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Abstract In this paper, the design and implementation of
a feed-forward artificial neural network (ANN)-based fault
locator to classify and locate shunt faults on primary over-
head power distribution lines with load taps and embedded
remote-end power generation is presented. In the ANN algo-
rithm, the standard back-propagation technique with a sig-
moid activation function is used. The fault locator utilizes
fault voltage and current samples obtained at a single loca-
tion of a typical radial distribution system. The ANNs are
trained with data under a wide variety of fault conditions and
used for the fault type classification and fault location on the
distribution line. A 34.5 kV distribution system is simulated
using electro-magnetic transients program and their results
are used to train and test the ANNs. The ANN-based fault
locator gives high accuracy for the vast majority of the prac-
tically encountered systems and fault conditions, including
the presence of load taps and the remote-end in-feed source.

Keywords Fault location · Distribution lines · Artificial
neural networks · Embedded generation

1 Introduction

In recent years, as a result of the competition with the pri-
vatisation of the power distribution companies, it has been
become essential to provide the customers a high-quality ser-
vice without any outages. Consequently, it is needed for these
companies to locate permanent and transient faults on distri-
bution feeders as quickly as possible. The importance of the
fast fault locators is more obvious for the cases where foot
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patrols are relied upon, particularly, on relatively long lines
and when the visibility is very poor because of tree growth,
etc. Also, the locators can help in the case that maintenance
is shared by many companies or divisions within a company.
Moreover, the weak spots that are not obvious may be found
and a more focused inspection can be performed within a
limited area defined by the fault locator [1].

Although, so far, the majority of the distribution sys-
tems comprise feeders with remote ends open, due to the
privatisation of the electricity supply industries and also
increasing environmental and global concerns, more and
more non-conventional energy sources such as wind energy,
biogas, solar and small hydro, etc. are being added to the
existing distribution systems. This trend is likely to continue
in the near future [2]. An important problem due to increase
in complexity of the distribution system arises from the fact
that any fault will also have remote in-feed. It is well known
that a remote-end in-feed can adversely affect the accuracy of
the conventional fault locators. A number of the impedance-
based fault location techniques for the single-ended overhead
distribution systems have been proposed in [3–5]. In such
techniques, the effects of pre-loading the presence of remote-
end source and errors originating from the interface and the
quantization are not taken into consideration. The technique
developed in [6] is based on superimposing the components
which is very efficient in distribution lines with remote-end
generation, but it requires exact knowledge of the feeder
configuration and the load data. A technique based on the
travelling waves and high-frequency (HF) components pre-
sented in [7,8] requires specifically tuned filters, and its initial
costs would be prohibitively high in longer radial distribu-
tion lines. In Refs. [9,10] the knowledge-based approaches
which often require external information such as substation
and feeder switch status, feeder measurements, load voltage
and current sensors etc. are presented. The techniques devel-
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oped in [11–16] require a dedicated communication medium.
In addition, the recorded fault data gathered from the ends
of the transmission system are needed to be synchronised.
Although these techniques offer very accurate results, they
are not tested for an overhead distribution system and also
their initial investment and operational costs are too high. In
Ref. [17], an intelligent two-port numerical algorithm for the
fault location, the adaptive autoreclosure, the detailed dis-
turbance record analysis and the fault data management is
presented. The proposed algorithm does not require a syn-
chronized sampling of the data taken from the line terminals
and also the fault arc is included in the complete fault model.
This algorithm, in contrast to the approaches that do not take
the fault arc into consideration, gives a high accuracy in fault
location and has the ability to determine both the arc and
the fault/tower-footing resistance. But, the algorithm has not
been tested for a practical low voltage overhead distribution
feeder with load taps, yet.

This paper introduces a new approach based on ANNs
to accurately locate shunt faults on primary overhead power
distribution systems with load taps and also in the presence
of small-scale distributed generation system connected at the
remote-end of the network. The latter has a particular impor-
tance regarding the fact that the future distribution networks
will increasingly become active (i.e. bi-directional power
flow) due to the penetration of the renewable energy-based
generation systems. Our technique is based on utilising the
fault voltage and current samples obtained at a single location
of a typical radial distribution line. In order to attain a high
degree of accuracy in the location of a fault, the post-fault
currents and voltages obtained from one end of the distri-
bution system are filtered using Discrete Fourier Transform
(DFT) techniques to extract the required power frequency
components. The extracted voltage and current phasors are
then fed to the ANN which has been trained off-line with
the data under a wide variety of fault conditions to classify
and locate the faults on the distribution line. The practical
limitations originating from the hardware such as interface
and quantization errors are taken into account in the design
process. The proposed algorithm is practically tested in a
34.5 kV overhead distribution system through the simula-
tions using the electro-magnetic transients program (EMTP).
The accuracy of the technique is evaluated for the fault type,
the location and the resistance, the presence of remote-end
in-feed, the fault inception angle and the fault cycle. The sim-
ulation results clearly show that the proposed fault location
technique presented here is highly accurate.

2 ANNs

Artificial neural networks are widely accepted and recogni-
sed method for the solution of the complex and ill-defined
problems. Instead of using complicated mathematical
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methods and algorithms, ANNs can learn the key informa-
tion from a multi-dimensional database. Moreover, since the
ANNs can process the missing and noisy data, they have
higher error tolerances. Another outstanding advantage of
the ANN is that once trained they can produce fast results
for nonlinear problems [18–20]. As seen in Fig. 1, the math-
ematical model of a basic ANN neuron has a much simpler
structure comparing with a biological neuron. Basically, a
neuron k may be mathematically described with the Eqs. (1–
3) [21]:

uk =
(

n∑
i=1

wki xi + θk

)
(1)

and

yk = ϕ(uk) (2)

The data received from outer environment (or other neurons)
xn are transferred to the neuron k through weights wkn which
adjust the effect of inputs. The neuron calculates a weighted
average (uk) using the summation function and then uses
some activation function ϕ to produce an output yk [21].
The activation function is used to express the nonlinear rela-
tionship process between the input and the output data. The
selection of the activation function may vary depending on
the problem studied. In general, one of the activation func-
tions of step, sign, sigmoid or linear is used. In this study, the
log-sigmoid which is a nonlinear continuous function from 0
to 1 and differentiable everywhere for other x values is pre-
ferred as an activation function. The mathematical expression
of the log-sigmoid function is given in Eq. (3) [20]:

ϕ(x) = 1

1 + e−x
(3)

Figure 2 depicts the architecture of a typical feed-forward
multilayered neural network which consists of an input layer,
hidden layers (one or more) and an output layer. In the net-
work, xn shows the inputs from outer environment to the first
layer; wkn and wmk are the weights applied to the second
and the third layers, respectively. The number of the hid-
den layers and the number of neurons in the layers are sub-
ject to the problem studied and decided upon the trial-error.
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Fig. 2 A feed-forward multi layer ANN

The input layer receives the signal from outer environment
and distributes it to the neurons in the hidden layer. The num-
ber of hidden layers having computational neurons depends
on the functions to be used. Since each additional layer
increases the computing load exponentially, 3-layered ANNs
are usually preferred in practice [18,19].

The training stages in the ANNs comprise both the feed-
forward and back-propagation networks. After the training
is completed, only the feed-forward algorithm is used in nor-
mal operation. Therefore, the training stage of the ANN is
more time consuming when it is compared with the utiliza-
tion stage.

3 ANN-based fault location algorithm

The complete fault locator scheme is shown in Fig. 3. The
three-phase currents and voltages enter through the input
transformers which provide a galvanic isolation from the
instrument transformers as well as transforming the signals to
±10 V reference voltage level. The input signals taken from
voltage transformers (VTs) and current transformers (CTs)
may contain HF components under fault conditions. In order
to prevent aliasing, second-order Butterworth filters with a
cut-off frequency of 1.5 kHz are used. The filter outputs are
switched in sequence by the multiplexer and fed into the sam-
ple and hold circuit in preparation for digital conversion. The
analogue to digital conversion is achieved via a 12-bit A/D
converter and a sampling frequency of 4 kHz (80 sample win-
dow) is used throughout the process. The ±211 conversion
process leads to a quantisation level of approximately 4.8 mV.
Analogue to digital conversion introduces further errors due
to quantisation. After the digitisation stage, the voltage and
current data is acquired and stored in a circular buffer in the
RAM memory before being printed, processed or transmit-
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Fig. 3 The complete fault location algorithm

ted. The computer scans the voltage and the current samples,
storing the data and the oldest information being overwritten.

3.1 Fault inception time identification

Before applying the fault location algorithm, any changes in
stored current and voltage samples should be identified. In
the digital fault recorder (DFR), after the digitisation stage,
the microprocessor continuously executes a monitoring rou-
tine. In this process, the current and voltage samples taken
from the near end of the distribution line are measured and
stored in the RAM memory of the computer. In the presence
of a fault, the current and the voltage waveforms are distorted
and therefore, their magnitude and phase angle may change
with respect to the pre-fault conditions. To identify the fault
inception time, an adaptive approach is used and the first
three samples of the second cycle are compared with the
corresponding three samples of the previous cycle for the
current waveform. Any significant change more than a pre-
defined threshold level indicates the time at which the fault
has occurred. If these criteria are not satisfied for the cur-
rent samples, then the same process is applied to the voltage
samples. Upon the inception of a fault, the fault recorder is
triggered and the captured fundamental values of currents
and voltages provide three cycles (or till the circuit breaker
operates) of the fault data. In the development of the DFR, the
important aspects of the practical fault recorders such as VT
and CT responses, analogue interface effects and quantisa-
tion errors are taken into account. This is made to ensure that
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Fig. 5 A 34.5 kV distribution system

the performance obtained is considerably close to a real-life
situation.

3.2 The extraction of voltage and current phasors

Figure 4 shows the voltage and current waveforms for an
‘a’-phase-earth fault at 3 km away from end P in the system
shown in Fig. 5. As can be seen in the waveforms, after the
fault, the voltage waveforms are distorted due to HF compo-
nents while DC off-set is more prominent in current wave-
forms.

In order to achieve a high degree of accuracy, in the fault
location algorithm, after the A/D conversion it is vitally
important to extract voltage and current phasors of the power
frequency component from the post-fault waveforms which
can contain transients ranging from high frequencies down
to the DC levels. Although the Fast Fourier Transform (FFT)
is superior to DFT in terms of computing performance, the
computing time is relatively long since it calculates the entire
frequency spectrum. In power protection systems, usually,
only the power frequency (50 Hz) component is of interest.

Since the DFT can be evaluated for any particular frequency
component, it is more preferred in protection system appli-
cations [22]. The DFT is very efficient in rejecting the HF
components and thus effectively attenuating the DC offset. It
is applied to digitised voltage and current samples based on
one cycle information which gives both the magnitude and
the phase of the fundamental phasor Xv,i (ω) as [23,24]:

Xv,i (ω) =
(

2

N

) n=N−1∑
n=0

× [
xv,i (n) {cos(ωn�t) − j sin(ωn�t)}] (4)

In Eq. (4), N is the number of the samples per cycle, �t is
the sampling time, ω is the frequency of the phasor to be
extracted and xv,i (n) represents the sampled voltage or cur-
rent waveforms. The phasors extracted from the DFT filter
are used as the input to the fault type classifying ANN as
shown in Fig. 3. When the classification of the fault type is
achieved, to have a good generalization, the separate ANNs
are used in accurately locating the types of the faults on the
distribution system [25].

4 The practical considerations

As mentioned previously, the fault location technique in this
work is based on utilising the voltage and the current phasors
at the fault locator end of the line. Therefore, the training data
is determined applying the following steps:

Step 1: The simulation of the distribution system with
the EMTP to generate faulted voltage and current
waveforms.

Step 2: The extraction of voltage and current phasors using
a DFT filter.

Step 3: The application of the phasors to the designed best
ANN topology.

Step 4: The calculation of the error between the output vec-
tor and the desired output and adjusting the weights
to reduce the error.

Step 5: Repeating the process until the error criteria is
satisfied.

In the testing stage, the weights are used to find the output
values corresponding to the input values. In this stage, the
errors are not propagated backward (from the output to the
input) since it is not possible to compare the output data
set with the target data set. A computer program written in
Delphi is used to implement the ANN [26]. In the program,
a three-layered ANN model with feed-forward and BP algo-
rithms was used and some certain variables such as the learn-
ing rate, momentum and number of neurons in the layers can
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Table 1 The tested ANN parameters

Neurons in the Number of Learning rate (η) Momentum (α)

hidden layer iterations

10,000, 35,000, 0.1 0.2

k 50,000, 100,000 0.3 0.5

0.5 0.6

Table 2 The output logic of the fault type classification ANN

Fault type A B C G

No fault 0 0 0 0

‘a’-phase earth fault 1 0 0 1

‘a’-‘b’-phase fault 1 1 0 0

‘a’-‘b’-phase-earth fault 1 1 0 1

Three phase fault 1 1 1 0
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Fig. 6 The ANN for the fault type classification

be changed. In the development stage of the ANN model,
the proposed model has been tested using different parame-
ters and number of iterations to find the best structure and to
minimise the errors as shown in Table 1.

In the ANNs, although the estimation errors are reduced
for a higher number of iterations, this results in a longer
training time. In the development stage of the ANN model,
it is seen after 35,000 iterations that the error is negligible
and does not vary significantly. In this study, the number
of neurons (k) in the hidden layer was varied as 8, 10, 12
and 14 neurons and the best results were achieved for 12
neurons in the hidden layer. Finally, a network with 12 neu-
rons in the hidden layer and with log-sigmoid activation
function was used. In the training stage, the learning rate
(η) and the momentum (α) were set to 0.5 and 0.6, respec-
tively.

4.1 The simulation of a practical overhead power system

The practical distribution system studied in this work is a
34.5 kV, 50 Hz overhead system with three phase loads that
each rated as 2 MVA with a power factor of 0.95 (lagging),
tapped off at various locations as shown in Fig. 5. The over-
head distribution lines employed in this work are aluminium–
alloy conductors with no earth wires, based on horizontal
line configuration currently used in the Turkish power dis-
tribution system. The overhead power distribution system is
simulated with the EMTP software and the line elements are
considered as distributed. The relevant data used are:

1. Earth resistivity (assumed homogeneous) = 100 �m.
2. Source X/R ratio = 10; Zs0/Zs1 = 0.5
3. 34.5 kV feeder impedance = (0.18 + j0.34)�/km.

4.2 The training data for ANNs

In the development stage of an ANN-based algorithm, it is
very important to train and test the network. The training
data are obtained from the simulation of different types of
faults at various points of a typical distribution system both
with and without any remote-end source as shown in Fig. 5.
The desired outputs of the ANN for fault type classification
are defined by variables A, B, C and G. A value of unity
for any of the first three variables corresponds to the ‘a’, ‘b’
or ‘c’ phases being faulty and a value of G near unity indi-
cates that the ground is involved in a fault. Table 2 shows
the output logic of the fault type classification ANN. In the
developed algorithm, the voltage and current phasors are used
as the training data representing the different fault and sys-
tem conditions. The performance of the ANN was tested
using the both patterns within and outside the training set.
For a better accuracy and performance of the algorithm, the
ANN was trained for the fault type classification; the separate
networks are used for locating the faults on the distribution
system. The desired output of the fault locating ANNs was
defined as a specific point on the line in km [25]. Figure 6
shows the structure of the ANN for the fault type classifica-
tion with four outputs and Fig. 7 shows one of the ANNs for
the fault location which has one output. After the training, the
networks were tested with a separate set of test data unseen
by the ANNs before.

5 Results

The effectiveness of the developed technique was tested
for different fault locations and types, fault resistance, fault
inception angle and fault cycle. In all of the results presented
here, the percentage error relating to fault location is based
on the following equation:
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error (%) = actual location − desired location

length of the line
× 100 (5)

In order to show the effectiveness of the proposed technique,
the training and the test data were generated using the 34.5 kV
distribution system shown in Fig. 5. At every 2.5 km, the var-
ious faults were created and 80% of these cases were used
for the training of the network and 20% were used for the
subsequent testing. Table 3 shows the test results for the fault
type classification. It is evident from the results that the ANN
can accurately classify faults by giving the values around ‘1’
and ‘2’ since, in practice, the fluctuations are always exist
[25].

5.1 The effects of the fault type and the location

Table 4 also classifies the effect of fault type for the faults
in a 34.5 kV system shown in Fig. 5. The types of faults
investigated are (AG) ‘a’-phase-earth fault, (BG) ‘b’-phase-
earth fault, (CG) ‘c’-phase-earth fault, (AB) ‘a’-‘b’-phases
fault, (ABG) ‘a’-‘b’-phases-earth fault, (ABCG) ‘a’-‘b’-‘c’-
phases-earth fault. From the results, an increase in the error
due to the phase-earth faults occurring near any tapping point
can be observed. In these faulty conditions, the algorithm has
yielded to a maximum error smaller than 3% for phase-earth

faults created at 30 km on the system operated as radial (with
no embedded source). These errors may be explained by the
presence of laterals which lead to different fault currents for
the faults occurring at different locations of a radial distri-
bution feeder. It is evident from the results shown in Table 4
that the performance of the fault location algorithm, com-
pared with the radial feeder, is not affected by the presence
of the remote-end source.

The algorithm is also tested for the faults closer to the line
ends. Various faults were created at 2.5 and 37.5 km on the
radial operating system and with the 10 MVA source con-
nected to the end of the system and the results are shown in
Table 4. As can be seen, the results have not been signifi-
cantly affected from the location and therefore the error has
remained as less than 2% for all of the faults studied.

5.2 The effect of the fault resistance

The ANN was trained for the phase-earth faults for the fault
resistance of 2, 5, 10, 15, 20, 30, 40, 50, 60, 80 and 100 � in
the system shown in Fig. 5. The effect of the fault resistance
on accuracy was tested on the same distribution system for
the unseen cases and the results are given in Table 5. As seen
from the table, the fault locator gives satisfactory results in
the presence of fault resistance for the faults created at various
locations. From the results it is observed that in contrast to
the analytical methods the proposed method does not suffer
from a high value of fault resistance (R f ). The algorithm was
also tested for various fault resistances for an ‘a’-phase-earth
fault created at 30 km for the radial system (no remote-end
in-feed) and the results are given in Fig. 8. As seen from the
results, although the accuracy is varied with different fault
resistances it had a variation of less than 3 % for the fault
resistances studied.

In the overhead power distribution lines, the presence of
the fault arc resistance which is a nonlinear phenomenon
introduces HF transients particularly in the voltage wave-
forms during the shunt faults. In essence, these enhance the
magnitudes of the transients present due to travelling waves.
Since the proposed technique is based on the extraction of

Table 3 The results of the fault
classification Fault type Desired output Actual output

A B C G A B C G

AG 1 0 0 1 1.008658 −0.00597 −0.00347 0.997666

BG 0 1 0 1 −0.00049 0.997298 0.001566 1.008502

CG 0 0 1 1 0.005824 −0.00332 1.00085 1.000501

AB 1 1 0 0 1.001126 0.994477 0.004847 −0.00224

ABG 1 1 0 1 1.001272 0.99184 −0.00062 1.000538

ABCG 1 1 1 1 1.004145 0.932686 1.010033 1.055676
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Table 4 The effect of the fault type and the location

Fault type Remote source capacity (MVA) Fault resistance (�) Fault location ( km) Error (%)

Desired output Actual output

AG 0 2 2.5 2.418 −0.21

AG 0 50 2.5 2.651 0.38

AG 0 100 2.5 2.787 0.72

AG 0 2 12.5 12.480 −0.05

AG 0 50 12.5 12.445 −0.14

AG 0 100 12.5 12.202 −0.75

AG 0 2 30.0 29.348 −1.63

AG 0 50 30.0 29.477 −1.30

AG 0 100 30.0 28.822 −2.95

AG 0 2 37.5 37.188 −0.78

AG 0 50 37.5 36.992 −1.27

AG 0 100 37.5 36.887 −1.53

BG 0 2 12.5 12.274 −0.57

BG 0 50 12.5 11.967 −1.33

BG 0 100 12.5 12.141 −0.90

BG 0 2 30.0 29.602 −1.00

BG 0 50 30.0 29.058 −2.36

BG 0 100 30.0 30.141 0.35

CG 0 2 12.5 12.690 0.48

CG 0 50 12.5 13.067 1.42

CG 0 100 12.5 12.638 0.35

CG 0 2 30.0 29.432 −1.43

CG 0 50 30.0 29.874 −0.32

CG 0 100 30.0 30.328 0.82

AG 10 2 12.5 12.493 −0.02

AG 10 50 12.5 12.445 −0.14

AG 10 100 12.5 12.664 0.41

AG 10 2 30.0 29.779 −0.56

AG 10 50 30.0 29.929 −0.18

AG 10 100 30.0 29.995 −0.01

AB 0 0 2.5 2.619 0.30

AB 0 0 12.5 12.542 0.11

AB 0 0 30.0 29.998 −0.01

AB 0 0 37.5 37.289 −0.53

AB 10 0 2.5 3.370 −0.33

AB 10 0 12.5 12.520 0.05

AB 10 0 30.0 30.004 0.01

AB 10 0 37.5 37.883 0.96

ABG 0 0 2.5 2.412 −0.22

ABG 0 0 12.5 12.486 −0.04

ABG 0 0 30.0 29.961 −0.10

ABG 0 0 37.5 37.249 −0.63

ABG 10 0 12.5 12.502 0.01

ABG 10 0 30.0 29.970 −0.08

ABCG 0 0 12.5 12.482 −0.01
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Table 5 The effect of the fault
resistance Fault type Source capacity (MVA) Fault resistance (�) Fault location ( km) Error (%)

End P End Q Desired output Actual output

AG 100 0 2 22.5 22.607 0.27

AG 100 0 20 22.5 22.812 0.78

AG 100 0 50 22.5 22.178 −0.81

AG 100 0 100 22.5 22.685 0.46

AG 100 10 2 22.5 22.587 0.22

AG 100 10 20 22.5 22.516 0.04

AG 100 10 50 22.5 22.523 0.06

AG 100 10 100 22.5 22.408 −0.23

the power frequency phasors from the voltage and current
waveforms, the transients present due to fault arc will only
have little secondary effects on the accuracy. Of course, if the
proposed technique is to be based on the transient compo-
nents, then the integration of the accurate models for the fault
arcs into the system model will be critical. In this work, only
the linear arc resistances were considered. But importantly,
of higher values as the latter has a significant influence on
the magnitude of the power frequency components.

5.3 The effect of the fault inception time

In practice, the faults can occur at any point in the wave, i.e.
the fault inception angle cannot be defined in advance. It is
thus important to ascertain the algorithm’s performance for
the faults at inception angles rather than those near the max-
imum voltage. The tests were performed on the distribution
system shown in Fig. 5 for the different inception angles of
phase-earth faults and the results are summarised in Table 6.
It is clearly evident from the results that the algorithm main-
tains a high degree of accuracy which is virtually independent
of the fault inception angle.

5.4 The effect of the fault cycle

In the fault location algorithm, the DFT technique ignores
the first cycle of post-fault data since the transients are most
prominent during this period. However, there can be situa-
tions particularly under high-speed fault clearance that only
the first cycle of information is available related to the fault
location so it is no longer possible to ignore it. In these cases,
all the post-fault information must be taken into account and
it is thus important to ascertain the effect on the performance
of the algorithm. A comparison of accuracy attained between
utilising the first and second cycle of the data following an
‘a’-phase-earth-fault on the distribution system is shown in
Fig. 5 (no remote-end in-feed) and the results are summa-
rised in Table 7. The results clearly show that the accuracy
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Fig. 8 The effect of the fault resistance

is slightly affected for the defined faults using two cycles.
But, in the case of the faults supplied with the data with a
length of only one cycle, the accuracy is significantly affected
for ‘a’-phase-earth-faults created at 12.5 and 25 km with the
estimation errors of 3.16 and 4.86%, respectively.

6 Conclusion

In this paper, an ANN-based fault location algorithm to
classify and locate shunt faults on overhead power distribution
feeders was presented. Our algorithm is based on utilising the
fault voltage and current samples obtained at a single location
of a typical radial distribution system with load taps and
remote-end source. The main advantage of the algorithm over
the other known fault location techniques is that there is no
requirement for communication from the remote-end source
and the exact knowledge of pre-fault loading. The proposed
algorithm is less affected by the fault resistance, the fault
type, the fault location and the embedded remote-end source,
and the errors attained being less than 3 % for the majority of
system and fault conditions studied here. Although the algo-
rithm has been tested using CAD simulations, the practical
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Table 6 The effect of the fault
inception angle Fault type Remote source Fault Fault angle (◦) Fault location ( km) Error (%)

capacity resistance
(MVA) (�) Desired output Actual output

AG 0 2 90 25.0 25.031 0.78
AG 0 2 135 25.0 24.977 −0.08

AG 0 2 180 25.0 25.386 0.97

AG 0 2 225 25.0 25.089 0.23

AG 0 2 270 25.0 24.537 −1.16

Table 7 The effect of the fault
cycle Fault type Fault resistance (�) Number of cycles Fault location ( km) Error (%)

used
Desired output Actual output

AG 2 3 25.0 25.031 0.08

AG 2 2 25.0 25.041 0.10

AG 2 2 12.5 12.582 0.20

AG 2 1 12.5 13.762 3.16

AG 2 1 25.0 26.942 4.86

limitations of the hardware such as interface and quantization
errors are taken into account in the design process.

The results show that the overall performance of the algo-
rithm is significantly better compared with to the conven-
tional techniques, particularly those based on impedance to
fault measurements which give unacceptably high errors in
the presence of the remote-end embedded generation and
load taps. Although the algorithm was developed for the over-
head power distribution systems, it can be applied to the com-
posite systems consist of overhead lines and underground
cable sections. Another major advantage of the algorithm is
that the ANNs can be trained off-line with the data reflecting
modifications on the existing system such as demographic
data of the area and seasonal or daily energy demand and
generation levels. Once the training is over, on-line fast and
accurate fault clearance and diagnosis can be achieved in the
distribution system with embedded electric power genera-
tion.

References

1. Eriksson L, Saha MM, Rockefeller GD (1985) An accurate fault
locator with compensation for apparent reactance in the fault resis-
tance resulting from remote-end infeed. IEEE Trans Power Appa-
ratus Syst 104(2):424–436

2. Singh GK (2004) Self-excited induction generator research—a
survey. Electr Power Syst Res 69:107–114

3. Girgis AA, Fallon CM, Lubkeman DL (1993) A fault location
technique for rural distribution feeders. IEEE Trans Ind Appl
29(6):1170–1175

4. Sachdev MS, Das R, Sidhu TS (1997) Determining locations of
faults in distribution systems. In: Developments in power systems
protection, 25–27th March 1997 Conference publication no: 434,
IEE, pp 188–191

5. Zhu J, Lubkeman DL, Girgis AA (1996) Automated fault location
and diagnosis on electric power distribution feeders. IEEE Winter
Meet 12:1–8

6. Aggarwal RK, Aslan Y, Johns AT (1997) A new concept in fault
location for overhead distribution systems using superimposed
components. IEE Proc Gener Transm Distrib 144(3):309–316

7. El-Hami M, Lai LL, Daruvvala DJ, Johns AT (1994) A new trav-
elling-wave based scheme for fault detection on overhead power
distribution feeders. IEEE Trans Power Deliv 17(4):1825–1833

8. Johns AT, Lai LL, El-Hami M, Daruvvala DJ (1991) A new
approach to directional fault locator for overhead power distribu-
tion feeders. IEE Proc Gener Transm Distrib 138(2):351–357

9. Jarventausta P, Verho P, Partanen J. (1994) Using fuzzy sets to
model the uncertainty in the fault location process of distribution
networks. IEEE Trans Power Deliv 9(2):954–960

10. Hsu YY, Lu FC, Chien Y, Liu JP, Lin JT, Yu HS, Kuo RT (1991) An
expert system for locating distribution system faults. IEEE Trans
Power Deliv 6(1):336–372

11. Kezunovic M, Perunicic B, Mrkie J (1994) An accurate fault loca-
tion algorithm using synchronised sampling. Electr Power Syst Res
29(3):161–169

12. Luo S, Kezunovic M, Sevick DR (2004) Locating faults in the
transmission network using sparse field measurements, simulation
data and genetic algorithm. Electr Power Syst Res 71:169–177

13. Gopalakrishnan A, Kezunovic M, Mckenna SM, Hamai DM
(2000) Fault location using the distributed parameter transmission
line model. IEEE Trans Power Deliv 15(4):1169–1172

14. Kezunovic M, Perunicic B (1996) Automated transmission line
fault analysis using synchronised sampling at two ends. IEEE Trans
Power Syst 11(1):441–447

15. Radojević Z, Terzija VV (2007) Effective two-terminal algorithm
for overhead lines protection. Electr Eng (Archiv für Elektrotech-
nik), 89:425–432

123



134 Electr Eng (2012) 94:125–134
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