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Abstract A new approach to the sliding mode control of
second-order nonlinear systems is introduced in continuous-
time. A single-input fuzzy logic controller is used to conti-
nuously compute the slope of the sliding surface, with the
result that the sliding surface is rotated in such a direction that
tracking performance of the system under control is impro-
ved. The proposed fuzzy moving sliding surface approach
with a one-dimensional rule base (FMSS-1D) reduces huge
number of linguistic fuzzy rules significantly. However, it
is shown that the input/output relation of the single-input
fuzzy rule base is very close to the input/output relation of
a straight line. Therefore, a single-input fuzzy-like moving
sliding surface (FLMSS) approach using an approximate line
function is then proposed. It is shown that the proposed
control approaches have better tracking performance than
the conventional sliding mode control with fixed sliding sur-
face. The proposed moving sliding surface approaches are
applied to balance an inverted pendulum on a cart. Compu-
ter simulations are presented to show the effectiveness of the
proposed methods and to make a quantitative comparison
with the classical sliding-mode controller with fixed sliding
surface method existing in literature.
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e-mail: ferhun.yorgancioglu@emu.edu.tr

H. Kömürcügil
e-mail: hasan.komurcugil@emu.edu.trr

1 Introduction

In recent years, the sliding mode control (SMC) theory has
become very popular and therefore, it has been studied widely
for the control of nonlinear systems [1–3]. The reason behind
this popularity is the attractive advantages of SMC. The main
advantage of SMC is that once the system states reach the
sliding surface, the system remains on this surface and the
states go to origin while the system is insensitive to parame-
ter variations. In addition to this advantage, the SMC method
offers a simple algorithm that can be implemented easily.
Besides this advantage, the SMC using a conventional time-
invariant (fixed) sliding surface has the fundamental disad-
vantage that when the system states are in the reaching mode,
the tracking error cannot be controlled directly and hence, the
system becomes sensitive to parameter variations. This sen-
sitivity can be minimized or eliminated if the reaching mode
duration is shortened. Moreover, finding the optimum value
of the slope requires tedious work and usually, it is a com-
plicated task [4]. Thus, how to adjust (or change) the slope
of a sliding surface is an important topic in the sliding mode
controlled nonlinear systems. Several methods [5–11] exist
in literature aiming at to eliminate the sensitivity during the
reaching mode. In [5], to eliminate reaching phase, the condi-
tion of having zero initial errors is assumed. However, initial
errors may be located arbitrarily in the error state–space. The
methods proposed in [6,7] are based on rotating or shifting
the sliding surface to guarantee the existence of the sliding
mode from the initial point of motion. In [8–11], comple-
tely different approaches based on qualitative control rules,
namely, fuzzy logic control (FLC) are proposed to cope with
the parameter sensitivity during the reaching mode. Howe-
ver, the common disadvantage of the methods presented in
[10,11] is that they are based on two-dimensional (2D) fuzzy
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rule base which increases the computation time of the control
input significantly.

In this paper, a single-input fuzzy moving sliding surface
approach to the sliding mode control of second-order non-
linear systems is presented. The main advantage of the pro-
posed control method is that the slope of the sliding surface
is not fixed, but it is changed continuously according to the
values of the error variables. Each time the slope is modified,
the sliding surface (or sliding line) rotates in clockwise or
counterclockwise direction so as to achieve the desired per-
formance. The change in slope is computed by fuzzy logic
rules using one dimensional (1D) rule base. Using 1D rule
base reduces the number of rules needed to compute the slope
and the computation time significantly [12]. Furthermore, it
is shown that the single-input fuzzy moving sliding surface
approach can be approximated by a line equation. Finally,
the computer simulation results are given to verify the effec-
tiveness of the proposed control methods.

2 Conventional sliding mode control

Consider the following single-input, second-order nonlinear
system

ẋ1(t) = x2(t) (1)

ẋ2(t) = f (x) + b(x)u(t) (2)

where x = [x1, x2]T is the state vector, f (x) and b(x) are
nonlinear functions representing system dynamics, and u(t)
is the control input. The control objective is to design a
control input u(t) to force the system states to track a desired
input signal xd(t). Let e(t) be the tracking error between the
actual and the desired trajectory as follows

e(t) = x1(t) − x1d(t) (3)

Taking the time derivative of both sides of (3) gives

ė(t) = x2(t) − x2d(t) (4)

where x1d(t) and x2d(t) = ẋ1d(t) are the desired trajecto-
ries for the states x1(t) and x2(t), respectively. The sliding
function S(t) is defined as a linear combination of the error
variables [5] as

S(t) = λe(t) + ė(t), λ > 0 (5)

where λ is a positive constant that determines the slope of
the sliding surface. The sliding mode (S(t) = 0) is described
by the first order equation

ė(t) = −λe(t) (6)

with solution

e(t) = e(0) exp(−λt) (7)

It is obvious from (7) that the system dynamics depend on λ.
For instance, a high value of λ is expected to move the error
variables on the sliding surface faster. On the other hand, if
the value of λ is chosen too high, it can cause an overshoot
in the system states and an instability.

In general, the motion of an SMC system can be divided
into two modes: the reaching mode and the sliding mode.
During the reaching mode, the error variables are driven to the
sliding surface by implementing a suitable reaching control
strategy. On the other hand, when the error variables are on
the sliding surface, the system is said to be in the sliding mode
in which the errors are driven to the origin (e(t) = ė(t) = 0)
by implementing an equivalent control strategy.

Now, taking the time derivative of the sliding function S(t)
gives

Ṡ(t) = λė(t) + ë(t) (8)

By substituting (4) into (8) and making use of (1) and (2),
we can obtain

Ṡ(t) = λė(t) + ẋ2(t) − ẋ2d(t)

= λė(t) + f (x) + b(x)u(t) − ẍ1d(t) (9)

When the system is in the sliding mode along (8), we have
S(t) = Ṡ(t) = 0. Equating (9) to zero and solving for u(t)
gives the following equivalent control expression

ueq(t) = 1

b(x)
[ẍ1d(t) − f (x) − λė(t)], b(x) �= 0 (10)

When the equivalent control is applied to the system, the error
variables are forced to move towards the origin immediately.
As a result, the desired dynamic behavior can be achieved
after the sliding mode starts. However, the equivalent control
may not be able to move the error variables from reaching
mode to sliding mode. Therefore, an additional control action
(reaching control) is needed that should be applied to the
system together with the equivalent control [5] as

u(t) = ueq(t) − K sgn [S(t)] (11)

where K > 0 is a positive real number to be selected and
sgn[.] is the signum function. For stability, the existence
condition S(t)Ṡ(t) < 0 for the reaching mode must be satis-
fied. Hence, the total control input becomes

u(t) = 1

b(x)
[ẍ1d(t) − f (x) − λė(t)] − K sgn [S(t)] (12)

It is well known that the controller shown in (12) suffers
from high frequency switching near the sliding surface and
chattering occurs due to signum function [2,5]. In order to
avoid chattering, a boundary layer is introduced with width φ.
Hence, signum function can be easily replaced by a saturation
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function sat
[

S(t)
φ

]
that is defined as

sat(z) =
{

sgn(z), if |z| � 1
z, if |z| < 1

(13)

The conventional SMC with the predetermined fixed slope
(λ) degrades the desired dynamic behavior of the system after
the beginning of motion. Robust tracking can be guaranteed
during the sliding mode. However, since the tracking error
cannot be controlled directly, the robustness cannot be gua-
ranteed in the reaching mode [7]. The robustness of system
can be improved if the duration of the reaching mode is shor-
tened. Therefore, it is most desirable if a control strategy
(which would shorten the reaching time and achieve fast tra-
cking of the system state variables and preserve the robust-
ness property) based on a moving sliding surface could be
developed for the nonlinear systems.

3 Fuzzy moving sliding surface approach

In this section, we combine the attractive features of SMC
and FLC to introduce a sliding mode control strategy based
on fuzzy moving sliding surface. Now, consider the sliding
surface depicted in Fig. 1. It is clear that the controller with
λmin leads to slower error convergence and longer tracking
time. On the other hand, the controller with λmax leads to
faster error convergence, but the tracking accuracy can be
degraded. Therefore, it is obvious that there is a trade-off
between error convergence time and tracking time. The rota-
tion (or movement) of the sliding surface can be achieved
if the value of λ is updated according to the values of the
error variables e(t) and ė(t) [10]. Note that for the sake of
stability, the positiveness of λ must be preserved during this
rotation process. From now on, the slope of the sliding surface

Fig. 1 Sliding surface with maximum, medium, and minimum slope
values

computed by fuzzy logic rules will be represented by λF
2D for

2D rule base and by λF
1D for 1D rule base.

The dynamic behavior of the FLC is characterized by a
set of linguistic rules based on expert knowledge. These lin-
guistic (fuzzy) rules are of the form [10]:

IF e(t) is E(t) and ė(t) is Ė(t) THEN λF
2D is LAMDA2D

(14)

where E(t), Ė(t), and LAMDA2D are the fuzzy sets of e(t),
ė(t), and λF

2D , respectively. It should be pointed out here that,
we assume both e(t) and ė(t) are scaled down to the unit range
of [−1,+1] before applying them as fuzzy inputs to the FLC
(process of fuzzification). Furthermore, it is obvious that the
inputs (e(t) and ė(t)) to FLC can have negative and positive
values. However, the output of the FLC must be always posi-
tive due to the positive slope requirement (λF

2D > 0). For this
reason, the rule base of the FLC plays a very important role
here and should be constructed in such a way that the perfor-
mance of the system is improved. The membership functions
for the inputs are represented by negative big (NB), negative
medium (NM), negative small (NS), zero (ZE), positive small
(PS), positive medium (PM), and positive big (PB), respecti-
vely. Similarly, the membership functions for the slope λF

2D
are represented by very very small (VVS), very small (VS),
small (S), medium (M), big (B), very big (VB), and very
very big (VVB), respectively. When every seven member-
ship functions (see Fig. 2) for e(t), ė(t), and λF

2D are used,
the 2D rule base shown in Table 1 with 49 fuzzy rules [10]
can be constructed. The input/output relation of these fuzzy
rules is shown in Fig. 3. This 2D rule base has two interes-
ting properties. Firstly, it can be seen from Fig. 1 and Table 1
that when the representative point (RP) falls into the second
and fourth quadrants, the rules are arranged in such a man-
ner that the sliding surface moves in the same direction as
the system. That is, the sliding surface rotates in clockwise
direction. Secondly, when the RP falls into first and third

(a)

(b)

Fig. 2 (a) Fuzzy input membership functions (b) Fuzzy output mem-
bership functions
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Table 1 Two-dimensional rule base used to compute λF
2D(t)

λF
2D(t) Error (E(t))

NB NM NS ZE PS PM PB

Change-in-error (Ė(t))
PB M B VB VVB VB B M

PM S M B VB B M S

PS VS S M B M S VS

ZE VVS VS S M S VS VVS

NS VS S M B M S VS

NM S M B VB B M S

NB M B VB VVB VB B M

Fig. 3 The input/output relation of the fuzzy controller with 2D rule
base

quadrants, the rules are defined in such a manner that the sli-
ding surface rotates in counterclockwise direction in contrast
to the ideas developed in [9], where shifting is applied for first
and third quadrants. Hence, with this type of rule base we do
not need to shift the sliding surface up or down to make the
RP fall into second and fourth quadrants so as to apply the
rotation strategy to shorten the time required to reach the
sliding surface. However, the main disadvantage of the FLC
with 2D rule base is that it requires k ×n rules, where k is the
number of linguistic values used for e(t) and n is the num-
ber of linguistic values used for ė(t). This means that with
seven linguistic values used for both input variables of e(t)
and ė(t), 49 rules will be needed to implement the proposed
control scheme. However, a rule base constructed with 49
rules increases the computation time required compared to
the case when a 1D rule base is utilized, which is the usual
situation with most of the FLCs constructed for the SMCs so
far. In the following section, the idea behind constructing a
1D rule base is studied extensively.

4 Single-input fuzzy and fuzzy-like moving sliding
surface approaches

Now, let us reconsider the 2D rule base shown in Table 1.
After a careful observation, one can easily see that the rules
in each quadrant are mirror images of the rules in the adja-
cent quadrants. This interesting property can be explained
as follows. When the system is in the first quadrant with
E(t) = PM and Ė(t) = PM, the output of the FLC will be
λF

2D = M . The same value for λF
2D can be obtained when at

least one input signal changes its sign in adjacent quadrant
as follows

When E(t) = NM and Ė(t) = PM

⇒ The FLC output λF
2D = M(2nd quadrant)

When E(t) = NM and Ė(t) = NM

⇒ The FLC output λF
2D = M(3rd quadrant)

When E(t) = PM and Ė(t) = NM

⇒ The FLC output λF
2D = M(4th quadrant)

Similarly, when the system is in the second quadrant with
E(t) = NM and Ė(t) = PB, the output of the FLC will be
λF

2D = B. The same value for λF
2D can be obtained when at

least one input signal changes its sign in adjacent quadrant
as follows

When E(t) = PM and Ė(t) = PB

⇒ The FLC output λF
2D = B(1st quadrant)

When E(t) = NM and Ė(t) = NB

⇒ The FLC output λF
2D = B(3rd quadrant)

When E(t) = PM and Ė(t) = NB

⇒ The FLC output λF
2D = B(4th quadrant)

Motivated with this important property, it seems that the
number of the rules in the 2D rule base can be reduced
considerably. The rule base reduction can be achieved by
two scenarios. Firstly, we can use only rules of the first qua-
drant (only 16) to represent all cases (when e(t) and ė(t)
falls into first, second, third, and fourth quadrants). This can
be obtained simply by multiplying error variables with their
signs (or calculating their absolute values). After multiplying
them with their signs (and the process of fuzzification), they
can be used as two fuzzy input variables to a 2D rule base
having rules of the first region (or quadrant) of the phase
plane. With this process, a significant reduction can be obtai-
ned in the rule base. With seven membership functions used
for both input variables, we reduce rule base from 49 lin-
guistic fuzzy rules to 16. Secondly, remembering the case
in [12] of reducing rule bases of linear type, we can think
about reducing it more to form only 1D case (to represent
2D rule base with only 7 rules). Obviously, using the same
idea of reducing 49 rules to 16, we can easily proceed and
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use the same strategy but this time with calculating absolute
magnitude differences between fuzzy inputs of the e(t) and
ė(t) to form a single-input to be applied to a 1D rule base.
The idea of formulating the new fuzzy input to the 1D rule
base can be written as

Ed(t) = |E(t)| − ∣∣Ė(t)
∣∣ (15)

where Ed(t) is the magnitude difference in error variables.
Hence, we form a single-input fuzzy variable Ed(t) and cor-
respondingly a 1D rule base having only 7 linguistic fuzzy
rules of the following form

IF Ed(t) is ED THEN λF
1D is LAMDA1D (16)

where ED and LAMDA1D are the fuzzy sets of Ed(t) and
λF

1D shown in Fig. 2. Studying all cases available in the 2D
rule base one can easily form a 1D rule base as shown in
Table 2. The input/output relation of the fuzzy rules in 1D
rule base is shown in Fig. 4. The corresponding block diagram
of single-input fuzzy moving sliding surface based on SMC
is depicted in Fig. 5. Obviously, the calculation of the time-

Table 2 One-dimensional rule base used to compute λF
1D(t)

Ed (t) NB NM NS ZE PS PM PB

λF
I D(t) VVB VB B M S VS VVS

varying slope of the SMC is less complicated compared to a
case of having 2D rule base with 49 rules.

In order to investigate the error involved in this rule base
reduction, the mean squared error (MSE) defined in (17) bet-
ween the surface plots of the two rule bases (2D and 1D) has
been calculated.

MSE = 1

r

+1∑

E(t),Ė(t),Ed (t)=−1

(
ϕ̂ − ϕ

)2 (17)

where r represents the step size, ϕ represents a fuzzy value
on the 2D surface, and ϕ̂ represents the estimate of ϕ (a fuzzy
value on the 1D surface). Fuzzy input variables E(t), Ė(t),
and Ed(t) are obtained by scaling down the error variables
e(t) and ė(t) into the unit range of [−1,+1]. This is known
as fuzzification process. When the values of these fuzzified
error variables are chosen to vary at discrete points apart from
each other by a step size of 0.05 in the unit range that they
are defined over the surface plots shown in Figs. 3 and 4, the
MSE is calculated as 0.0012 unit2. This calculation verifies
that the 1D rule base can represent the 2D one.

The input/output relation shown in Fig. 4 looks like very
close to a straight line. One can easily see that this input/
output relation can be approximated by the following linear
equation

λFL(t) = −0.45Ed(t) + 0.5 (18)

Fig. 4 The input/output
relation of the fuzzy controller
with 1D rule base

Fig. 5 Block diagram of the
single input fuzzy moving
sliding surface SMC using 1D
rule base
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Fig. 6 Block diagram of the
single-input fuzzy-like moving
sliding surface SMC

where Ed(t) is calculated as in (15) with −0.45 representing
the slope of the straight line, 0.5 is intercept of the line, and
λFL is the fuzzy-like calculated new slope. Here, we propose
to replace the FLC block using 1D rule base shown in Fig. 5
by the approximated line equation given in (18). The cor-
responding block diagram of single-input fuzzy-like moving
sliding surface based on SMC is depicted in Fig. 6.

5 Stability analysis

In this section, we show that the proposed control approaches
have no stability problem. We start our stability analysis by
considering the following Lyapunov function

V (t) = 1

2
S2(t) (19)

Taking time derivative of the Lyapunov function gives

V̇ (t) = S(t)Ṡ(t) (20)

It is well known from Lyapunov’s stability Theorem that any
linear or nonlinear system is globally asymptotically stable
if V̇ (t) is negative definite. Therefore, the existence condi-
tion

[
V̇ (t) = S(t)Ṡ(t)

]
< 0 for the reaching mode must be

satisfied. Substituting (5), (9), and (12) into (20) yields

V̇ (t) = S(t){−b(x)K sgn [S(t)]}
= −S(t)b(x)K sgn [S(t)] (21)

Assuming that b(x) > 0, it is clear from (21) that the deri-
vative of Lyapunov function is always negative ([V̇ (t) =
S(t)Ṡ(t)] < 0) regardless of the sign of S(t). This means
that the system trajectory is driven and forced towards the
sliding surface and remain sliding on it until the origin is
reached asymptotically.

6 Computer simulations

In order to verify the theoretical considerations and test the
performance of the proposed control approaches, the inverted
pendulum system (or the cart-pole system) shown in Fig. 7

Fig. 7 The inverted pendulum on a cart

has been simulated using Matlab/Simulink. The closed-loop
system is simulated with a time-step (step size) of 0.01 s
using the Runge–Kutta method. The switching control gain
is chosen as K = 125 for all simulation studies. Slope of
the SMC with fixed sliding surface is selected as λ = 5. It is
important to note here that in order to haveλ = λF

2D = λF
1D =

λFL = 5 in the steady-state, the output scaling factor (output
gain) of both fuzzy (using 2D or 1D rule bases) and fuzzy-like
controllers is intentionally selected as 10. Since the output
scaling factor affects the output value of FLC (slope), its
value should be selected in such a way that all controllers
will have a final slope value of 5 (for the sake of comparison
purposes) in the steady-state. The dynamic behavior of the
inverted pendulum system can be described by the following
nonlinear equations [13]

ẋ1(t) = x2(t) (22)

ẋ2(t) = f (x) + b(x)u(t) (23)

where

f (x) = g sin(x1) − mlax2
2 sin(x1) cos(x1)

4l/3 − mla cos2(x1)
(24)

b(x) = a cos(x1)

4l/3 − mla cos2(x1)
. (25)

In above equations, x1(t) is the angular position of the pole
from the vertical, x2(t) is the angular velocity (i.e. change
in the angular position), m is the mass of the pole, M is the
mass of the cart, a is 1/(m+ M), l is the half length of the pole.
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Table 3 Parameters of the inverted pendulum on a cart

m Mass of the pole 0.05 kg

M Mass of the cart 1 kg

l Half length of the pole 0.5 m

g Acceleration due to gravity 9.8 m/s2

The system parameters selected for the simulation studies are
given in Table 3.

As performance measure for a quantitative comparison,
we use integral of absolute error (IAE) and integral of time
absolute error (ITAE) that are defined as

IAE =
∫

|e(t)|dt (26)

ITAE =
∫

t |e(t)|dt (27)

Figure 8 shows the transient response of the system states,
error convergence, phase portrait, and the slope values

Fig. 8 Transient response of the inverted pendulum system when x1d (t) = 0 for: (a) x1(t), (b) x2(t), (c) e(t) (d) phase portrait of the error-state
space, and (e) λ
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obtained for SMC, FMSS-1D, and FLMSS methods when
x1d(t) = 0. The initial condition of the pole angle is assumed
to be x1(0) = 60◦. It is clear from Figs. 8a and 8b that both
FMSS-1D and FLMSS approaches are faster in transient res-
ponse in terms of angular position and angular velocity of the
pole. Error convergence and phase portrait shown in Figs. 8c
and 8d are also faster in case of moving sliding surface cases.
It is shown in Fig. 8e that a higher (λ > 5) dynamic slope is
required to force the system to reach its steady-state earlier.
This fast dynamic response of the system with moving sli-
ding surface methods can be considered as an indication of
the shortening the reaching mode time. The corresponding
performance measures are given in Table 4 where moving
sliding surface methods give better performance compared
to the SMC with fixed sliding surface.

Table 4 IAE/ITAE results calculated for the case when pole starts from
an initial angle

SMC using SMC using FMSS-2D FMSS-1D FLMSS
sgn sat

IAE 17.09 13.82 13.37 13.11 9.30

ITAE 6.43 2.82 2.51 2.37 1.09

Figure 9 shows the transient response of the system state
x1(t), error convergence, phase portrait, and the slope values
obtained for SMC, FMSS-1D, and FLMSS methods when
x1d(t) = π

10 [sin(t) + 0.3 sin(3t)]. The initial condition of
the pole angle is assumed to be x1(0) = 30◦. It is clear from
Fig. 9a that both FMSS-1D and FLMSS approaches are faster
in transient response in terms of angular position of the pole.
Error convergence and phase portrait shown in Figs. 9b and
9c are also faster in case of moving sliding surface approaches
(FMSS-1D and FLMSS). It is shown in Fig. 9d that a higher
(λ > 5) dynamic slope is required to force the system to
reach its steady-state earlier. This fast dynamic response of
the system with moving sliding surface methods can be consi-
dered as an indication of the shortening the reaching mode
time. The corresponding performance measures are given in
Table 5 where moving sliding surface methods give better

Table 5 IAE/ITAE results calculated for tracking control

SMC using SMC using FMSS-2D FMSS-1D FLMSS
sgn sat

IAE 21.61 6.38 5.93 5.72 3.16

ITAE 50.59 1.53 1.29 1.20 0.63

Fig. 9 Transient response of the inverted pendulum system when x1d (t) = π
10 [sin(t) + 0.3 sin(3t)] for: (a) x1(t) versus x1d (t), (b) e(t), (c) Phase

portrait of the error-state space, and (d) λ
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performance compared to the SMC with fixed sliding sur-
face.

7 Conclusions

In this study, a new approach to the sliding mode control of
second-order nonlinear systems is introduced in continuous-
time. A single-input fuzzy logic controller is used to conti-
nuously compute the slope of the sliding surface, with the
result that the sliding surface is rotated in such a direction that
tracking performance of the system under control is impro-
ved. It is shown that the proposed FMSS-1D reduces huge
number of linguistic fuzzy rules significantly. In spite of its
easy implementation, it can be simplified by an approximate
line equation similar to its input/output relation. Therefore,
the FLMSS approach using an approximate line function is
then proposed. It is shown that the proposed control
approaches have better tracking performance than the
conventional sliding mode control with fixed sliding sur-
face. The proposed moving sliding surface approaches are
applied to balance an inverted pendulum on a cart. Computer
simulations presented show that the proposed moving sli-
ding surface approaches exhibit faster transient response in
the system states leading to a faster error convergence and
reaching time.
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