
tion, we have

ui+1
ff = (1 − Qdo H) ui

ff + Qdo

[(
HP−1 − P−1

n

)
r − Hd

]

−
−(M+1)∑
m=−∞

θ i
mφm −

∞∑
m=M+1

θ i
mφm . (32)

Note that
[
P−1 + (1−Qim)−1 Qim P−1

n

]−1 = (1−Qim) Pn H
according to the definition of H(s). If the stability con-
dition (8) holds, then H(s) is asymptotically stable, and
Qdo

[(
HP−1 − P−1

n

)
r − Hd

]
is bounded for bounded r and

d. Let the bounded signal be expressed in a Fourier series

Qdo

[(
HP−1 − P−1

n

)
r − Hd

]
=

∞∑
m=−∞

λmφm (33)

in which λm is a Fourier coefficient. Substituting (33) and
(13) into (32) gives

M∑
m=−M

wi+1
m φm = (1−Qdo H)

M∑
m=−M

wi
mφm +

∞∑
m=−∞

λmφm

−
−(M+1)∑
m=−∞

θ i
mφm −

∞∑
m=M+1

θ i
mφm . (34)

Since {φm}m=∞
m=−∞ is an orthogonal set, (34) can be decom-

posed into the following equations

wi+1
m = (1 − Qdo H) wi

m + λm for − M ≤ m ≤ M (35)

θm = λm for m < −M or m > M (36)

in which θm denotes θ i
m , and the superscript i is omitted

because λm and hence θm are invariant to the cycle number
for m < −M or m > M . From (35), we have the stability
condition (15), and its satisfaction implies the boundedness
of the feedforward control in the proposed learning system
using the truncated Fourier series approximation.
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